
Searching Video for Complex Activities with Finite State Models

Nazlı İkizler
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Abstract

We describe a method of representing human activities

that allows a collection of motions to be queried without

examples, using a simple and effective query language. Our

approach is based on units of activity at segments of the

body, that can be composed across space and across the

body to produce complex queries. The presence of search

units is inferred automatically by tracking the body, lifting

the tracks to 3D and comparing to models trained using

motion capture data. We show results for a large range of

queries applied to a collection of complex motion and ac-

tivity. Our models of short time scale limb behaviour are

built using labelled motion capture set. We compare with

discriminative methods applied to tracker data; our method

offers significantly improved performance. We show experi-

mental evidence that our method is robust to view direction

and is unaffected by the changes of clothing.

1. Introduction

Understanding what people are doing is one of the great

unsolved problems of computer vision. A fair solution

opens tremendous application possibilities. The major dif-

ficulties have been that (a) good kinematic tracking is hard;

(b) models typically have too many parameters to be learned

directly from data; and (c) for much everyday behaviour,

there isn’t a taxonomy. Tracking is now a usable, if not

perfect technology (section 2.1). Building extremely com-

plex dynamical models from heterogenous data is now well

understood by the speech community, and we borrow some

speech tricks to build models from motion capture data (sec-

tion 2.2).

Our particular interest is everyday activity. In this case,

a fixed vocabulary either doesn’t exist, or isn’t appropriate.

For example, one often does not know words for behaviours

that appear familiar. One way to deal with this is to work

with a notation (for example, laban notation); but such no-

tations typically work in terms that are difficult to map to

visual observables (for example, the weight of a motion).

We must either develop a vocabulary or develop expressive

tools for authoring models. We favour this third approach

(section 3).

Timescale: Space does not allow a complete review; the

literature is complex, because there are many quite different

cases in activity recognition. Motions could be sustained

(walking, running) or have a localizable character (catch,

kick). The information available to represent what a per-

son is doing depends on timescale. We distinguish between

short-timescale representations (acts); medium timescale

actions, like walking, running, jumping, standing, wav-

ing, whose temporal extent can be short (but may be long)

and are typically composites of multiple acts; and long

timescale activities, which are complex composites of ac-

tions.

1.1. Review

There is a long tradition of research on interpreting ac-

tivities in the vision community (see, for example, the ex-

tensive surveys in [20, 14]). There are three major threads.

First, one can use temporal logics to represent crucial or-

der relations between states that constrain activities; these

methods are currently unpopular, and we do not review

them here. Second, one can use spatio-temporal templates

to identify instances of activities. Third, one can use (typi-

cally, hidden Markov) models of dynamics.

Timescale: A wide range of helpful distinctions is avail-

able. Bobick [5] distinguishes between movements, activ-

ity and actions, corresponding to longer timescales and in-

creasing complexity of representation; some variants are de-

scribed in two useful review papers [1, 15].

Methods based on Templates: The notion that a mo-

tion produces a characteristic spatio-temporal pattern dates

at least to Polana and Nelson [23]. Spatio-temporal patterns

are used to recognize actions in [6]. Ben-Arie et al. [3] rec-

ognize actions by first finding and tracking body parts us-

ing a form of template matcher and voting on lifted tracks.
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Bobick and Wilson [7] use a state-based method that en-

codes gestures as a string of vector-quantized observation

segments; this preserves order, but drops dynamical infor-

mation. Efros et al. [11] use a motion descriptor based on

optical flow of a spatio-temporal volume, but their evalu-

ation is limited to matching videos only. Blank et al. [4]

define actions as space-time volumes. An important disad-

vantage of methods that match video templates directly is

that one needs to have a template of the desired action to

perform a search.

HMM’s: Hidden Markov models have been very widely

adopted in activity recognition, but the models used have

tended to be small (e.g, three and five state models

in [10]). Such models have been used to recognize: tennis

strokes [30]; pushes [28]; and handwriting gestures [31].

Feng and Perona [13] call actions “movelets”, and build

a vocabulary by vector quantizing a representation of im-

age shape. These codewords are then strung together by an

HMM, representing activities; there is one HMM per ac-

tivity, and discrimination is by maximum likelihood. The

method is not view invariant, depending on an image cen-

tered representation. There has been a great deal of interest

in models obtained by modifying the HMM structure, to im-

prove the expressive power of the model without complicat-

ing the processes of learning or inference. Methods include:

coupled HMM’s ([10]; to classify T’ai Chi moves); layered

HMM’s ([22]; to represent office activity); hierachies ([21];

to recognize everyday gesture); HMM’s with a global free

parameter ([29]; to model gestures); and entropic HMM’s

([9]; for video puppetry). Building variant HMM’s is a way

to simplify learning the state transition process from data

(if the state space is large, the number of parameters is a

problem). But there is an alternative — one could author

the state transition process in such a way that it has rela-

tively few free parameters, despite a very large state space,

and then learn those parameters; this is the lifeblood of the

speech community.

Stochastic grammars have been applied to find hand ges-

tures and location tracks as composites of primitives [8].

However, difficulties with tracking mean that there is cur-

rently no method that can exploit the potential view-

invariance of lifted tracks, or can search for models of ac-

tivity that compose across the body and across time.

Finite state methods have been used directly. Hongeng et

al. demonstrate recognition of multiperson activities from

video of people at coarse scales (few kinematic details are

available); activities include conversing and blocking [17].

Zhao and Nevatia use a finite-state model of walking, run-

ning and standing, built from motion capture [32]. Hong et

al. use finite state machines to model gesture [16].

2. Representing Acts and Activities

Since we want our complex, composite motions to share

a vocabulary of base units, we use the kinematic configura-

tion of the body as distinctive feature. We have ignored limb

velocities and accelerations because actions like reach/wave

can be performed at varying speeds. However, velocity and

acceleration is a useful clue when differentiating run and

walk motions.

We want our representation to be as robust as possible to

view effects and to details of appearance of the body. Fur-

thermore, we wish to search for motions without possessing

an example. All this suggests working with an inferred rep-

resentation of the body’s configuration (rather than, say, im-

age flow templates). An advantage of this approach is that

models of activity, etc. can be built using motion capture

data, then transferred to use on image observations, and this

is what we do.

2.1. Transducing the body

Tracking: We track motion sequences with the tracker

of [25]; this tracker obtains an appearance model by de-

tecting a lateral walk pose, then detects instances in each

frame using the pictorial structure method of [12]. Kine-

matic tracking is known to be hard (see the review in [14])

and, while the tracker is usable, it has some pronounced ec-

centricities (Figure 2).

Lifting: The tracker reports a 2D configuration of a pup-

pet figure in the image (Figure 1), but we require 3D in-

formation. Several authors have successfully obtained 3D

reconstructions by matching projected motion capture data

to image data by matching snippets of multiple motion

frames [18, 19, 24]. A complete sequence incurs a per-

frame cost of matching the snippet centered at the frame,

and a frame-frame transition cost which reflects (a) the ex-

tent of the movement and (b) the extent of camera mo-

tion. The best sequence is obtained with dynamic program-

ming. The smoothing effect of matching snippets — rather

than frames — appears to significantly reduce reconstruc-

tion ambiguity (see also the review in [14]).

The disadvantage of the method is that one may not have

motion capture that matches the image well, particularly if

one has a rich collection of activities to deal with. We use

a variant of the method. In particular, we decompose the

body into four quarters (two arms, two legs). We then match

the legs using the snippet method, but allowing the left and

right legs to come from different snippets of motion capture.

The per-frame cost must now also reflect the difference in

camera position in the root coordinate system of the motion

capture; for simplicity, we follow [24] in assuming an or-

thographic camera with a vertical image plane. We choose

arms in a similar manner conditioned on the choice of legs,

requiring the camera to be close to the camera of the legs.



Figure 1. Here are some example tracks from our video collection. These are two sequences performed by two different actors. Top:

stand-pickup sequence. Bottom: walk-jump-reach-walk sequence. The tracker is able to spot most of the body parts in these

sequences. However, in most of the sequences, especially in lateral views, only two out of four limbs are tracked.

Figure 2. Due to motion blur and similarities in appearance, some frames are out of track. first: appearance and motion blur error second:

legs mixed up because of rectangle search failure on legs. third and fourth: one leg is occluded by the other leg, the tracker tries to find

second leg, mistaken by the solid dark line fifth: motion blur causes tracker to miss the waving arm, legs scrambled. Note that all such

bad tracks are a part of our test collection and non-perfect tracking introduces considerable amount of noise to our motion understanding

procedure.

In practice, this method is able to obtain lifts to quite rich

sequences of motion from a relatively small motion capture

collection.

2.2. Acts and Activities

Acts in short timescales: Individual frames are a poor

guide to what the body is up to, not least because trans-

duction is quite noisy and the frame rate is relatively high

(15-30Hz). We expect better behaviour from short runs of

frames. At the short timescale, we represent motion with

three frame long snippets of the lifted 3D representation.

We form one snippet for each leg and one for each arm; we

omit the torso, because torso motions appear not to be par-

ticularly informative in practice. Each limb in each frame is

represented with the vector quantized value of the snippet

centered on that frame. We use 40 as the number of clusters

in vector quantization, for each limb.

Limb models: Using a vague analogy with speech, we

wish to build a large dynamical model with the minimum

of parameter estimation. We first build a model of the ac-

tivity of each limb (arms, legs) for a range of actions, using

HMM’s that emit vector quantized snippets. We choose a

set of 9 activities by hand, with the intention of modelling

our motion capture collection reasonably well; the collec-

tion is the research collection of motion capture data re-

leased by Electronic Arts in 2002, and consists of assorted

football movements. Motion sequences from this collection

are sorted into activities using the labelling of [2]. This la-

belling is adapted to have separate action marks for each

limb. Since actions like wave cannot be definable for legs,

we only used a subset of 6 activities for labelling legs. For

each activity, we fit to the examples using maximum likeli-

hood, and searching over 3-10 state models. Experimenta-

tion with the structures shows that 3-state models represent

the data well enough. Thus, we take 3-state HMMs as our

smallest unit for activity representation.

Activity models: We now string the limb models into

a larger HMM by linking states that have similar emission

probabilities. That is, we put a link between states m and n

of the different action models A and B if the distance

dist(Am, Bn) =

N∑

om=1

N∑

on=1

p(om)p(on)C(om, on) (1)

is minimal. Here, p(om) and p(on) are the emission proba-

bilities of respective action model states Am and Bn, N is

the number of observations and C(om, on) is the Euclidean

distance between the emissions centers, which are the clus-

ter centers of the vector-quantized 3D joint points.

The result of this linkage is a dynamical model for each

limb that has a rich variety of states, but is relatively easily

learned. States in this model are grouped by limb model,

and we call a group of states corresponding to a particular

limb model a limb activity model (Figure 3).

Representing the body: We can now represent

the body’s behaviour for any sequence of frames as

P (limb activity model|frames). The model has been built

entirely on motion capture data. As Figure 3 indicates, this

representation is quite competent at discriminating between

different labellings for motion capture data. In addition, we



walk run

jump
arm

activity

model

walk run

jump

leg

activity

model

L

R

walk run

jump
walk run

jump

L

R

(a)

walk

pickup

walk/carry

walk

pickup

stand

jump

crouch

run

pickup

reach

walk
wave

jump

crouch
stand

carry
run

legs 

arms 

walk pick carry

X

ES

walk pick carry X

walk pick carry

X

ES

walk pick carry X

walk wave

X

ES

walk wave X

walk

pickup

stand

jump

crouch

run

pickup

reach

walk
wave

jump

crouch
stand

carry
run

legs 

arms 

walk

wave

(b)

Figure 3. (a) First, single action HMMs for left leg, right leg, left arm, right arm are formed using motion capture dataset. Actions

are chosen by hand to conform with the available actions in this largely synthesized motion capture set (provided by Electronic Arts,

consisting of American Football movements). Second, single action HMMs are joint together by linking the states that have similar

emission probabilities. This is analogous to joining phoneme models to recognize words in speech recognition. This is loosely a generative

model, we compute the probability that each sequence is generated by a certain set of action HMMs. Using a joint HMM like this for each

body part, we compute posteriors of sequences. After that, HMM posteriors for right and left parts of the body are queried together. (b)

Top: Average HMM trellises for the legs and arms of sequences walk-pickup-carry and walk-wave-walk (which are performed

by different actors - male and female) are shown. As it can be seen, maximum likelihood goes from one action HMM to the other as

the action in the video changes. This way, we achieve automatic segmentation of activities and there is no need to use other motion

segmentation procedures. (b) Bottom: Corresponding frames from the subsequences are shown. These sequences are correctly labeled

and segmented as walk-pickup-carry and walk-wave as the corresponding queries are evaluated.

achieve automatic segmentation of motions using this rep-

resentation. There is no need for explicit motion segmen-

tation, since transitions between action HMMs simply pro-

vide this information.

3. Querying for Activities

We can compute a representation of what the body is do-

ing from a sequence of video. We would like to be able to

build complex queries of composite actions, such as carry-

ing while standing, or waving while running. We can ad-

dress composition across the body because we can repre-

sent different limbs doing different things; and composition

in time is straightforward with our representation.

This suggests thinking of querying as looking for strings,

where the alphabet is a product of possible activities at

limbs and locations in the string represent locations in time.

Generally, we do not wish to be precise about the tempo-

ral location of particular activities, but would rather find

sequences where there is strong evidence for one activity,

followed by strong evidence for another, and with a little

noise scattered about. In turn, it is natural to start by using

regular expressions for motion queries (we see no need for

a more expressive string model at this point).

An advantage of using regular expressions is that it is

relatively straightforward to compute

∑

strings matching RE

P (string|frames) (2)



Figure 4. Example frames from our dataset of single activities with

different views. Top row: Jogging 0 degrees, Jump 45 degrees,

jumpjack 90 degrees, reach 135 degrees. Bottom row: wave 180

degrees, jog 225 degrees, jump 270 degrees, jumpjack 315 degrees.

which we do by reducing the regular expression to a fi-

nite state automaton and then computing the probability this

reaches its final state using a straightforward sum-product

algorithm.

A tremendous attraction of this approach is that no vi-

sual example of a motion is required to query; once one has

grasped the semantics of the query language, it is easy to

write very complex queries which are relatively success-

ful. The alphabet from which queries are formed con-

sists in principle of 62 × 92 terms (one has one choice

each for each leg and each arm). We have found that the

tracker is not sufficiently reliable to give sensible repre-

sentations of both legs (resp. arms). It is often the case

that one leg is tracked well and the other poorly. We

therefore do not attempt to distinguish between legs (resp.

arms), and reduce the alphabet to terms where either leg

(resp. either arm) is performing an action; this gives an

alphabet of 6 × 9 terms (one choice at the leg and one

at the arm). Using this alphabet, we can write complex

composite queries, for example, searching for strings that

have several (l-walk; a-walk)’s followed by several

(l-stand; a-wave) followed by several (l-walk;

a-walk) yields sequences where a person walks into view,

stands and waves, then walks out of view.

4. Experimental Results

Using limb activity models, we can do complex activity

search with fair accuracy. Our method is insensitive to the

clothing or the viewing direction of the subject.

Datasets: We collected our own set of motions, involv-

ing three subjects wearing a total of five different outfits in

a total of 73 movies (15Hz). Each video shows a subject in-

structed to produce a complex activity. The sequences differ

in length. The complete list of activities collected is given

in Table 1.

For viewpoint evaluation, we collected videos of 5 ac-

tions: jog, jump, jumpjack, wave and reach. Each action is

performed in 8 different directions to the camera, making a

total dataset of 40 videos (30Hz). Figure 4 shows example

frames of this dataset.

Performance over a set of queries is evaluated using

Context # videos Context # videos

crouch-run 2 run-backwards-wave 2

jump-jack 2 run-jump-reach 5

run-carry 2 run-pickup-run 5

run-jump 2 walk-jump-carry 2

run-wave 2 walk-jump-walk 2

stand-pickup 5 walk-pickup-walk 2

stand-reach 5 walk-stand-wave-walk 5

stand-wave 2 crouch-jump-run 3

walk-carry 2 walk-crouch-walk 3

walk-run 3 walk-pickup-carry 3

run-stand-run 3 walk-jump-reach-walk 3

run-backwards 2 walk-stand-run 3

walk-stand-walk 3

Table 1. Our collection of video sequences, named by the instruc-

tions given to actors.
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Figure 5. Local dynamics is quite a good guide to a motion in the

motion capture data set. Here we show HMM interpretation of

these dynamics. Each column represents 5 frame average HMM

trellises for the motion capture sequences (left:legs right:arms).

This image can also be interpreted as a confusion matrix between

actions. Most of the confusion occurs between dynamically similar

actions. For example, for pickup motion, the leg HMMs may fire

pickup or crouch motions. These two actions are in fact very

similar in dynamics. Likewise, for reach motion, arm HMMs

show higher posteriors for reach, wave or jump motions.

mean average precision (MAP) of the queries. Average pre-

cision of a query is defined as the area under the precision-

recall curve for that query and a higher average precision

value means that more relevant items are returned earlier.

Limb activity models were fit using a collection of

10938 frames of motion capture data released by Electronic

Arts in 2002, consisting of assorted football movements.

We choose a set of 9 activities by hand, with the inten-

tion of modelling our motion capture collection reasonably

well. While these activities are abstract building blocks,

the leg models correspond reasonably well to: run, walk,

stand, crouch, jump, pickup (total of 6 activities). Simi-

larly, the arm models correspond reasonably well to: run,

walk, stand, reach, crouch, carry, wave, pickup, jump mo-

tions (total of 9 activities). Figure 5 shows the posterior for

each model applied to labelled motion capture data; this can

be interpreted as a class confusion matrix.

Searching: We have evaluated several different types

of search. In the first type, we employed queries where

legs and arms are doing different motions simultaneously.
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Figure 6. Our representation can give quite accurate results for

complex motion queries, regardless of the clothing worn by the

subject. Top: The results of ranking for 15 queries over our

video collection (using k=40 in k-means). In this image, a col-

ored pixel indicates a relevant video. An ideal search would re-

sult in an image where all the colored pixels are on the left of

the image. Each color represents a different outfit. Note that

the choice of the outfit doesn’t affect the performance. We have

three types of query here. Type I: single activities where there is

a different action for legs and arms (ex: walk-carry). Type II:

two consecutive actions like crouch followed by a run. Type

III: activities that are more complex, consisting of three consec-

utive actions where different body parts may be doing different

things (ex: walk-stand-walk for legs; walk-wave-walk

for arms. Bottom: Average precision values for each query. Over-

all, mean average precision for HMM models using 40 clusters is

0.5636.

In the second type, we evaluated queries where there are

two consecutive actions same for legs and arms. In the

third type, we searched for motions that are more com-

plex, three consecutive actions where different limbs may

be doing different things. We evaluate our searches by first

identifying an activity to search for, then marking relevant

videos, then writing a regular expression, and finally de-

termining the recall and precision of the results ranked by

P (FSA in end state|sequence). On the traditional simple

queries (walk, run, stand), MAP value is 0.9365, only a

short sequence of run action is confused with walk action.

Figure 6 shows search results for more complex queries.

Our method is able to respond to complex queries quite ef-

fectively. The biggest difficulty we faced was to find the

perfect track for each limb, due to the discontinuity in track

paths and left/right ambiguity of the limbs. That’s why

some sequences are identified poorly.

SVM classifier over 2d tracks: To evaluate the effec-

tiveness of our approach, we also implemented an SVM-

based action classifier over the raw 2D tracks. Using the

tracker outputs for 17 videos as training set (chosen such

that 2 different video sequences are available for each ac-

tion), we built action SVMs for each limb separately. We

used rbf kernel and 7 frame snippets of tracks to build the

classifiers. A grid search over parameter space of the SVM

is done and best classifiers are selected using 10-fold cross-

validation. The performance of these SVMs are then eval-

uated over the remaining 56 videos. Figure 7 shows the

results. Note that for some queries, SVMs are quite suc-

cessful in marking relevant documents. However, on the

overall, SVMs are penalized by the noise and variance in

dynamics of the activities. Our HMM limb activity models,

on the other hand, deal with this issue by the help of the

dynamics introduced by synthesized motion capture data.

SVMs would need a great deal of training data to discover

such dynamics.

Viewpoint evaluation: To evaluate our methods invari-

ance to viewpoint, we queried 5 single activities (jog,

jump, jumpjack, reach, wave) over the data set

that has 8 different view directions of subjects. Results are

shown in Figure 8. Note that performance is not signif-

icantly affected by the change in viewpoint, while there is

slight lost in some angles due to tracking difficulties in those

view directions.

5. Discussions and Conclusion

There is little evidence that a fixed taxonomy for human

motion is available. However, research to date has focused

on multi-class discrimination of simple actions. We have

demonstrated a representation of human motion that can be

used to query for complex activities in a large collection

of video, building queries using a regular expression. We

are aware of no other method that can give comparable re-

sponses for such queries. Our representation uses a gen-

erative model, built using both motion capture and video

data. Query responses are unaffected by clothing, and our

representation is robust to aspect. Our representation sig-

nificantly outperforms a discriminative representation built

using image data alone.

One of the strengths of our method is that, when search-

ing for a particular activity, an example of the motion re-

quested is not required to formulate a query. We use a

simple and effective query language; we simply search for

activities by formulating sentences like ’Find me action X
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Figure 7. Composite queries built on top of a discriminative (SVM)

based representation are not as successful as queries using our

representation. Again, clothing does not affect the result. Top:

Ranking of the queries using SVM-based action classifier. Here,

as in Figure 6, the colored pixels show relevant videos and each

color represents a different outfit. For some queries, SVM per-

formance is good, however, on the overall, precision and recall

rate is low. Bottom: Average precision comparison of SVM and

HMM methods. Our method is shown by blue(dark) bars and SVM

method is shown by yellow(light) bars. Mean average precision of

the whole query set is 0.3970 for SVM-based action classification,

while it is 0.5636 for our HMM-based limb activity models.

followed by action Y ’ or ’Find me videos where legs do-

ing action X and arms doing action Y ’ via finite state au-

tomata. Matches to the query are evaluated and ranked by

the posterior probability of a state representation summed

over strings matching the query.

There is much room for improvement; a better tracker

would give better results immediately. Further improve-

ments would involve a richer vocabulary of actions, or some

theory about how a canonical action vocabulary could be

built; a front-end of discriminative features (after [27, 26]);

improved lifting to 3D; and, perhaps, a richer query inter-

face.

0 45 90 135 180 225 270 315
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

5 10 15 20 25 30 35 40

jog

jump

jumpjack

reach

wave

(b)

jog jump jumpjack reach wave
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

(d)

Figure 8. For evaluating our methods invariance to view direc-

tion change, we have a separate dataset of single activities 1-jog

2-jump 3-jumpjack 4-reach 5-wave. (a) Average pre-

cision values for each viewing direction. Some viewing directions

have slightly better performance due to the occlusion of the limbs

and poor tracking response to bendings of the limbs in some view

directions, however, overall, performance is not significantly af-

fected because of the difference in viewpoint. (b) is the ranking

of the five queries of single actions separately. The poorest re-

sponse comes from reach action, which inevitably confuses with

wave. (c-d) Respective precision-recall curves and average pre-

cision graphs. Also, note that SVM’s would need to be retrained

for each viewing direction, while our method does not.
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