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Abstract

Current methods for learning visual categories work
well when a large amount of labeled data is available, but
can run into severe difficulties when the number of labeled
examples is small. When labeled data is scarce it may be
beneficial to use unlabeled data to learn an image rep-
resentation that is low-dimensional, but nevertheless cap-
tures the information required to discriminate between im-
age categories. This paper describes a method for learn-
ing representations from large quantities of unlabeled im-
ages which have associated captions; the goal is to improve
learning in future image classification problems. Experi-
ments show that our method significantly outperforms (1)
a fully-supervised baseline model, (2) a model that ignores
the captions and learns a visual representation by perform-
ing PCA on the unlabeled images alone and (3) a model
that uses the output of word classifiers trained using cap-
tions and unlabeled data. Our current work concentrates
on captions as the source of meta-data, but more generally
other types of meta-data could be used.

1. Introduction

Current methods for learning visual categories work well
when a large amount of labeled data is available, but can
run into severe difficulties when the number of labeled ex-
amples is small—for example when a user defines a new
category and provides only a few labeled examples. Image
representations are typically of high dimension, requiring
relatively large amounts of training data. When labeled data
is scarce it may be beneficial to use unlabeled data to learn
an image representation that is low-dimensional, but nev-
ertheless captures the information required to discriminate
between image categories.

In some cases unlabeled data may contain useful meta-
data that can be used to learn a low-dimensional representa-
tion that reflects the semantic content of an image. As one
example, large quantities of images with associated natu-
ral language captions can be found on the web. This paper
describes an algorithm that uses images with captions or

other meta-data to derive an image representation that al-
lows significantly improved learning in cases where only a
few labeled examples are available.

In our approach the meta-data is used to induce a rep-
resentation that reflects an underlying part structure in
an existing, high-dimensional visual representation. The
new representation groups together synonymous visual
features—features that consistently play a similar role
across different image classification tasks.

Ando and Zhang [1] introduced the structural learning
framework, which makes use of auxiliary problems in lever-
aging unlabeled data. In this paper we introduce auxiliary
problems that are created from images with associated cap-
tions. Each auxiliary problem involves taking an image as
input, and predicting whether or not a particular content
word (e.g, man, official, or celebrates) is in the caption as-
sociated with that image. In structural learning, a separate
linear classifier is trained for each of the auxiliary problems
and manifold learning (e.g., SVD) is applied to the resulting
set of parameter vectors, finding a low-dimensional space
which is a good approximation to the space of possible pa-
rameter vectors. If features in the high-dimensional space
correspond to the same semantic part, their associated clas-
sifier parameters (weights) across different auxiliary prob-
lems may be correlated in such a way that the basis func-
tions learned by the SVD step collapse these two features
to a single feature in a new, low-dimensional feature-vector
representation.

In a first set of experiments, we use synthetic data ex-
amples to illustrate how the method can uncover latent part
structures. We then describe experiments on classification
of news images into different topics. We compare a baseline
model that uses a bag-of-words SIFT representation of im-
age data to our method, which replaces the SIFT representa-
tion with a new representation that is learned from 8,000 im-
ages with associated captions. In addition, we compare our
method to (1) a baseline model that ignores the meta-data
and learns a new visual representation by performing PCA
on the unlabeled images and (2) a model that uses as a visual
representation the output of word classifiers trained using
captions and unlabeled data. Note that our goal is to build
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classifiers that work on images alone (i.e., images which do
not have captions), and our experimental set-up reflects this,
in that training and test examples for the topic classification
tasks include image data only. The experiments show that
our method significantly outperforms baseline models.

2. Previous work

When few labeled examples are available, most current
supervised learning methods [22, 10, 12, 18, 14] for im-
age classification may work poorly. To reach human per-
formance, it is clear that knowledge beyond the supervised
training data needs to be leveraged.

There is a large literature on semi-supervised learning
approaches, where unlabeled data is used in addition to
labeled data. We do not aim to give a full overview of
this work, for a comprehensive survey article see [17].
Most semi-supervised learning techniques can be broadly
grouped into three categories depending on how they make
use of the unlabeled data: density estimation, dimensional-
ity reduction via manifold learning and function regulariza-
tion. Generative models trained via EM can naturally incor-
porate unlabeled data for classification tasks [15, 2]. In the
context of discriminative category learning, Fisher kernels
[11] have been used to exploit a learned generative model
of the data space in an SVM classifier.

Our work is related to work in transfer or multi-task
learning, where training data in related tasks is used to aid
learning in the problem of interest. Transfer and multi-task
learning have a relatively long history in machine learning
[20, 4, 16, 1]. Our work builds on the structural learning ap-
proach of Ando and Zhang [1], who describe an algorithm
for transfer learning, and suggest the use of auxiliary prob-
lems on unlabeled data as a method for constructing related
tasks. In vision a Bayesian transfer learning approach has
been proposed for object recognition [8] where a common
prior over visual classifier parameters is learnt; their results
show a significant improvement when learning from a few
labeled examples. In the context of multi-task learning, ap-
proaches that learn a shared part structure among different
classes have also been proposed. In [21] Torralba intro-
duced a discriminative (boosted) learning framework that
learns common structure. The paper demonstrated faster
learning with better generalization when parts are shared
among classes. Epshtein and Ullman [5] have also ad-
dressed this goal, presenting an approach which identifies
functional parts by virtue of shared context. To the best of
our knowledge, no previous approach to learning parts in
images has made use of meta-data and structural learning.

Several authors have considered the use of images with
associated text data. Fergus et al. [9] developed a method
using Google’s image search to learn visual categories, and
report results comparable to fully supervised paradigms.
Other work that has made use of image and/or video cap-

tion data includes CMU’s Infomedia system [6], Barnards’
“Matching Words and Pictures”[3], and Miller’s “Names
and images in the news”[13].

3. Learning Visual Representations

A good choice of representation of images will be cru-
cial to the success of any model for image classification.
The central focus of this paper is a method for automati-
cally learning a representation from images which are un-
labeled, but which have associated meta-data, for example
natural language captions. We are particularly interested in
learning a representation that allows effective learning of
image classifiers in situations where the number of training
examples is small. The key to the approach is to use meta-
data associated with the unlabeled images to form a set of
auxiliary problems which drive the induction of an image
representation. We assume the following scenario:

• We have labeled (supervised) data for an image clas-
sification task. We will call this the core task. For exam-
ple, we might be interested in recovering images relevant
to a particular topic in the news, in which case the labeled
data would consist of images labeled with a binary distinc-
tion corresponding to whether or not they were relevant to
the topic. We denote the labeled examples as the core set
(x1, y1), . . . , (xn, yn) where (xi, yi) is the i’th image/label
pair. Note that test data points for the core task contain im-
age data alone (these images do not have associated caption
data, for example).

• We have N auxiliary training sets, Ti =
{(xi

1, y
i
1), . . . , (x

i
ni

, yi
ni

)} for i = 1 . . .N . Here xi
j is the

j’th image in the i’th auxiliary training set, yi
j is the label

for that image, and ni is the number of examples in the i’th
training set. The auxiliary training sets consist of binary
classification problems, distinct from the core task, where
each yi

j is in {−1, +1}. Shortly we will describe a method
for constructing auxiliary training sets using images with
captions.

• The aim is to learn a representation of images, i.e., a
function that maps images x to feature vectors f(x). The
auxiliary training sets will be used as a source of informa-
tion in learning this representation. The new representation
will be applied when learning a classification model for the
core task.

In the next section we will describe a method for induc-
ing a representation from a set of auxiliary training sets.
The intuition behind this method is to find a representation
which is relatively simple (i.e., of low dimension), yet al-
lows strong performance on the auxiliary training sets. If
the auxiliary tasks are sufficiently related to the core task,
the learned representation will allow effective learning on
the core task, even in cases where the number of training
examples is small.



Input 1: Auxiliary training sets{(xi
1, y

i
1), . . . , (xi

ni
, yi

ni
)}

for i = 1 . . .N . Here xi
j is the j’th image in the i’th train-

ing set, yi
j is the label for that image. ni is the number of

examples in the i’th training set. We consider binary clas-
sification problems, where each yi

j is in {−1, +1}. Each

image x is represented by a feature vector g(x) ∈ R
d.

Input 2: Core training set{(x1, y1), . . . , (xn, yn)}

Structural learning using auxiliary training sets:

Step 1: Train N linear classifiers. For i = 1 . . .N ,
choose the optimal parameters on the i’th training set to
be w∗

i = arg minw Li(w) where

Li(w) =
ni∑

j=1

l(w · g(xi
j), y

i
j) +

C1

2
||w||2

(See section 3.1 for more discussion.)

Step 2: Perform SVD on the Parameter Vectors.
Form a matrix W of dimension d × N , by taking the pa-
rameter vectors w∗

i for i = 1 . . .N . Compute a projection
matrix A of dimension h × d by taking the first h eigen-
vectors of WW′.
Output: The projection matrix A ∈ R

h×d.

Train using the core training set:

Define f(x) = Ag(x).
Choose the optimal parameters on the core training set to
be v∗ = argminv L(v) where

L(v) =
n∑

j=1

l(v · f(xj), yj) +
C2

2
||v||2

Figure 1. The structural learning algorithm [1].

3.1. Learning Visual Representations from Auxil-
iary Tasks

This section describes the structural learning algorithm
[1] for learning a representation from a set of auxiliary train-
ing sets. We assume that a baseline representation of images
g(x) ∈ R

d is available. In the experiments in this paper
g(x) is a SIFT histogram representation [19]. In general,
g(x) will be a “raw” representation of images that would
be sufficient for learning an effective classifier with a large
number of training examples, but which performs relatively
poorly when the number of training examples is small. For
example, with the SIFT representation the feature vectors
g(x) are of relatively high dimension (we use d = 1, 000),
making learning with small amounts of training data a chal-
lenging problem without additional information.

Note that one method for learning a representation
from the unlabeled data would be to use PCA—or some

other density estimation method—over the feature vectors
g(x1), . . . ,g(xm) for the set of unlabeled images (we will
call this method the data-PCA method). The method we
describe differs significantly from PCA and similar meth-
ods in its use of meta-data associated with the images, for
example captions. Later we will describe synthetic experi-
ments where PCA fails to find a useful representation, but
our method is successful. In addition we describe experi-
ments on real image data where PCA again fails, but our
method is successful in recovering representations which
significantly speed learning.

Given the baseline representation, the new representation
is defined as f(x) = Ag(x) where A is a projection matrix
of dimension h × d.1 The value of h is typically chosen
such that h � d. The projection matrix is learned from the
set of auxiliary training sets, using the structural learning
approach described in [1]. Figure 1 shows the algorithm.

In a first step, linear classifiers w∗
i are trained for each of

the N auxiliary problems. In several parameter estimation
methods, including logistic regression and support vector
machines, the optimal parameters w∗ are taken to be w∗ =
argminw L(w) where L(w) takes the following form:

L(w) =
n∑

j=1

l(w · g(xj), yj) +
C

2
||w||2 (1)

Here {(x1, y1), . . . , (xn, yn)} is a set of training examples,
where each xj is an image and each yj is a label. The con-
stant C > 0 dictates the amount of regularization in the
model. The function l(w · g(xj), yj) is some measure of
the loss for the parameters w on the example (xj , yj). For
example, in support vector machines [7] l is the hinge-loss,
defined as l(m, y) = (1−ym)+ where (z)+ is z if z >= 0,
and is 0 otherwise. In logistic regression the loss function is

l(m, y) = − log
exp{ym}

1 + exp{ym} . (2)

Throughout this paper we use the loss function in Eq. 2, and
classify examples with sign(w · g(x)) where sign(z) is 1
if z ≥ 0, −1 otherwise.

In the second step, SVD is used to identify a matrix A
of dimension h×d. The matrix defines a linear subspace of
dimension h which is a good approximation to the space of
induced weight vectors w∗

1, . . . ,w
∗
N . Thus the approach

amounts to manifold learning in classifier weight space.
Note that there is a crucial difference between this approach
and the data-PCA approach: in data-PCA SVD is run over
the data space, whereas in this approach SVD is run over
the space of parameter values. This leads to very different
behaviors of the two methods.

1Note that the restriction to linear projections is not necessarily lim-
iting. It is possible to learn non-linear projections using the kernel trick;
i.e., by expanding feature vectors g(x) to a higher-dimensional space, then
taking projections of this space.



The matrix A is used to constrain learning of new prob-
lems. As in [1] the parameter values are chosen to be
w∗ = A′v∗ where v∗ = arg minv L(v) and

L(v) =
n∑

j=1

l((A′v) · g(xj), yj) +
C

2
||v||2 (3)

This essentially corresponds to constraining the parameter
vector w∗ for the new problem to lie in the sub-space de-
fined by A. Hence we have effectively used the auxiliary
training problems to learn a sub-space constraint on the set
of possible parameter vectors.

If we define f(x) = Ag(x), it is simple to verify that

L(v) =
n∑

j=1

l(v · f(xj), yj) +
C

2
||v||2 (4)

and also that sign(w∗ · g(x)) = sign(v∗ · f(x)). Hence an
alternative view of the algorithm in figure 1 is that it induces
a new representation f(x). In summary, the algorithm in
figure 1 derives a matrix A that can be interpreted either as
a sub-space constraint on the space of possible parameter
vectors, or as defining a new representation f(x) = Ag(x).

3.2. Metadata-derived auxilliary problems

A central question is how auxiliary training sets can be
created for image data. A key contribution of this paper is to
show that unlabeled images which have associated text cap-
tions can be used to create auxiliary training sets, and that
the representations learned with these unlabeled examples
can significantly reduce the amount of training data required
for a broad class of topic-classification problems. Note that
in many cases, images with captions are readily available,
and thus the set of captioned images available may be con-
siderably larger than our set of labeled images.

Formally, denote a set of images with associated cap-
tions as (x′

1, c1), . . . , (x′
m, cm) where (x′

i, ci) is the i’th im-
age/caption pair. We base our N auxiliary training sets
on N content words, (w1, . . . , wN ). A natural choice for
these words would be to choose the N most frequent con-
tent words seen within the captions.2 N auxiliary training
sets can then be created as follows. Define Ii[c] to be 1 if
word wi is seen in caption c, and −1 otherwise. Create a
training set Ti = {(x′

1, Ii[c1]), . . . , (x′
m, Ii[cm])} for each

i = 1 . . .N . Thus the i’th training set corresponds to the
binary classification task of predicting whether or not the
word wi is seen in the caption for an image x′.

4. Examples Illustrating the Approach

Figure 2 shows a concept figure illustrating how PCA in
a classifier weight space can discover functional part struc-

2In our experiments we define a content word to be any word which
does not appear on a “stop list” of common function words in English.
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Figure 2. Concept figure illustrating how when appropriate auxil-
iary tasks have already been learned manifold learning in classifier
weight space can group features corresponding to functionally de-
fined visual parts. Parts (eyes, nose, mouth) of an object (face)
may have distinct visual appearances (the top row of cartoon part
appearances). A specific face (e.g., a or b) is represented with the
boolean indicator vector as shown. Matrix D shows all possible
faces given this simple model; PCA on D is shown row-wise in PD
(first principal component is shown also above in green as PD1.)
No basis in PD groups together eye or mouth appearances; differ-
ent part appearances never co-occur in D. However, idealized clas-
sifiers trained to recognize, e.g., faces with a particular mouth and
any eye (H,S,N), or a particular eye and mouth (LL,LC,LR,EC),
will learn to group features into parts. Matrix T and blue vec-
tors above show these idealized boolean classifier weights; the first
principal component of T is shown in red as PT1, clearly grouping
together the four cartoon eye and the three cartoon mouth appear-
ances. Positive and negative components of PT1 would be very
useful features for future learning tasks related to faces in this sim-
ple domain because they group together different appearances of
eyes and mouths.

tures given idealized auxiliary tasks. When the tasks are
defined such that to solve them they need to learn to group
different visual appearances, the distinct part appearances
will then become correlated in the weight space, and tech-
niques such as PCA will be able to discover them. In prac-
tice the ability to obtain such ideal classifiers is critical to
our method’s success. Next we will describe a synthetic ex-
ample where the method is successful; in the following sec-
tion we present real-world examples where auxiliary tasks
are readily available and yield features that speed learning
of future tasks.

We now describe experiments on synthetic data that il-
lustrate the approach. To generate the data, we assume that
there is a set of 10 possible parts. Each object in our data
consists of 3 distinct parts; hence there are

(
10
3

)
= 120 pos-

sible objects. Finally, each of the 10 parts has 5 possible
observations, giving 50 possible observations in total (the
observations for each part are distinct).

As a simple example (see figure 3), the 10 parts might
correspond to 10 letters of the alphabet. Each “object” then



(a)

a A A A A
b b B b b
c C c c c

. . .
j J J J J

(b)

A b c a b D
A b c A b D
a b c a b d
A d E b c f
A D E B c f
A D e b C f

Figure 3. Synthetic data involving objects constructed from letters.
(a) There are 10 possible parts, corresponding to the first 10 letters
of the alphabet. Each part has 5 possible observations (correspond-
ing to different fonts). (b) Each object consists of 3 distinct parts;
the observation for each part is drawn uniformly at random from
the set of possible observations for that part. A few random draws
for 4 different objects are shown.

consists of 3 distinct letters from this set. The 5 possible ob-
servations for each part (letter) correspond to visually dis-
tinct realizations of that letter; for example, these could cor-
respond to the same letter in different fonts, or the same
letter with different degrees of rotation. The assumption is
that each observation will end up as a distinct visual word,
and therefore that there are 50 possible visual words.

The goal in learning a representation for object recogni-
tion in this task would be to learn that different observations
from the same part are essentially equivalent—for example,
that observations of the letter “a” in different fonts should
be collapsed to the same point. This can be achieved by
learning a projection matrix A of dimension 10× 50 which
correctly maps the 50-dimensional observation space to the
10-dimensional part space. We show that the use of auxil-
iary training sets, as described in section 3.1, is successful in
learning this structure, whereas PCA fails to find any useful
structure in this domain.

To generate the synthetic data, we sample 100 instances
of each of the 120 objects as follows. For a given object
y, define Py to be the set of parts that make up that object.
For each part p ∈ Py , generate a single observation uni-
formly at random from the set of possible observations for
p. Each data point generated in this way consists of an ob-
ject label y, together with a set of three observations, x. We
can represent x by a 50-dimensional binary feature vector
g(x), where only 3 dimensions (corresponding to the three
observations in x) are non-zero.

To apply the auxiliary data approach, we create 120 aux-
iliary training sets. The i’th training set corresponds to the
problem of discriminating between the i’th object and all
other 119 objects. A projection matrix A is learned from
the auxiliary training sets. In addition, we can also con-
struct a projection matrix using PCA on the data points
g(x) alone. Figures 4 and 5 show the projections learned by
PCA and the auxiliary tasks method. PCA fails to learn use-
ful structure; in contrast the auxiliary task method correctly
collapses observations for the same part to nearby points.
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Figure 4. The representations learned by PCA on the synthetic data
problem. The first figure shows projections 1 vs. 2; the second
figure shows projections 2 vs. 3. Each plot shows 50 points cor-
responding to the 50 observations in the model; observations cor-
responding to the same part have the same color. There is no dis-
cernable structure in the figures. The remaining dimensions were
found to similarly show no structure.

−0.145 −0.144 −0.143 −0.142 −0.141 −0.14 −0.139 −0.138 −0.137 −0.136
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Structure Learning: Dimensions: 1and 2

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Structure Learning: Dimensions: 2and 3

Figure 5. The representations learned by structural learning on the
synthetic data problem. The first figure shows projections 1 vs. 2;
the second figure shows projections 2 vs. 3. Each plot shows 50
points corresponding to the 50 observations in the model; obser-
vations corresponding to the same part have the same color. There
is clear structure in features 2 and 3, in that observations corre-
sponding to the same part are collapsed to nearby points in the
projected space. The remaining dimensions were found to show
similar structure to those in dimensions 2 and 3.

5. Experiments on Images with Captions

5.1. Data

We collected a data set consisting of 10,576 images.
These images were collected from the Reuters news web-
site (http://today.reuters.com/news/) during a
period of one week. Images on the Reuters website are par-
titioned into stories or topics, which correspond to different
topics in the news. Thus each image has a topic label—in
our case, the images fell into 130 possible topics. Figure 6
shows some example images.

The experiments involved predicting the topic variable y
for test images. We reserved 8, 000 images as a source of
training data, and an additional 1, 000 images as a potential
source of development data. The remaining 1,576 images



Figure 6. Example images from the Golden Globes, figure skating,
Grammy and ice hockey topics.

were used as a test set. Multiple training sets of different
sizes, and for different topics, were created as follows. We
created training sets Tn,y for n = {1, 2, 4, 8, 16, 32, 64}and
y = {1, 2, 3, . . . , 15}, where Tn,y denotes a training set for
topic y which has n positive examples from topic y, and 4n
negative examples. The 15 topics corresponded to the 15
most frequent topics in the training data. The positive and
negative examples were drawn randomly from the training
set of size 8, 000. We will compare various models by train-
ing them on each of the training sets Tn,y, and evaluating
the models on the 1,576 test images.

In addition, each of the 8, 000 training images had as-
sociated captions, which can be used to derive an image
representation (see section 3.1). Note that we make no use
of captions on the test or development data sets. Instead,
we will use the 8, 000 training images to derive represen-
tations that are input to a classifier that uses images alone.
In summary, our experimental set-up corresponds to a sce-
nario where we have a small amount of labeled data for a
core task (predicting the topic for an image), and a large
amount of unlabeled data with associated captions.

5.2. The Baseline Model

A baseline model was trained on all training sets Tn,y. In
each case the resulting model was tested on the 1, 576 test
examples. The baseline model consists of a logistic regres-
sion model over the SIFT features: to train the model we
used conjugate gradient descent to find the parameters w∗

which maximize the regularized log-likelihood, see equa-
tions 1 and 2. When calculating equal-error-rate statistics
on test data, the value for P (y = +1|x;w∗) can be calcu-
lated for each test image x; this score is then used to rank
the test examples.

The parameter C in Eq. 1 dictates the amount of regu-
larization used in the model. For the baseline model, we
used the development set of 1, 000 examples to optimize
the value of C for each training set Tn,y. Note that this

will in practice give an upper bound on the performance
of the baseline model, as assuming 1, 000 development ex-
amples is almost certainly unrealistic (particulary consider-
ing that we are considering training sets whose size is at
most 320). The values of C that were tested were 10k, for
k = −5,−4, . . . , 4.

5.3. The Data-PCA Model

As a second baseline, we trained a logistic-regression
classifier, but with the original feature vectors g(x) in train-
ing and test data replaced by h-dimensional feature vectors
f(x) = Ag(x) where A was derived using PCA. A ma-
trix F of dimension 1, 000 × 8, 000 was formed by taking
the feature vectors g(x) for the 8, 000 data points; the pro-
jection matrix A was constructed from the first h eigenvec-
tors of FF′. The PCA model has free parameters h and C.
These were optimized using the method described in sec-
tion 5.6. We call this model the data-PCA model.

5.4. A Model with Predictive Structure

We ran experiments using the structure prediction ap-
proach described in section 3. We train a logistic-regression
classifier on feature vectors f(x) = Ag(x) where A is
derived using the method in section 3.1. Using the 8, 000
training images, we created 100 auxiliary training sets cor-
responding to the 100 most frequent content words in the
captions.3 Each training set involves prediction of a partic-
ular content word. The input to the classifier is the SIFT
representation of an image. Next, we trained linear clas-
sifiers on each of the 100 auxiliary training sets to induce
parameter vectors w1 . . .w100. Each parameter vector is of
dimension 1, 000; we will use W to refer to the matrix of
size 1, 000 × 100 which contains all parameter values. The
projection matrix A consists of the h eigenvectors in R

d

which correspond to the h largest eigenvalues of WW′.

5.5. The Word-Classifiers Model

As a third baseline, we trained a logistic-regression clas-
sifier with the original feature vectors g(x) in training
and test data replaced by 100-dimensional feature vectors
f(x) = Ag(x) where A = Wt. This amounts to train-
ing the topic classifiers with the outputs of the word clas-
sifiers. Notice that this model is similar to a model with
predictive structure where h = 100. The word-classifiers
model has a free parameter C. This was optimized using
the method described in section 5.6. We call this model the
word-classifiers model.

3Content words are defined as any words which do not appear on a
“stop” list of common function words.
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Figure 7. Equal error rate averaged across topics, with standard
deviations calculated from ten runs for each topic. The equal error
rates are averaged across 14 topics; the 7th most frequent topic is
excluded as this was used for cross-validation (see section 5.6).

5.6. Cross-Validation of Parameters

The data-PCA and the predictive structure models have 2
free parameters: the dimensionality of the projection h, and
C.4 A single topic—the 7th most frequent topic in the train-
ing data—was used to tune these parameters for the 3 model
types. For each model type the model was trained on all
training sets Tn,7 for n = 1, 2, 4, 8, ..., 64, with values for h
taken from the set {2, 5, 10, 20, 30, 40, 100} and values for
C chosen from {0.00001, 0.0001, . . . , 1000}. Define En

h,C

to be the equal-error-rate on the development set for topic
7, when trained on the training set Tn,7 using parameters h
and C. We choose the value h∗ for all experiments on the
remaining 14 topics as

h∗ = argmin
h

∑

i=1,2,...,64

min
C

Ei
h,C

This corresponds to making a choice of h∗ that performs
well on average across all training set sizes. In addition,
when training a model on a training set with i positive ex-
amples, we chose C∗

i = arg minC Ei
h∗,C as the regulariza-

tion constant. The motivation for using a single topic as a
validation set is that it is realistic to assume that a fairly sub-
stantial validation set (1,000 examples in our case) can be
created for one topic; this validation set can then be used to
choose values of h∗ and C∗

i for all remaining topics.
The word-classifiers model has one free parameter: the

constant C used in Eq. 1. The value for this parameter was
also optimized using the development set.

5.7. Results

Figure 7 shows the mean equal error rate and standard
deviation over ten runs for the experiments on the Reuters

4We use C to refer to the parameter C2 in figure 1. C1 in figure 1 was
set to be 0.1 in all of our experiments.

dataset. The equal error rate is the recall occurring when
the decision threshold of the classifier is set so that the pro-
portion of false rejections will be equal to the proportion of
false acceptances. For example an equal error rate of 70%
means that when the proportion of false rejections is equal
to the proportion of false acceptances 70% of the positive
examples are labeled correctly and 30% of the negative ex-
amples are misclassified as positive.

For all training set sizes the structural learning model
improves performance over the three other models. The
average performance with one positive training example is
around 62% with the structural learning method; to achieve
similar performance with the word-classifiers model re-
quires around four positive examples and with the base-
line model between four and eight. Similarly, the perfor-
mance with four positive examples for the structural learn-
ing method is around 67%; both the word-classifiers model
and the baseline model require between 32 and 64 positive
examples to achieve this performance. PCA’s performance
is lower than the baseline model for all training sizes and
the gap between the two increases with the size of the train-
ing set. The performance of the word-classifiers model is
better than the baseline for small training sets but the gap
between the two decreases with the size of the training set.

Figures 8 and 9 show equal error rates for two differ-
ent topics. The first topic, “Australian Open”, is one of
the topics that exhibits the most improvement from struc-
tural learning. The second topic, “Winter Olympics”, is one
of the three topics for which structural learning does not
improve performance. As can be observed from the Aus-
tralian Open curves the use of structural features speeds the
generalization ability of the classifier. The structural model
trained with only two positive examples performs compara-
bly to the baseline model trained with sixty four examples.
For the Winter Olympics topic the three models perform
similarly. At least for a small number of training examples,
this topic exhibits a slow learning curve; i.e. there is no
significant improvement in performance as we increase the
size of the labeled training set; this suggests that this is an
inherently more difficult class.

6. Conclusions

We have described a method for learning visual repre-
sentations from large quantities of unlabeled images which
have associated captions. The method makes use of aux-
iliary training sets corresponding to different words in the
captions, and structural learning, which learns a manifold in
parameter space. The induced representations significantly
speed up learning of image classifiers applied to topic clas-
sification. Our results show that when meta-data labels are
suitably related to a target (core) task, the structural learning
method can discover feature groupings that speed learning
of the target task. Future work includes exploration of au-
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Figure 8. Roc Curves for the “Australian Open” topic.
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Figure 9. Roc Curves for the “Winter Olympics” topic.

tomatic determination of relevance between target and aux-
iliary tasks, and experimental evaluation of the effective-
ness of structural learning from more weakly related auxil-
iary domains. We would also like to explore other manifold
learning techniques such as NMF and LDA.
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