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Abstract

This paper proposes a new registration algorithm, Co-

variance Driven Correspondences (CDC), that depends

fundamentally on the estimation of uncertainty in point cor-

respondences. This uncertainty is derived from the covari-

ance matrices of the individual point locations and from

the covariance matrix of the estimated transformation pa-

rameters. Based on this uncertainty, CDC uses a robust

objective function and an EM-like algorithm to simultane-

ously estimate the transformation parameters, their covari-

ance matrix, and the likely correspondences. Unlike the Ro-

bust Point Matching (RPM) algorithm, CDC requires nei-

ther an annealing schedule nor an explicit outlier process.

Experiments on synthetic and real images using a polyno-

mial transformation models in 2D and in 3D show that CDC

has a broader domain of convergence than the well-known

Iterative Closest Point (ICP) algorithm and is more robust

to missing or extraneous structures in the data than RPM.

1. Introduction

The circular dependence between point correspondences

and transformation parameters is at the heart of many prob-

lems in registration. A common approach to addressing this

problem is to start from an initial estimate of the transfor-

mation parameters, use this to generate an initial set of cor-

respondences, re-estimate the parameters, and iterate. The

iterative closest point (ICP) algorithm [2, 5], along with its

variants [9, 10, 14, 17, 19], is a widely used incarnation of

this idea. An important limitation of such algorithms is their

narrow domain of convergence. Figure 1 (a) shows an ex-

ample of this using synthetic points sampled from lines in

the shape of an ’H’. From the configuration shown, ICP is

unable to align the point sets correctly. The cause of the

problem is two-fold. First, for moving points along the hor-
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(a) (b)
Figure 1. Difficulties in correspondence estimation and alignment

of two ’H’ shapes. Points on the moving ’H’ are shown as red cir-

cles, while points on the fixed ’H’ are shown blue x’s. In (a), ICP

correspondences are shown for points on the cross-bar of the ’H’

as red line segments. These mismatches prevent ICP from prop-

erly aligning the shapes. When alignment uncertainty is properly

accounted for (b) these same points preferentially establish corre-

spondence with points on the opposing cross-bar.

izontal line of the ’H’, the closest fixed points are along one

of the two vertical lines instead of the horizontal line. This

prevents formation of constraints that “pull” the transfor-

mation of the moving ’H’ in the desired direction, down on

top of the fixed ’H’. Second, noise in the locations and sur-

face normals of points along the sides of the ’H’ produces

constraints that resist changes in the transformation, again

preventing the desired vertical movement of the mapping.

An alternative approach embodied by the Robust Point

Matching Algorithm (RPM) [6] starts by initially consid-

ering all possible matches, and then, using an annealing

schedule, gradually moves toward unique correspondences

as the transformation is refined. By virtue of this, RPM ef-

fectively aligns many cases on which ICP fails. It works

poorly, however, when there are missing or extraneous

structures (Figure 2(a)). In the early stages of its compu-

tation RPM tends toward aligning the centers of mass of the

points, producing a bias in the estimate when there are ex-

traneous structures that can not be overcome in later stages
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(a) (b)
Figure 2. (a) Outlier points and the extra length of the top arms

of the moving ‘H’ shape (red circles) contribute constraints that

prevent RPM [6] from properly aligning these two shapes. The

CDC correspondence uncertainties — a subset of the uncertainty

ellipses is shown in (b) — initially include constraints from these

unmatchable points, but as the algorithm moves toward the correct

estimate, these uncertainty ellipses will shrink, causing all corre-

spondences for these points to be treated as outliers (Fig. 5(f)).

of the computation.

The motivating idea of this paper is that these problems

may be overcome with effective modeling of uncertainty in

the registration process, including uncertainty in the point

locations, in the transformation parameter estimate, and ul-

timately in the correspondences themselves. Figure 1(b)

illustrates this: The uncertainty in the transformation esti-

mate should produce uncertainty in the mapped point po-

sitions that is predominantly in the vertical direction. This

should allow correspondences between points on the cross-

bars of the two H’s to be preferentially established, which

should then cause the estimation process to “pull” the trans-

formation in the vertical direction. Moreover, since the cor-

respondences between points along the two sides of the ’H’

should indicate a large amount of uncertainty in the vertical

direction, these correspondences should not work against

the desired changes in the transformation.

This paper presents the Covariance Driven Correspon-

dence (CDC) algorithm, built from this motivation. After

Sec. 2 provides further discussion of the literature, the cor-

respondence alignment error covariance matrix is derived in

Sec. 3. This is formed into an objective function taken over

the correspondences, the parameter estimate, and the para-

meter estimate covariance matrix in Sec. 4. Sec. 5 presents

an EM-like optimization algorithm, briefly describes a sec-

ond algorithm that uses an approximation to the CDC objec-

tive function, and outlines implementation details. Experi-

mental results presented in Sec. 6 compare the performance

of the algorithms to both ICP and RPM on synthetic data,

on range scans, and on intensity images.

2. Background

Uncertainty has been used in a number of ways in exist-

ing image matching and registration algorithms. The RPM

algorithm [6, 27, 15] and related work on EM versions of

ICP [8, 11] model the uncertainty in correspondences using

an isotropic covariance matrix. This matrix starts large and

then is gradually reduced through an annealing schedule.

By combining annealing with constraints from a doubly-

stochastic correspondence matrix, these algorithms even-

tually move toward unique correspondences. Outliers —

points that have no analog in the other image — are han-

dled through the formation of an explicit outlier process.

Some of these algorithms include point location covariances

as well.

Many other algorithms use point location covariance

matrices during parameter estimation without incorporat-

ing uncertainty in the resulting estimate in a feed-back

loop. This includes registration algorithms as well as re-

lated techniques in fundamental matrix estimation, stereo

and structure-from-motion [7, 12, 26].

The final common use of uncertainty in image registra-

tion occurs following estimation — for model selection and

region growth [20], for generating additional constraints

in multi-image alignment [24], or for evaluating the sta-

bility of the estimate [10]. All of these algorithms com-

pute covariance using a fixed set of unique correspondences,

which, as illustrated in Fig. 3, leads to significantly under-

estimated uncertainties [22].

3. Covariance of the Alignment Error

We start by deriving the covariance matrix for the align-

ment error between two points given (a) the covariance ma-

trix of the point locations, (b) a vector of estimated transfor-

mation parameters, and (c) the covariance matrix of these

parameters. Let pi be a moving image point and let qj be a

fixed image point. Let θ̂ be the vector of estimated transfor-

mation parameters. Finally, let T be the mapping function.

Then the alignment error vector between qj and pi is

e(pi,qj ; θ̂) = qj −T(pi; θ̂). (1)

All three quantities that e depends on are random variables

— pi and qj because they are measurements (or computed

from measurements) and θ̂ because it is estimated. There-

fore, in order to derive the covariance matrix of e, we con-

sider the uncertainty in all three quantities:

e(pi,qj ; θ̂) = e(p̃i + ∆pi, q̃j + ∆qj ; θ̃ + ∆θ̂), (2)

where p̃i, q̃j , and θ̃ denote the error-free values. The error

in the alignment distance is then

∆e(pi,qj ; θ̂) = e(p̃i+∆pi, q̃j+∆qj ; θ̃+∆θ̂)−e(p̃i, q̃j ; θ̃).
(3)

Taking a Taylor expansion with respect to all three random

variables and dropping quadratic and higher terms yields:

∆e(pi,qj ; θ̂) ≈ ∆qj + Jpi
∆pi + Jθ∆θ̂ (4)
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where Jpi
= ∂T/∂pi is the Jacobian of the transforma-

tion with respect to the moving point and Jθ = ∂T/∂θ̂ is

the Jacobian of the transformation with respect to the cur-

rent parameter estimate. Both Jacobians are evaluated at the

current moving point and parameter estimates, pi and θ̂.

The covariance of the alignment error may be approx-

imated by taking the expected value of the outer product

of ∆e(pi,qj ; θ̂) with itself and assuming all three random
variables are pairwise independent. The independence of

pi and qj is a safe assumption. The independence of θ̂ is

more problematic because in an iterative refinement frame-

work the points are used to estimate the parameters. Still,

if there are many correspondence pairs, then the influence

of any one pair is small and the independence assumption is

reasonable. Therefore,

E[∆e(pi,qj ; θ̂)∆e(pi,qj ; θ̂)⊤]

=E[∆qj∆q⊤j]+Jpi
E[∆pi∆p⊤i ]J⊤

pi
+JθE[∆θ̂∆θ̂

⊤
]J⊤

θ

= Sqj
+ Jpi

Spi
J
⊤
pi

+ JθSθJ
⊤

θ
= Sij . (5)

Thus, the uncertainty in the error of the correspondence,

which we write simply as Sij , depends on (a) the covari-

ance of the fixed point location Sqj
, (b) the covariance of

the moving point location Spi
, mapped using the Jacobian

Jpi
, and (c) the transformation parameter estimate θ̂ and

its covariance Sθ , mapped using the Jacobian Jθ . Sqj

and Spi
are pre-computed from the data and are indepen-

dent of the transformation [1] (Sec. 5). The third covari-

ance, Sθ , must be estimated during registration. The term

it forms for each correspondence, JθSθJ
⊤

θ
, is often called

the “transfer error covariance” [13, Ch. 4]. As will be shown

below (Fig. 4), during the initial stages of registration, the

transfer error covariance dominates Sij , causing elongation

in the direction of the error in the transformation, but as

the estimate converges, the transfer error covariance shrinks

dramatically and the location covariances come to play an

equal or greater role in Sij .

4. Objective Function

Having derived the covariance matrix for each corre-

spondence match, we now formulate an objective function

in terms of the correspondences, the parameters θ, and the

covariance Sθ . We model the alignment error for a correct

correspondence as a normal distribution with zero mean and

covariance Sij . Writing the negative log-likelihood over a

set CT of correct correspondences pi,qj and dropping con-

stant terms, we obtain

LT (θ,Sθ) =
∑

pi,qj∈CT

1

2

(

e⊤ijS
−1

ij eij + ln |Sij |
)

(6)

where eij = e(pi,qj ; θ̂).

Now, since the set of true correspondences is unknown,

we expand this function to include all possible correspon-

dences. In doing so, we need to account for incorrect

matches and for points that have no analog in the other im-

age. We do this in two parts, first by replacing the quadratic

loss function with a robust loss function and second by fac-

toring in a competitive weight between different correspon-

dences. This results in the function

F(θ,Sθ) =
∑

i∈P

∑

j∈Q

wij

(

ρ

(

√

e⊤ijS
−1

ij eij

)

+ ln |Sij |

)

.

(7)

Robust loss function ρ(·) is the standard Beaton-Tukey [21]
scaled by a multiplier k = 2.9872 found by minimizing

the L2-norm difference between ρ(u) and u2 over the inlier

interval [-3..3].

The competitive weight term is formed to enforce com-

petition between matches:

wij =
wr

ij
∑

pi∈P
wr

ij

wr
ij

∑

qj∈Q
wr

ij

. (8)

Here, wr
ij is the usual M-estimator weight used in

reweighted least-squares and formed from the ρ func-

tion [21]. The two factors in wij enforce competition be-

tween correspondence (pi,qj) and other correspondences
for pi in the fixed image and other correspondences for qj

in the moving image.

As a result of this design, robustness and competition are

achieved without an explicit outlier process and without an

annealing schedule. Unique correspondences are never ex-

plicitly enforced and, indeed, because of different sampling

in the two images we do not want to enforce them. Moving

points, pi having all bad correspondences in the fixed image

will have wij = 0,∀j (since wr
ij is 0 for large outliers when

using the Beaton-Tukey ρ function), and will not influence

the estimate.

5. Algorithm

Minimizing the objective function (7) in order to com-

pute the transformation parameter estimate θ̂ requires si-

multaneously estimating the covariance matrix Sθ and

weights wij . It is important to note that Sθ is being es-

timated at the same time as θ̂ instead of afterwards. Since θ̂

is used to weight correspondences during registration but is

itself uncertain, its uncertainty should be incorporated into

the registration process. The estimation of Sθ occurs natu-

rally in an EM framework, but this has not been used previ-

ously in registration.

The minimization problem is solved using a multi-step

process starting from an initial transformation parameter

vector θ̂0 as well as the point sets P and Q and the point

covariances. Here is an outline of the algorithm, with de-

tails provided subsequently:
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1. Compute an initial estimate of transformation parame-

ter covariance matrix Sθ (Section 5.1).

2. Iterate until convergence

(a) Recompute the weights {wij} for all correspon-

dences keeping θ̂ and Sθ fixed (Equation 8).

(b) Update the parameter estimate θ̂ holding {wij}
and Sθ fixed (Section 5.2).

(c) Recompute the weights {wij} as in Step 2(a).

(d) Update the covariance matrix estimate Sθ hold-

ing {wij} and θ̂ fixed (Section 5.2).

5.1. Covariances and Initialization

The point covariance matrices may be viewed as a lo-

cal summary of shape, with more elliptic matrices along

edges and planes (in 3d) and more rounded matrices near

corners. When the points are given in a discrete set, as with

range data, we compute the covariance matrix at each point

(pi or qj) by forming a scatter matrix from the points in a

small, surrounding neighborhood [1]. For an intensity im-

age, points are placed at local maxima of the intensity gra-

dient, as in edge detection, and the covariance matrices are

formed from the summed outer product of the surrounding

gradient vectors [4].

The initial estimate of Sθ — Step 1 of the algorithm —

is found using a two-part process. First, using the initial

parameter estimate θ̂0, the moving points are mapped into

the fixed image, the closest fixed point to each is found,

and a robustly-weighted, least-squares objective function is

formed. Just as in the covariance computation for normal

distance ICP [10, 22], Sθ is assigned to be the inverse of

the Hessian of this objective function. Second, this starting

estimate ofSθ is refined by running optimization Steps 2(c)

and 2(d) of the algorithm, with the parameter estimate, θ̂0,

fixed. Five iterations prove sufficient in practice. Fig. 3 il-

lustrates the effect of this on the correspondence covariance

matrices Sij and their uncertainty ellipses.

We ensure that Sθ remains positive definite through-

out the computation by using the Cholesky decomposition:

Sθ = U⊤U, where matrix U is upper triangular. The pa-

rameters of U are estimated by the optimizer. These para-

meters describe the covariance of the overall transformation

for similarity (in 2d) and affine transformations (in 2d and

in 3d). When computing the 3d rigid transformation they

represent the covariance of the incremental transformation

estimated using a small angle approximation.

5.2. Optimization

The iterations of updating the weights and then the pa-

rameters are reminiscent of the EM algorithm. Given fixed

parameters and covariance matrix, the weights are updated

(a) (b)

Figure 3. Correspondence uncertainty ellipses formed from covari-

ance matrices Sij . In (a) the Sij were formed using the starting

parameter covariance matrix Sθ obtained from the ICP-like ob-

jective function, while in (b) they were formed from Sθ after five

refinement iterations. Only the ellipses for the highest-weighted

matches with their covariance matrices are shown. The ellipses in

(b) more effectively capture the uncertainty in the alignment.

as defined in (8). In this and in all other computations, the

covariance matrix Sθ enters indirectly through the compu-

tation of the individual correspondence covariance matrices

Sij (5), which also depend on the point covariances and

two Jacobians. The former are fixed throughout the com-

putation, while the latter are easily computed at each point

given the transformation parameters.

Given fixed weights, the optimization of the objective

function (7) with respect to θ̂ or Sθ is accomplished with a

quasi-Newton method known as the BFGS algorithm [18].

This requires computation of the gradient of the objective

function at each iteration (an exercise in calculating matrix

derivatives and applying the chain rule). We allow only a

few iterations in each direction prior to stopping and recom-

puting weights, similar to the Generalized EM algorithm [3,

Ch. 9]. This, together with the separation of updates to θ̂

and Sθ , produces more reliable convergence.

A simplified version of the algorithm, with a quadratic

objection function in place of ρ(·) and with competitive

weighting only based on alternative correspondences for

moving points, matches the form of the Generalized EM al-

gorithm [3, Ch. 9], and therefore is provably convergent. As

yet we do not have a convergence proof for the full form of

the algorithm. In practice, convergence is always obtained.

5.3. An Approximation Algorithm

For a k-dimensional parameter vector, CDC estimates

k(k + 1)/2 covariance matrix parameters. While this is not

as inefficient as it seems — experiments show that approx-

imately equal time is spent on weight computation, trans-

formation parameter estimation, and covariance parameter
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estimation — more efficient approximations are possible.

We describe one here.

CDC uses the estimatedSθ to compute the transfer error

covariance matrix JθSθJ
⊤

θ
for each moving point sepa-

rately, using this in turn to compute the alignment error co-

variance Sij . The approximation, CDC’, instead estimates

a global approximation for the transfer error covariance ma-

trix: ST ≈ JθSθJ
⊤

θ
. Using this,

Sij = Sqj
+ Jpi

Spi
J
⊤
pi

+ ST ,

and Step 2(d) of the algorithm estimates ST . This reduces

the number of covariance unknowns to d(d + 1)/2, where
d = 2 for intensity images and d = 3 for range data. This is
somewhat akin to the use of a global correspondence covari-

ance matrix in RPM. The difference is that our covariance

matrix is non-isotropic and is estimated instead of annealed.

Preliminary experiments using CDC’ are presented below.

5.4. Implementation Details

During weight computation, the bounded robust objec-

tive function limits the range over which correspondences

for each moving point can have non-zero weight. A k-d tree

storing the points is then searched to find the fixed points in

this range. Only these points are considered in the weight

computation, reducing the quadratic cost of computing (7)

much closer to linear.

The points are organized into a multiresolution repre-

sentation, but the actual use of this representation is novel.

The average size of the transfer error uncertainty ellipse for

the moving points is used to adaptively switch resolutions.

Larger ellipses and therefore broader search ranges cause a

switch to a coarser resolution, while smaller ellipses cause

a switch to a finer resolution. The switch ensures that each

moving point considers at most 4-5 fixed points with non-

zero weight.

When estimating parameters of transformations that

have an associated scaling (similarity and affine), we in-

corporate a symmetry component to the estimation, with

additional correspondences (and weights and covariances)

computed by reversing the roles of the fixed and moving

point sets. This leads to some redundancy, but stabilizes the

scaling parameters.

6. Experimental Results

We present experimental evaluation of the proposed al-

gorithms on a variety of 2D and 3D data sets, focusing pri-

marily on CDC but presenting a brief evaluation of the ap-

proximation, CDC’. We use both types of data to compare

CDC with robust ICP. We use synthetic data to compare the

abilities of CDC and RPM to handle missing or extraneous

structures. Finally, we evaluate using CDC in place of ICP

(a) (b)

(c) (d)

Figure 4. Example of aligning two H shapes using a similar-

ity transformation. Correspondence covariance matrices Sij are

shown as oriented uncertainty ellipses. The initial alignment and

CDC covariances are shown in (a). Frames (b) through (d) illus-

trate intermediate results, ending in convergence.

as the core alignment engine within the Dual-Bootstrap al-

gorithm [20, 25].

Computationally, CDC averages about 2.5 seconds per

iteration using 1700 points on a Pentium 4 3.2GHz PC with

2GB memory computer, requiring 63 iterations, on aver-

age, to converge for 3d experiments. Time tends to be split

somewhat equally between weight, transformation and co-

variance estimation steps.

6.1. 2D Registration of Synthetic Point Sets

An example of aligning two synthetic H shapes using a

similarity transformation is presented in Fig. 4 to illustrate

the behavior of CDC. In generating this data, points were

uniformly sampled on two H shapes 200 points wide and

400 points tall, and isotropic Gaussian noise with std. dev.

4.0 was added to their locations. Correspondence covari-

ance matrices Sij are shown as uncertainty ellipses whose

axis half-lengths are the square roots of the eigenvalues of

the Sij . One ellipse is plotted for each moving point using

its highest weight correspondence. As the algorithm con-

verges, the covariance matrices change from long and thin
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(a) Structural changes (b) Noisy shapes

(c) RPM alignment (d) RPM alignment

(e) CDC alignment (f) CDC alignment

Figure 5. Example of aligning two H shapes with structural

changes (a) and noise (b). Robust Point Matching (RPM) fails

because of the correspondences generated with extraneous struc-

tures (c),(d), while the proposed CDC algorithm locks onto the

correct correspondences and correctly aligns the shapes (e),(f).

to small and round, reflecting a decrease in the transforma-

tion uncertainty both overall and relative to point location

uncertainty.

We also study the domain of convergence of CDC and

CDC’ as compared to that of ICP and of RPM. We used our

own implementation of robust ICP, but tested RPM [6] us-

ing code posted on-line by the authors. The moving shape

was initialized at positions sampled on a circle whose radius

is half of the fixed shape width. Initial rotations of ±40◦ in
20◦ increments were tested. Results and an example ini-

tialization are shown in Fig. 7. Clearly, ICP is significantly

worse than RPM, CDC and CDC’. This shows the limita-

tions using single matches and Euclidean closest-point dis-

tance measures. RPM and CDC have the same number of

failures, 14 each, while CDC’ has a few more.

The next step in comparing RPM [6] with CDC is to con-

sider the effect of outliers and extraneous structures. This

is important for registration when there are illumination or

Figure 6. Example initial transformations (left column) and fi-

nal CDC alignments (right column) on the Stanford bunny [23]

dataset (best seen in color). In both cases robust ICP using normal

distance constraints failed to converge.

physical changes or low overlap between images. Two com-

parison examples are shown in Fig. 5. In the top example,

an extra line of points has been added to the moving shape,

while in the bottom example the top arms of the ’H’ have

been extended in the moving shape. RPM failed to align the

two shapes, effectively producing a compromise between

the correct correspondences and the correspondences with

the extra structures that causes both rotation and scale er-

rors. CDC, as shown in the figure, and CDC’ are both able

to align these data sets correctly. This difference in perfor-

mance persists for other examples as well.

6.2. 3D Rigid Registration

Our experiments with rigid registration in 3D use the

well-known Stanford bunny dataset [23], which has ten

scans. In these experiments, we initialize the transformation

to the identity matrix and run registration on all scan pairs

having any overlap. We compare only normal-distance ICP

to our proposed CDC algorithm because code for a 3D ver-

sion of RPM was unavailable. It is important to observe

that we are attempting to align scans taken from different

viewpoints rather than prerotating a set of data points to

register against itself. Our test is harder because the differ-

ence in scanner viewpoints causes a decrease in the fraction

of common surfaces and therefore an increase in the num-

ber of missing or extraneous data points. Combined with

the result of the previous experiment, this suggests (without

6
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Figure 7. Convergence analysis for two H shapes using ICP with normal distances (a), RPM (b), the CDC algorithm proposed here (c),

and the approximation, CDC’(d). The moving shape (red circles) was initialized at the marked locations around a circle with five different

orientations, shown by the orientations of the green/red line segments, at each location. A green line segment indicates a location and

orientation from which the algorithm converged correctly, while a red segment indicates a failure.

proof) that RPM would work poorly on this data.

ICP successfully aligned nine scan pairs, but CDC cor-

rectly aligned 16 including the nine ICP aligned. CDC

failed on only two pairs whose inter-scan rotation angle

was less than 80 degrees — the failures involved 56 and

59 degree rotations — whereas ICP failed on most pairs

rotated by more than 45 degrees. Examples of initial and

final alignments of pairs for which CDC succeeded and ICP

failed are shown in Fig. 6. Notice the large differences

between the point sets in these scans. The overall RMS

alignment accuracy is close to the noise and sample spacing

of the scanner. Occasionally it is slightly higher for low-

overlap scans, especially when different parts of the ear are

sampled in the two scans. Such alignments could be further

refined by incorporating information about surface normals

during weight computation [19].

6.3. CDC in the Dual-Bootstrap Algorithm

Our final set of experiments explores the use of CDC in

place of ICP in the Dual-Bootstrap algorithm [20, 25]. The

Dual-Bootstrap is really a system of algorithms consisting

of (a) generation of initial transformations, each roughly ac-

curate over only a small image region, (b) a core estimation,

refinement and region growth procedure, applied to each

initial transformation separately, and (c) a sophisticated set

of decision criteria. Step (b) is currently based on a robust

form of ICP. Experiments have shown that 81% of the initial

estimates that are roughly accurate in only the small region

are successfully refined to an accurate final transformation.

This allows the Dual-Bootstrap to correctly align 19 of 22

image pairs from a challenging test suite.

Testing CDC in place of ICP within the Dual-Bootstrap

resulted in the correct alignment of 36% of the roughly-

accurate initializations that failed when using ICP. While

Figure 8. Image pair from the Oxford data set [16] that the Dual-

Bootstrap algorithm aligned using CDC but not using ICP as its

core alignment engine.

this is only a modest improvement, it occurs in a context

of an overall algorithm — particularly the region-growing

step — specifically designed to limit the effects of ICP’s

short-comings. Although use of CDC did not result in a cor-

rect alignment of the three pairs from the original test suite

on which the Dual-Bootstrap failed, experiments with the

data set in [16] did result in one increase in the correctly-

aligned pairs (Fig. 8). This indicates the significance of

CDC in helping the Dual-Bootstrap align extremely chal-

lenging pairs.

7. Discussion and Conclusion

As compared to the widely-used ICP algorithm, CDC

has a much broader domain of convergence. In effect CDC

can be viewed as estimating and using Mahalanobis dis-

tances during the registration process which allows it to

generate constraints that ICP’s minimum-distance matching

misses. As compared to RPM, CDC includes explicit esti-

7



mation of covariances rather than an annealing of isotropic

covariances, and CDC relies on a robust objective function

rather than a separate outlier process. These allow CDC to

more effectively tolerate extraneous or missing structures in

the data.

CDC has two primary weaknesses. First, since it ex-

plicitly includes estimation of the covariance matrix during

the iterations of registration, the number of unknowns that

must be estimated increases quadratically with the num-

ber of transformation parameters. While experimentally the

cost of this is less than expected, improvements are still

needed. Second, CDC has only been demonstrated on low-

dimensional transformation models and has not been ap-

plied to deformable registration. The approximation used

in the CDC’ algorithm, where the alignment covariance no

longer explicitly depends on the parameter estimate covari-

ance, represents our first step toward solving both of these

problems.

In conclusion, we have shown that by explicitly incor-

porating a model of uncertainty in the registration process,

both the robustness of registration to missing structures and

the domain of convergence of alignment can be substan-

tially improved.
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