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Abstract

The precise alignment of a 3D model to 2D sensor im-

ages to recover the pose of an object in a scene is an im-

portant topic in computer vision. In this work, we outline a

registration scheme to align arbitrary standard 3D models

to optical and Synthetic Aperture Radar (SAR) images in

order to recover the full 6 degrees of freedom of the object.

We propose a novel similarity measure which combines per-

spective contour matching and an appearance-based Mu-

tual Information (MI) measure. Unlike previous work, the

resulting similarity measure is optimized using an evolu-

tionary Particle Swarming strategy, parallelized to exploit

the hardware acceleration potential of current generation

graphics processors (GPUs). The performance of our reg-

istration scheme is systematically evaluated on an object

tracking task using synthetic as well as real input images.

We show that our approach leads to precise registration re-

sults, even for significant image noise, small object dimen-

sions and partial occlusion where other methods would fail.

1. Introduction

Alignment of rigid 3D models to 2D scenes figures

among the challenging problems in computer vision. Typi-

cally, a known 3D model of an object needs to be precisely

aligned with the signature of the same object in sensor data

as an important component for further scene analysis and

object recognition tasks.

In the present work, we propose a comprehensive and

flexible approach to precise 3D model registration, consist-

ing of the generation of the model modalities correspond-

ing to different sensor types, the computation of a robust

and accurate probabilistic similarity measure and its effi-

cient optimization based on the evolutionary concept of Par-

ticle Swarming to recover the six-dimensional object pose.

Figure 1 illustrates the components of the proposed scheme.

We present the results of extensive testing on synthetic and

real sensor input to analyze its precision and convergence

properties and apply the system on an exemplary 3D track-

ing task.

In the following, we summarize previous literature on

each of the topics that we address as part of our work.

Measure of Similarity

A vast number of approaches have been described in the

literature to derive similarity measures between models and

sensor data.

Some authors resort to computing the difference between

2D-projected edge models and edge-filtered sensor images,

for example in [5], thereby increasing generality, but dis-

carding other possibly discriminative information on both

the model and the sensor side. Other researchers derive

shape signatures or similar descriptors from the model and

try to identify the corresponding cues on the sensor side by

comparing the respective signatures, such as in [15]. [4] use

a silhouette-based method to stitch textures from 2D images

onto 3D models.

In their original work, [14] introduce the concept of Mu-

tual Information (MI) as a similarity measure based on in-

formation theory and demonstrate its use for aligning un-

textured 3D objects to images using the interpolated surface

normals as clues on the model side. In several publications,

extensions to the classical MI formulation are proposed, no-

tably by introducing normalization terms such as in [6, 12]

to account for the amount of overlap or weights to account

for spatial relationships, usually based on gradients or seg-

mentation [11, 13].

Two fundamental problems of classical MI have been ad-

dressed by [10], i.e. the lack of spatial information in the

similarity measure and the ”curse of dimensionality” which

prevented the use of classical density estimators for multi-

variate MI computation.

In the present work, we propose several extensions to the

method of [10], notably the fusion of Mutual Information

with an edge-based measure, thereby increasing robustness
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Figure 1. Outline of the proposed model registration scheme.

and registration precision.

Optimization for Registration Tasks

Previous work on registration tasks has predominantly re-

lied on gradient descent approaches in order to determine

the optimum of the chosen similarity measure. The choice

of the optimization scheme depends on the characteristics

of the similarity measure as well as on its computation; [14]

present several concepts for computing probabilistic simi-

larity measures and outline their optimization using gradi-

ent descent.

Due to the high problem dimensionality and the lack of

directly computable gradients, we propose an evolutionary

optimization approach which uses Particle Swarming [3] to

search for the global optimum. Moreover, this inherently

parallel optimization approach is perfectly suited for an effi-

cient implementation on dedicated hardware; in the present

work, we employ the graphics processor (GPU) in a hybrid

CPU-GPU implementation.

Registration to Multiple Modalities

When trying to extract information on objects visible in a

scene, precision and robustness can be increased by resort-

ing to different sensors working in different modalities and

then combining the captured sensor responses.

Most of the existing methods are confined to working

on optical imagery, sometimes exploiting different sensor

characteristics such as color and polarization [8], as well as

multiple channels from the model side, such as normals [9]

or contours [13]. Most multimodal applications originate

from medical 2D/2D and 3D/3D registration tasks, with the

exception of [2, 8] who use MI for tracking 2D templates in

images.

In our framework, we employ MI for registering fully

textured complex 3D models to different sensor modalities

by explicitely simulating and rendering the object appear-

ance for a given sensor modality on the model side not only

for optical sensors, but also for Synthetic Aperture Radar

(SAR) devices.

Paper Outline

The rest of the paper is organized as follows: the problem

setting is formulated in section 2.1, in section 2.2 we de-

scribe the type of 3D models used and in section 2.3 we

present the similarity measure underlying the registration

process. Section 2.4 focusses on the multimodal capabili-

ties of our registration scheme, while section 2.5 details the

optimization method and its efficient implementation. In

section 3, we describe the results of testing our registration

scheme on a 3D tracking task using synthetic as well as real

sensor data.

2. Proposed Model Registration Scheme

Figure 1 gives an overview on the different parts of the

proposed scheme for registering a 3D model to 2D sensor

inputs. In the following, we give a formal description of

the task and present our novel contributions to each of the

components used to address the problem.

2.1. Formal Problem Setting

We suppose that a 3D CAD model M and a vector of

sensor modalities s = s1, · · · , sn are given. The set of

model modalities m = m1, · · · , mk can be described by

mi(p,Pi, M) = Pi · (R · M + t), (1)

where the 6 extrinsic parameters p govern the camera-

relative rotation R and translation t of the 3D model M and

Pi specifies the projection rules for each type of modality

mi with known intrinsic parameters. For an optical camera,

for example, Pi is a perspective projection. The number of

sensor modalities n and model modalities k can be differ-

ent.

We now wish to determine for all modalities the common

6 extrinsic parameters p such that the similarity between the

model rendered in each of the k modalities and the n sensor

modality inputs is maximized. More formally, we identify

the optimal pose p̂ as

p̂ = argmax
p

S(s,m(p)) (2)



where S represents the similarity measure which will be de-

scribed in section 2.3.

2.2. Models

We aim at a flexible approach to model registration

which does not require the time-consuming generation of

models typical of most previous methods. Instead, we re-

sort to using standard 3D CAD models. Given the choice

of the similarity measure, our system can consistently reg-

ister a 3D model even if its appearance does not exactly

correspond to the object visible in the scene, since no direct

equivalence between model and sensor object is required,

as long as a functional relationship exists. This property is

achieved by resorting to a probabilistic similarity measure

as discussed in the next section.

2.3. Mutual Information as a Measure of Similarity

Mutual Information was first applied to computer vision

problems by [14] and [6] and has since become a popular

technique both for image registration and feature selection

tasks. In the following, we summarize its theoretical basis

and describe our own contribution.

Information theory provides a concept for quantizing the

amount of new information contained within a signal when

interpreted as the possible states of a discrete random vari-

able X, the entropy H

H (X) = −

∑

x

pX(x)log(pX(x)). (3)

Analogously, the joint entropy of two signals can be com-

puted as

H (X, Y ) = −

∑

x

∑

y

pXY (x, y)log(pXY (x, y)). (4)

A strong statistical relationship between the two signals re-

duces their joint entropy, while a weaker relationship will

increase this value. Entropy can thus be used as a means

of determining how well one signal describes the other by

minimizing the joint entropy of two signals given their sep-

arate marginal entropies,

MI (X, Y ) = H (X) + H (Y ) − H (X, Y ). (5)

This term is called Mutual Information (MI); it will tend

towards zero for completely unrelated signals and assume

its maximum, the sum of the marginal entropies, for sta-

tistically identical signals. Its main advantage over other

similarity measures such as SSD is that no direct per-value

equivalence is required as long as some form of statistical

dependency between the signals can be determined. This

concept does not, however, take into account the spatial dis-

tribution of a signal, but relies exclusively on a per-element

relationship. In our work, we use the normalized version

MIECC of this term as suggested by [6, 12].

[10] assume an underlying normal distribution to be able

to directly compute the joint entropy of an arbitrary num-

ber d of inputs simultaneously from their covariance matrix

Covd using

H (Covd) = log((2πe)d/2det(Covd)1/2). (6)

The above term allows to perform the similarity computa-

tion on multiple input modalities without requiring costly

multidimensional histograms. Moreover, spatial relation-

ships can be incorporated into the entropy estimation by

considering neighborhood information instead of single

pixels as input [10]. Despite the simplifying assumptions,

we have found this approach to produce by far the best re-

sults and we have therefore decided to build our registration

scheme on this method.

Unlike the registration of entire images, we wish to com-

pute the similarity of a 3D model and a number of images

containing input from various sensors. Using the projec-

tion of the model into a sensor image, we can determine a

precise region of interest which will serve as a mask con-

taining the area of the sensor image relevant for similarity

computation. This mask is not precomputed or limited to

certain variation models as is the case for most template-

based methods, but instead it varies depending on the cur-

rent pose of the 3D model. We can thus much more effec-

tively limit the support of the similarity computation to the

relevant region in the sensor image and reduce computation

time.

Due to the neighborhood size chosen in the MI computa-

tion, the increased robustness comes with a small tendency

for an underfitting of the model. In order to increase align-

ment precision, we introduce another supporting similarity

measure based on edges. We compute precise perspective

contours from the available 3D model and determine the

fraction of the model contour which matches the edges de-

rived from the sensor input image. This edge weight E is

then multiplied with the MI value using

S = (MIECC)w
· (E)(1−w) (7)

where w ∈ [0, 1] allows to vary the influence of either of

the two components. In section 3, we analyze the gain in

precision which can thus be obtained.

2.4. Image Multimodality

In the following, we describe two sensor input modalities

which can be used in our multimodal registration scheme.

2.4.1 Optical Intensity Images

Based on a 3D CAD model, a perspective projection cam-

era model with known intrinsic parameters and a set of light



sources, intensity images are rendered. For testing pur-

poses, a background and various noise levels can be added

and the resulting intensity images can be used as synthetic

input with known ground truth parameters for systematic

testing.

2.4.2 Synthetic Aperture Radar (SAR)

Synthetic Aperture Radar (SAR) is a remote sensing tech-

nique which exploits post-processing of a sequence of radar

signals over time to fusion the echos from points at different

distances. As a consequence, an object remains longer in-

side the beam of the radar and its resolution can be increased

in the resulting radar image by merging the separate echos,

given the sensor movement is known.

In the present work, SAR images are generated on the

model side using a simple algorithm to simulate the SAR

specific projection properties. Although we do not simulate

speckles and highlights which would require raytracing pre-

cision, the quality of the simulated SAR model modalities

is sufficient to register 3D models to real SAR sensor input

and to recover the 3D pose of the objects in the scene.

To simulate the SAR modality for a given 2D optical

model intensity image, we save the original 3D coordinates

(x, y, z) for each pixel together with its intensity. Using

these 3D coordinates, we then map each pixel to its new 2D

SAR screen coordinates (x, z). If several pixels map to the

same screen coordinates, their intensity values are accumu-

lated at this position.

Figure 7 shows the results of the above algorithm (cen-

ter) as opposed to an industry-grade SAR simulation ([7],

left) and the recovered 3D model (right).

2.5. Optimization

Once the sensor inputs and the model renderings for the

given modalities are available, we wish to determine the

parameter p̂ which maximizes the probabilistic similarity

measure S described in 2.3.

The high dimensionality of the parameter vector to es-

timate, the lack of a closed-form gradient computation,

the costly function evaluations and the necessary align-

ment precision require a careful choice of the optimization

method. Another aspect we took into consideration was

the potential of the optimization method for an efficient

implementation on acceleration hardware. Tests with sev-

eral traditional optimization approaches, notably a Simplex

method, have shown to work reliably only for up to three

parameter dimensions.

As a consequence, we propose an evolutionary optimiza-

tion approach which has consistently displayed an excellent

convergence behavior.

2.5.1 Initialization

The initialization of the registration process consists of

choosing an approximate location and orientation of the ob-

ject in the sensor input. In our registration scheme, initial-

ization can be performed manually, alternatively one can

resort to using local features for a rough pose estimation or

a colour-based region of interest selection. In section 3 we

show that our registration scheme is capable of dealing with

poor initializations and a relatively large search space.

2.5.2 Particle Swarming

In order to overcome some of the difficulties observed with

other optimization methods, an evolutionary optimization

strategy was chosen. Particle Swarm Optimization (PSO)

has been introduced by [3] as a concept adopted from na-

ture, where swarms of animals converge towards the rich-

est feeding grounds by communicating between each other.

Classical PSO as implemented in this work boils down to

randomly placing S particles as search agents in a parame-

ter space Rn. Each particle can be described by

1. its position in Rn, x = (x1, · · · , xn), which corre-

sponds to a pose parameter vector p,

2. its velocity v = (v1, · · · , vn)

3. and the position vector which has yielded the currently

best function value, b = (b1, · · · , bn).

In addition, randomly chosen subgroups of the particles are

linked amongst each other in order to be able to commu-

nicate the best position currently found by the members of

this subgroup, g = (g1, · · · , gn); the link topology changes

if no improvement has been made during one time step. The

movement of a particle in each dimension d is governed by

vt+1
d = α(vt

d + rand(0, β1)(b
t
d − xt

d)

+ rand(0, β2)(g
t
d − xt

d)) (8)

xt+1
d = xt

d + vt
d, (9)

where the parameters β1, β2 allow varying the influence of

the currently known best function values on the particle

movement, α is the so-called constriction factor to prevent

swarm divergence and rand(0, β) adds a random compo-

nent to the particle behaviour.

A review of the properties of PSO is given in [1]. In

our setting, we obtained excellent results with a satisfactory

tradeoff between runtime and convergence precision which

are detailed in section 3.

2.6. Implementation

Since we are working with 3D CAD models and require

a rendering pipeline for the simulation of different sensor



modalities, we have chosen to implement our framework as

a hybrid system on the CPU and on the graphics proces-

sor (GPU). More specifically, the rendering of optical and

SAR modalities on the model side, the contour filtering and

the edge distance are computed entirely on the GPU, and

the similarity measure described in 2.3 is calculated on the

CPU.

Figure 2. Simultaneously rendered poses of a particle swarm.

Figure 2 shows a set of rendered particles of a swarm,

each of which is associated with a distinct model pose.

Since there are no interdependencies between the particles

in one iteration, their associated model poses can be ren-

dered simultaneously on the GPU and their respective sim-

ilarity to the sensor input can be computed in parallel. For

the experiment shown in figure 3, our framework registers a

3D model with 6 degrees of freedom to a single 2D sensor

image of size 256x256 on average in about 2 seconds on a

2GHz Pentium with an Nvidia GeForce 7900 GPU. To ob-

tain these results, convergence is declared when the initial

kinetic energy of the swarm has been reduced by more than

90%, approaching the purely stochastically induced level

which depends on the chosen PSO parameters. The para-

meters for the optimization follow the suggestions in [1].

3. Results

The proposed model registration scheme has been sys-

tematically tested for different object tracking tasks. We

use synthetic scenes with known ground truth trajectories

as well as real sensor input using a large number of differ-

ent models.

A test run typically consists of choosing an initial para-

meter search space and a model and then starting the opti-

mization process. Since we do not use any explicit move-

ment model, it is necessary to specify the center and the

range of the parameter search space; the particles of our

optimization will initially be placed arbitrarily inside this

search space. The pose for the first frame is initialized man-

ually; for each consecutive frame the last estimated pose is

used as initialization.

3.1. Synthetic Sequences

In order to test the registration precision exhaustively,

synthetic input sequences for each sensor modality have

been generated by defining trajectories for an object visible

in the scene as well as for the camera and the light sources.

Gaussian blur and speckle noise with different characteris-

tics can then be added to the image data. Figure 3 shows

an example image of a synthetically generated scene and its

noised version.

In the following, we analyze the influence of noise, ini-

tial search space size and edge distance weight on the reg-

istration precision. Moreover, we present the results of the

model registration to SAR sensor input. In the result plots,

we use the standard errors in position and tangential and

normal orientation of the model. The position error is given

in multiples of the model radius, while the rotation errors

are given in degrees.

3.1.1 Noise

A circle was chosen as the ground truth trajectory of the

object. The registration process was then initialized on the

first of a sequence of synthetic optical images with added

noise. Figure 3 shows a part of a recovered trajectory (red)

as opposed to the ground truth (blue). We systematically

increased the noise which was added to the synthetic se-

quence to analyze the robustness of the registration process

and for each noise level used, we plotted the standard errors

in figure 4. The registration process remains stable up to a

significant noise level, while the recovery of the rotation pa-

rameters appears to be more sensitive towards strong noise

than that of the position parameters. Still, registration be-

gins to fail only for noise levels where even the human eye

can no longer reliably distinguish the model.

Figure 3. Part of the recovered 125-frame trajectory (red) and

ground truth trajectory (blue) for a synthetic optical test sequence

with added noise.



Figure 4. Standard errors (as defined in section 3.1) for a regis-

tration sequence of 125 frames (deviation from ground truth po-

sition (blue) and tangential (green) and normal vectors (red)) for

increasing noise; the optical image of one noise level is shown for

visualization.

3.1.2 Search Space Size

In section 2.5.2, we outlined the optimization scheme used.

The initial search space size is of crucial importance for a

successful registration since the particles will tend to get

dispersed inside a search space which is chosen too large.

As a result, the global optimum might not be found reli-

ably any more. In figure 5, we show that, while keeping

the swarm size constant, the search space can be safely in-

creased to +

−

15◦ for rotation parameters and +

−

40% of the

model size for translational parameters without sacrificing

an inadmissible amount of registration precision. The result

shows that the chosen evolutionary optimization scheme is

surprisingly stable even for imprecise initializations.

Figure 5. Standard errors (as defined in section 3.1) for a regis-

tration sequence of 125 frames while increasing the initial search

space size.

3.1.3 Varying the Contribution of the Edge Distance

In section 2.3, we outlined a contour-based extension to the

MI similarity measure, allowing to vary the influence of ei-

ther of the two components as a function of the parameter

w. In systematic tests, we have found an optimal choice

to be about w = 0.5, which corresponds to the geometric

mean. For this choice, the three standard errors are minimal

in the majority of test settings, while for w → 0.0 signifying

an exclusive use of the edge distance component and like-

wise for an exclusive use of the MI measure with w → 1.0,

stability and registration precision deteriorate significantly.

To illustrate the gain in stability, we registered a model to

605 frames of an input sequence using different w values.

In figure 6, the frames are shown for which the tracking

failed for the first time. When using only the edge distance

(w → 0.0), registration failed after 24 frames, when using

only the MI measure (w → 1.0), precision was inadmissi-

ble after 117 frames showing a characteristic underfitting of

the model. The combined measure with w = 0.5 completed

the sequence successfully and produced precise results.

Figure 6. Tracking with different w values: using only contour

matching, tracking fails after a few frames (left), the MI measure

fails after 117 frames (center), the weighted combination handles

the full sequence successfully (right)).

3.1.4 SAR

Using the simulated SAR response, we performed regis-

tration on SAR input data. Figure 7 shows two frames of

a SAR sequence, with the input images from an industry-

grade SAR simulator ([7]) on the left, the registered SAR

signature in the center and the recovered optical 3D model

corresponding to the SAR signature on the right. Despite

the simple SAR modality generation used, the results show

a precision comparable to the optical sequences.

3.2. Video Sequences

In order to verify the suitability of the proposed registra-

tion scheme for realistic sensor input, we registered differ-

ent models to videos taken with a standard interlaced Sony

camera. We did not perform any preprocessing on the in-

put data and did not remove lens distortion, motion blur and

interlacing artifacts. The tested sequences displayed fully

perspective changes and fast movements. Since we recover

for each input frame the full 6 pose parameters of the ob-

ject, we can reconstruct the camera trajectories for the input



Figure 7. 2 frames from a tracking sequence on SAR input images

(left, [7]), the registered SAR model modality (center) and the re-

covered optical 3D model (right). Images are scaled for better

visualization.

sequences when supposing that the only movement in the

scene stems from the camera.

Figure 8 shows some images taken from a 654-frame

video of a set of small toy cars on an indoor office table

with artificial lighting. For each frame, we show the in-

put image with the reprojected model edges on the left, and

the recovered 3D model pose on the right. In figure 9, the

spline-interpolated camera trajectory for the same scene is

plotted together with the model position and the camera po-

sition and orientation for each of the 4 images shown in fig-

ure 8. The average size of the toys in this sequence varies

between 60x40 and 120x80 pixels.

In figure 10, we present more results taken from different

input sequences. The topmost frame is taken from another

indoor sequence of a different toy car, while the next two

images show real cars in an outdoor setting. Due to the

chosen robust similarity measure, significant occlusions of

the object can be sustained as illustrated in the third image

of figure 10. The registration is also suitable for textured

objects with shiny surfaces, even in complex settings, as

can be seen on the last image of figure 10 for an indoor

recording of a soda can. Model sizes in the tested sequences

vary from 80x60 to 160x120 pixels with video resolutions

of 256x256 and 512x512 pixels. For non-matching objects,

the value of the similarity measure after convergence ranges

an order of a magnitude below the result for a correct match,

thus allowing to determine whether the choice of the model

for registration to a given scene ought to be reconsidered.

4. Conclusion

We have proposed a simple but efficient similarity mea-

sure derived from information theory and perspective con-

tour matching. In conjunction with a robust and precise

evolutionary optimization strategy, we have been able to

achieve excellent results for the registration of 3D models

Figure 8. 4 frames from a 654-frame sequence with toy cars; input

image with recovered object (left), recovered 3D model (right).

to 2D sensor inputs of different modalities. By exploiting

the hardware acceleration potential of the GPU and by us-

ing standard 3D CAD models, we outperform many of the

existing registration approaches as regards precision, speed

and universality. Further work will be dedicated to inte-

grating this method into an extensive framework for object

recognition tasks.



Figure 9. Recovered camera trajectory of the tracking sequence 8

with the camera positions of the 4 frames shown in the figure.
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