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Abstract

Volume intersection is a frequently used technique to
solve the Shape-From-Silhouette problem, which constructs
a 3D object estimate from a set of silhouettes taken with
calibrated cameras. It is natural to develop an efficient
algorithm to determine the consistency of a set of silhou-
ettes before performing time-consuming reconstruction, so
that inaccurate silhouettes can be omitted. In this paper we
first present a fast algorithm to determine the consistency of
three silhouettes from known (but arbitrary) viewing direc-
tions, assuming the projection is scaled orthographic. The
temporal complexity of the algorithm is linear in the num-
ber of points of the silhouette boundaries. We further prove
that a set of more than three convex silhouettes are con-
sistent if and only if any three of them are consistent. An-
other possible application of our approach is to determine
the miscalibrated cameras in a large camera system. A con-
sistent subset of cameras can be determined on the fly and
miscalibrated cameras can also be recalibrated at a coarse
scale. Real and synthesized data are used to demonstrate
our results.

1. Introduction
Silhouettes are used widely in computer vision and

graphics. Background subtraction generally outputs silhou-
ettes [19]. Gait recognition, an area in biometrics, often
uses silhouettes as input [15]. Silhouettes are also used in
3D reconstruction [5, 6]. Volume intersection [16] is per-
formed by back-projecting the silhouettes taken from cal-
ibrated cameras. Accurate reconstruction is desirable but
many factors make this difficult. In particular, information
from some cameras used in reconstruction may be unreli-
able, either because background subtraction can be inaccu-
rate, or a camera may become uncalibrated. Therefore, it
would be useful to have a fast algorithm that can determine
whether the silhouettes found using a set of cameras are re-
ally consistent with a single, 3D object. We develop such
an algorithm, and show how to use it to determine which, if

any of a set of silhouettes is unreliable.
Given a set of silhouettes, are they consistent with a sin-

gle object? This is the main question addressed in our pa-
per. We provide an effective answer when the projection
is scaled orthographic with unknown depth. We begin our
journey by considering the consistency of three silhouettes
with simple cross-sections (which we will define) from ar-
bitrary but known viewpoints. We develop a verification
algorithm with complexity O(n) where n is the number of
points on the silhouette boundaries. For the case of convex,
3D objects, we generalize this result to a method for deter-
mining the consistency of more than three silhouettes. In
this case, we prove that m silhouettes are consistent if and
only if all triples pass our test for consistency. Therefore,
the answer to the consistency problem immediately follows
after we verify every triple of silhouettes, and the overall
complexity is O(m3 × n). All these results can be applied
to silhouettes of general objects, providing necessary con-
ditions on their consistency.

Silhouette consistency verification can be used in vari-
ous practical scenarios. For example, we show that we can
use our test to efficiently determine which silhouettes are
causing problems, because they are part of many inconsis-
tent triples. Then we can discard inconsistent silhouettes
prior to reconstruction. Camera re-calibration [22] is an-
other possible application. It is good to calibrate only few
uncalibrated cameras in a large camera system if the system
becomes out of calibration. Robotics is also a possible do-
main. If an autonomous robot has viewed a landmark from
a few directions, our results can be used to allow it to de-
termine whether it might be looking at the same landmark
when it moves to another position. Therefore, our problem
has both theoretical and practical implications.

There are alternative approaches to solving the consis-
tency problem. For example, we can recalibrate the whole
camera system frequently, to avoid inconsistent silhouettes,
but this can be time consuming and does not address the
problem of determining when the background subtraction
results are bad. Alternatively, we can perform volume in-
tersection, project the 3D estimate to the image planes, and
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compare new silhouettes with the inputs. However, while
this can signal inconsistency, it can be slow and does not
necessarily tell us which silhouettes have caused the incon-
sistency.

We organize this paper as follows. We provide a brief
review of topics related to the silhouette consistency prob-
lem in Section 2. Section 3 presents our fast verification
algorithm for three silhouettes. Section 4 proves a theorem
about the consistency of a set of convex silhouettes. Exper-
iments are shown in Section 5 to demonstrate how to use
our algorithm in practical situations. This paper ends with a
short discussion.

2. Related Work
Much prior work uses silhouettes in different settings

with different assumptions. One approach is to reconstruct
3D using only a single silhouette. The type of 3D object,
such as algebraic surfaces [11], is often given so that 3D
properties can be inferred. Alternatively, a large number of
images from known viewpoints may be collected allowing
fewer assumptions about the object [8, 21], perhaps using
background subtraction [19, 10] to obtain the silhouettes.
Volume intersection [16] is then used for reconstructing the
3D visual hull [3, 17]. Viewpoints of calibrated cameras
can either be fixed [20], or vary continuously when objects
are placed on a turntable [5, 6]. Frontier points [7] are in-
troduced as epipolar constraints [2]. They are formed by
two viewing rays intersecting in the tangent plane of the
surface, which can be used as true stereo correspondences
[13]. Other cross-sections contain additional information.
Therefore, we use cross-sections to analyze silhouette con-
sistency in this paper.

The problem of determining the consistency of a set of
silhouettes taken from unknown viewpoints has been previ-
ously addressed. [14] considers the case of three silhouettes
produced by scaled orthographic projection, with viewing
directions that are coplanar. They show that the consistency
of silhouettes with simple cross-sections can be determined
by solving a linear program. [4] presents the case in which
more than three silhouettes are considered. They derive a
set of inequalities for determining the consistency of a set
of silhouettes, with coplanar viewing directions and ortho-
graphic projection. Most recently, [12] presents an algo-
rithm to determine the silhouette consistency from uncal-
ibrated motion sequences. They consider the problem as
the generalization of an epipolar tangency constraint and
demonstrate the system using a turntable. We address the
problem when viewing directions are arbitrary but given,
and assume scaled orthographic projection with unknown
depth.

Our derivation also makes use of Helly’s theorem on
convex sets. Helly’s theorem [9] states that the intersection
of a collection of convex sets in d dimensional space Rd is

non-empty if and only if every d + 1 of them have a non-
empty intersection. Our use of Helly’s theorem is somewhat
related to, and inspired by, its use in solving line transver-
sals problems in computational geometry [1]. It motivates
us to explore an efficient algorithm for determining the con-
sistency of more than three convex silhouettes because the
computational cost is greatly reduced. We work directly in
the image domain instead of the 3D voxel domain. This
means we can be very precise and still very efficient, which
is the key difference between our ideas and the visual-hull
based approaches.

3. The Consistency of Three Arbitrary Silhou-
ettes

The consistency of two silhouettes is discussed in [4],
and provides limited information. Therefore, we study the
consistency problem of three silhouettes taken from arbi-
trary but known directions in this section. It is natural to
begin by examining the case in which viewing directions
are orthogonal. Then we show that we can transform space
so that arbitrary viewing directions are handled using the
case in which views are orthogonal.

Without loss of generality, the rotation matrices from
World Coordinate System (WCS) to each Camera Coor-
dinate System (CCS) are shown in Fig.1, and we denote
as SX , SY , and SZ silhouettes viewed from the orthogonal
basis X , Y , and Z1, respectively (Fig.1).

Figure 1. The rotation matrices from world coordinate system
WCS to camera coordinate systems CCSx, CCSy , and CCSz .

We assume a horizontal cross section of SX and SY has
a single line segment2. Generally, it might have multiple
ones. This simple contour assumption of the first two sil-
houettes implies that if we apply our algorithm to general
silhouettes, we check necessary, but not sufficient condi-
tions for consistency. In this case, we use enclosing lines of
multiple line segments as the input.

1It means the viewing directions are opposite to the directions of the
X , Y , and Z axes.

2This does not necessarily mean the silhouette must be convex because
it only requires the horizontal cross-sections to be single lines.



In this section, we first briefly show two observations.
Our algorithm is then presented and the transformation pro-
cedure follows. We assume scaled orthographic projection
with unknown depth in the discussion. The algorithm is
linear in the number of points of the silhouette boundaries.
Variables discussed in this section are continuous.

3.1. Observations

We observe two important properties of points in a sil-
houette.

• Observation 1: Any point p in the silhouette Sp corre-
sponds to a line Lp in 3D, which intersects the image
plane in p (Fig.2). Suppose O is the reconstructed 3D
object using other silhouettes, then Lp must intersect
O if the silhouette Sp is consistent with others.

This observation holds for different assumptions about the
projection. For example, Lp is parallel to the viewing di-
rection if the projection is orthographic, or goes through the
camera center if the projection is perspective. Therefore,
part of the consistency problem is to determine the exis-
tence of points in Lp for every possible p.

If the projection is orthographic, we have the following
observation:

• Observation 2: With orthographic projection, when
the viewing directions are orthogonal to the z direc-
tion, silhouettes are consistent if and only if they have
the same maximum z value, and the same minimum
z value. Any cross-section that is orthogonal to the
z direction then produces a line segment in each sil-
houette (Fig.3 and 4), if they are simple silhouettes.
These two line segments have the same z value, and
the back-projection of these line segments form an en-
closing rectangle of the cross-section of the object that
generates them.

Based on these observations, we introduce an efficient algo-
rithm in Section 3.2, and prove the theorem in Section 4.

Figure 2. A point p of silhouette S in image plane H corresponds
to a 3D line Lp. The illustration uses orthographic projection.

Figure 3. A horizontal cross-section and its orthographic projec-
tions. Viewing directions are parallel to the XY plane.

Figure 4. Two consistent silhouettes and two consistent line seg-
ments.

3.2. The Consistency of Three Silhouettes from Or-
thogonal Viewing Direction

3.2.1 Necessary and Sufficient Conditions

Scale is determined by the distance from the camera center
to the mass center of the object3. The viewing directions of
SX and SY are parallel to the XY plane in WCS. Suppose
Lx(tx) and Ly(ty) are line segments from SX and SY , re-
spectively, and parallel to the x axis in the image coordinate
system (Fig.4). They are parameterized by the distance t to
the lowest horizontal points (or line, if the bottom is flat). If
they are from the same horizontal cross-section (Observa-
tion 2), we have tx = ty = t. Back-projection of Lx(t) and
Ly(t) must form an enclosing rectangle RECT (t) of the
cross section in the 3D space (Fig.3). Based on Observa-
tion 1, every point in Lx(t) and Ly(t) must correspond to at
least one 3D point inside RECT (t). Projecting RECT (t)
to the image plane of CCSZ we have RECTz(t) and its
EDGEz(t). The rectangles must satisfy Theorem 1.

• Theorem 1: Three silhouettes from orthogonal viewing
directions (Fig.1) are consistent if and only if 1) SZ ⊂⋃
t

RECTz(t) and 2) SZ
⋂

EDGEz(t) 6= φ, 0 ≤ t ≤

H(SX) (Fig.5).

The proof of Theorem 1 is as follows. We only need to
verify silhouettes’ boundaries because silhouettes are solid.
By Observation 1, every point in the boundary of SZ cor-
responds to a 3D line l parallel to the Z axis. Any such
line l must intersect at least one RECT (t) (the recon-

3We consider that the scale is unknown and it forms part of the consis-
tency test. The images can be further normalized to the same height.



Figure 5. The necessary and sufficient condition of the consistency
for three silhouettes taken from orthogonal basis. Only three cross
sections are shown for simplicity.

structed 3D object from SX and SY ), which is SZ ⊂ ⋃
t

RECTz(t). Similarly, edges of the enclosing rectangles
RECT (t) correspond to points of the boundaries of SX and
SY . Therefore, edges must be inside the volume formed by
the back-projection of SZ in 3D, which is equivalent to SZ⋂

EDGEz(t) 6= φ for all possible t. A naive algorithm to
verify these constraints would compare every point on the
boundary of SZ to every rectangle, taking O(n2) time. We
now provide a fast, O(n), verification algorithm.

3.2.2 The Verification Algorithm

Four edges of a rectangle are in one-to-one correspondence
to four vertices. Each vertex of RECTz(t) can be repre-
sented by two points of the boundary of SX and SY respec-
tively (Fig.3). Since these points have the same y coordi-
nate in the image plane, as described in Observation 1, we
then parameterize their x coordinate as CL

X(t) and CR
X(t),

or CL
Y (t) and CR

Y (t) (Fig.4), where L and R denote the
left side or the right side of the silhouette. Therefore, we
represent the vertices of RECTz(t) in CCSz using these
functions respectively (Fig.5a). For example, if we use the
transformations in Fig. 1, the top right vertex is:

VTR(t) = (−CL
Y (t), CR

X(t)), 0 ≤ t ≤ H(SX). (1)

where T and R (and B, L in later paragraphs) in Eq.1 de-
note top, right, bottom and left. We also define:

RTR(t) = (x, y) : x ≤ −CL
Y (t), y ≤ CR

X(t) (2)

RTL(t) = (x, y) : x ≥ −CR
Y (t), y ≤ CR

X(t) (3)

RBR(t) = (x, y) : x ≤ −CL
Y (t), y ≥ CL

X(t) (4)

RBL(t) = (x, y) : x ≥ −CR
Y (t), y ≥ CL

X(t) (5)

To verify SZ ⊂
⋃
t

RECTz(t), we observe that 4:

RECTz(t) = RTR(t)∩RTL(t)∩RBR(t)∩RBL(t) (6)

4There is redundancy in this equation, but the notation is for discussion
in later context.

Therefore, if we denote RTR =
⋃
t

RTR(t), 0≤ t≤H(SX),

etc, we have 5:

∪t RECTz(t)
= ∪t(RTR(t) ∩RTL(t) ∩RBR(t) ∩RBL(t))
= (∪tRTR(t)) ∩ (∪tRTL(t)) ∩ (∪tRBR(t)) ∩ (∪tRBL(t))
= RTR ∩RTL ∩RBR ∩RBL (7)

We show how to compute the boundaries of these regions
efficiently. Without loss of generality, we discuss RTR. As
shown in Fig.6b, RTR(t1) ∈ RTR(t2) if VTR(t1) (denoted
by intersection of dashed lines) is lower left to VTR(t2) (de-
noted by solid lines). Therefore, if we denote CTR(t) as the
boundary of RTR, CTR(t) at x = −CL

Y (t1) is the maximal
value of CR

X(t2) for all t2 such that −CL
Y (t2) ≥ −CL

Y (t1),
which is:

CTR(t) = max(CR
X(t0)),∀CL

Y (t0) ≤ CL
Y (t) (8)

for t0, t ≤ H(SX). This causal equation can be efficiently
solved. Similarly, CTR, CBR, and CBL can be computed
so the verification of SZ ⊂ ⋃

t

RECTz(t) can be quickly

determined.

(a) (b)
Figure 6. (a) The parameterization of the vertices of RECTz(t);
(b) The boundary of RTR (The red curve is VTR(t)). RTR(t1) ∈
RTR(t2) therefore CTR(t1) = CR

X(t2).

We next provide a way to check SZ ∩ EDGEz(t) 6=
φ in the following discussion. Observation 1 tells us that
if there is consistency, all edges must intersect at least one
point in SZ . Without loss of generality, we discuss the right-
most edge of RECTz(t), whose endpoints are VTR(t) and
VBR(t) (VBR(t) < VTR(t) for all t). Assume when t1 <
t < t2, CL

Y (t) is monotonically increasing (Fig.7). Then all
the rightmost edges of the enclosing rectangles RECTz(t)
form a region R, which is bounded by four curves−CL

Y (t2),
−CL

Y (t1), VTR(t) and VBR(t), for t1 < t < t2, in CCSz .
Since every vertical line in R is a rightmost edge of some
enclosing rectangle, they must all intersect SZ . Therefore,
the projection of SZ ∩R to x axis can only be a single line,
which is equivalent to:

lsNum(Projx(SZ ∩R)) = 1 (9)
5This equality does not hold in general, but it can be shown that it is an

identity in our case.



where lsNum() is the number of the line segments and
Projx() is to project the 2D region to x axis in CCSz .
Therefore, all right edges of RECTz(t) for t1 < t < t2
intersect SZ if Eq.9 holds. We need to test Eq.9 for ev-
ery monotonic segment of CL

Y (t) so that the consistency of
right edges of enclosing rectangles can be determined. Sim-
ilar verification can be done on the other three edges. If all
of them hold, it means SZ ∩ EDGEz(t) 6= φ for all t.

Figure 7. The verification of SZ ∩ EDGEz(t), where CL
Y (t) is

monotonic increasing within t1 < t < t2).

Discretized, this algorithm is linear in the number of
points of the silhouettes. The algorithm uses boundary
points of the silhouettes only as input and visits every point
only twice. Therefore, it greatly reduces the computational
complexity. In the next section we will present a proce-
dure to transform space so that arbitrary viewpoints can be
treated using the method described above.

3.3. Transformation of Three Arbitrary Viewing
Directions

In this section we show that we can transform space so
that three arbitrary viewing directions are handled using the
case in which views are orthogonal. Intuitively, suppose we
have three silhouettes taken from arbitrary viewpoints. We
can determine a 3D linear transformation that will transform
these viewpoints to the x, y and z axes. The three original
silhouettes will be consistent with a 3D object if and only
the linearly transformed silhouettes are consistent with the
linearly transformed object. So, to determine consistency of
the original silhouettes we need to calculate the silhouettes
that will appear in the transformed space, and then apply the
algorithm from Section 3.2.

Assume silhouettes are SV1 , SV2 , and SV3 , taken from
V1, V2, and V3 respectively. Without loss of generality, we
assume V1 coincides with X , V2 is in the XY plane, and V3

is arbitrary. The transformation is to represent SV1 , SV2 , and
SV3 using a coordinate system CSV1V2V3 spanned by V1,
V2, and V3, and then project it to corresponding planes in
CCSV1V2V3 . For example, the transformation of SV1 com-
posed of two transformations T1 and T2 is as follows:

1. The transformation from its camera coordinate system

CCSV1 to CSV1V2V3 is:

T1 = [V1, V2, V3]−1

 0 0 1
1 0 0
0 1 0

 (10)

2. The projection matrix to a plane spanned by V2V3 in
CSV1V2V3 is

T2 =

 0 0 0
0 1 0
0 0 1

 (11)

3. The transformation is: T = T1 × T2

The rank of the transformation T = T1 × T2 is two, so
it is a 2D transformation. Similarly, we transform the two
other silhouettes.

4. The Consistency of a Set of Convex Silhou-
ettes

To generalize the solution for three silhouettes to a set of
silhouettes is difficult in general. Assuming that the 3D ob-
ject is convex, we prove a theorem that a set of silhouettes
are consistent if and only if any three of them are consistent.
Therefore, the total temporal complexity of the verification
algorithm is O(

(
m
3

)
×n), given m silhouettes with each one

having n boundary samples (usually m << n). For exam-
ple, a camera system usually has less than 50 cameras, while
each silhouette might have 500 boundary samples. There-
fore, uncalibrated cameras in a camera system can be effi-
ciently detected by placing a convex object in scene. This
also can be applied to the convex hull of a non-convex ob-
ject.

To prove our theorem, we use a specific case of Helly’s
theorem in low dimension as follows. Given a set of closed
1D intervals, Helly’s theorem says they must share at least
one point iff any two intervals have an intersection. That is:

• Lemma: Given m closed intervals I1, ..., Im(m > 2)
in the real domain, if Ii ∩ Ij 6= φ for i, j ⊂ [1..m],
then ∩m

k=1 Ik 6= φ

Using the Lemma, we prove the following theorem.

• Theorem 2: Given a set of convex silhouettes with
known viewing directions, they are consistent if and
only if any three of them are consistent.

The proof is described as follows. Assume we have m
silhouettes. Without loss of generality, Observation 1 says
any point p of the silhouette SP in the image plane denotes
a line Lp, which is parallel to the viewing direction VP and
intersects the image plane in p. The projection of Lp to
other cameras is a line, which intersect other silhouettes if



SP is consistent with them. The intersection with the other
m − 1 silhouettes are line segments, which correspond to
intervals I1, ..., Im−1(m > 3) in Lp. Because any three
silhouettes are consistent, the intersection of every two in-
tervals Ii, Ij(i, j = 1...m − 1) must be non-empty. By
Lemma, ∩m−1

k=1 Ik 6= φ.
This shows that for every point in SP we can choose a

3D point that will project to that point in SP , and project
to the inside of every other silhouette. The union of these
points for all SP will account for all silhouettes.

5. Experiments

In this section, we present our experiments and demon-
strate how our theory can be used for applications. Real
and synthesized data are used in the experiments. Image
sequences taken from 15 calibrated cameras [20] are used.
The resolution is 640 by 480.

We first define the consistency rate, and then two kinds
of miscalibration, the change of the viewpoint and the in-
plane rotation, are shown. Finally, we present the detection
of uncalibrated cameras in a camera system using our algo-
rithm and theory.

5.1. Results for the Verification Algorithm

Real images are taken from synchronized cameras and
background subtraction is performed (Fig.8a, 8b, and 8c).
Connected component analysis based on simple rules and
mathematical morphological operations are used to select
the largest components in the image (Fig.8d, 8e, and 8f). To
generate synthetic data, we use the camera calibration data
to arbitrarily place a 3D object (tetrahedron in our exam-
ples) in the space, and then generate the silhouette images
using scaled orthographic projection (Fig.8j, 8k, and 8l).

By using the space transformation procedure, we have
Fig.8g, 8h, and 8i (real data), and Fig.8m, 8n, and 8p (syn-
thesized data). Because of the discretization error, it is
possible that some consistent silhouettes are incorrectly de-
tected as inconsistent ones. Also, it is possible that the sil-
houettes are still consistent when viewpoints are miscali-
brated for some special cases. Therefore, we define the
consistency rate, to measure the degree of consistency for
each camera. For every camera, we can have

(
m−1

2

)
choices

for two other cameras to use as the input of the verification
algorithm, assuming there are m cameras. Therefore, we
define the consistency rate if k consistent cameras are de-
tected:

CR(i) =
k(

m−1
2

) (12)

for the ith camera. The consistency rate is shown in Fig.9
for synthesized and real data. The average rate for synthe-
sized data is 95%, and for real data it is 75% in our exper-

iments. We apply this to detecting uncalibrated cameras in
the next section.

Figure 9. The consistency rate for real and synthesized data.

5.2. Uncalibrated Camera Detection

In this section, we show some experiments to illustrate
how our theory and algorithm can be used for detecting un-
calibrated cameras in a camera system. Camera calibration
for multiple camera systems is a tedious but necessary pre-
processing step for most applications. Also, cameras can
become uncalibrated due to unexpected change of 1) view-
ing direction and 2) in-plane rotation. Therefore, it is nec-
essary to efficiently determine the inconsistent cameras.

Viewpoints are obtained in the experiment, and then one
or more of them are reasonably perturbed. By computing
the convex hull of the silhouettes, or more directly, plac-
ing an arbitrary convex object in the scene, our theory says
correctly calibrated cameras must be consistent with each
other. Therefore, we first show that the consistency rate de-
creases if we perturb one camera. If more than one camera
becomes inconsistent, we show that the uncalibrated cam-
eras can still be detected because their consistency rates de-
crease much faster than others.

5.2.1 Change of the Viewpoint

Define a camera’s coordinate system so that the viewing di-
rection is [0, 0, 1] (z axis). We miscalibrate the camera so
that the viewpoint is [p, q, 1], for various p, q ⊂ [−0.1, 0.1]
and then calculate the consistency rate. Fig.10 depicts
this change in the World Coordinate System. Synthesized
data are used in this demonstration. Results are shown for
changes of 0.005 as the step size in each direction (Fig.11).
The average angle of miscalibration is 4.48◦ and the maxi-
mal one is 8.04◦.

Figure 10. The change of the viewpoint.



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (p)
Figure 8. Examples of silhouettes for experiment. (a), (b) and (c): Silhouettes taken from three different viewpoints (Human); (d), (e) and
(f): Silhouettes processed using connected component analysis and mathematical morphology; (g), (h), and (i): Real data transformed for
orthogonal viewing directions; (j), (k) and (l): Silhouettes of a synthesized 3D object (Tetrahedron); (m), (n) and (p): Synthesized data
after transformation.

Figure 11. The result for change of viewpoint.

We observe a local maxima in Fig.11. Theoretically, it
might not be the global maxima. But practically speaking,
if the viewpoint is changed a little bit, the local maxima is
probably the correct viewpoint. Therefore, it is possible to
reach the local maxima. Therefore, our method can detect
the uncalibrated camera and calibrate the camera at a coarse
scale6 if the scaled orthographic assumption holds.

5.2.2 In-plane Rotation

Another type of miscalibration is in-plane rotation. In-
stead of changing the viewpoint, the image plane is rotated
a small angle about the z axis (in CCS). This section
demonstrates the consistency rate when one camera is ro-
tated [−10◦, 10◦] in the image plane. Real data are used
and convex hulls of silhouettes are computed. Because they
are perspective projected, the consistency rate is lower than
the simulation. None-the-less, we observe the same trend

6We do not expect precise calibration with just silhouettes and the pre-
cision is determined by the step size used in searching.

(Fig.12).

Figure 12. The result for in-plane rotation.

5.2.3 Detecting Uncalibrated Cameras in a Camera
System

We have shown how to detect inconsistent cameras in the
previous section. Miscalibrated cameras can also be cali-
brated at a coarse scale. In practice, more than one camera
in a camera system can become uncalibrated at the same
time. We simulate this scenario by arbitrarily perturbing
some calibration data in this section.

We use real and synthesized data in this experiment. At
most five cameras (33%) are randomly selected, and we ar-
bitrarily perturb them and compute the consistency rate, us-
ing the method in Section 5.2.1 and 5.2.2. For example,
Fig.13 shows the consistency rate when camera # 0,1,2,6,10
are randomly changed using synthesized data. The consis-
tency rate of miscalibrated cameras decreases faster than
other cameras, and a simple thresholding technique (e.g.,
[18] in MATLAB) can separate the two groups. We repeat
this experiment a few times, and the average result is shown



in Fig.14. In this example, uncalibrated cameras can still be
autmatically detected even if 1/3 of the cameras are uncal-
ibrated.

Figure 13. Example for detecting miscalibrated cameras.

Figure 14. Detecting uncalibrated cameras in a camera system.

6. Conclusion

We explore the silhouette consistency problem in this pa-
per. Assuming the projection is scaled orthographic, we
show three silhouettes from known viewing direction can be
transformed to three orthogonal ones, and then their consis-
tency can be tested with a fast algorithm. We further show
that there is a nice property for convex 3D objects that all
silhouettes in the set are consistent if and only if any three of
them are consistent. We demonstrate how to detect incon-
sistent cameras in a camera system by changing viewpoints
and rotating image planes. Experiments show that our algo-
rithm can detect miscalibration even when 33% of cameras
are miscalibrated.

There are many possible future directions to explore in
this topic. For example, detecting consistency with un-
known viewing directions is interesting, but multiple so-
lutions might exist based just on the shape of silhouettes.
Other future work includes more comprehensive simula-
tions and developing applications based on the silhouette
consistency.
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