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Abstract

In this paper we investigate how to scale a content based
image retrieval approach beyond the RAM limits of a sin-
gle computer and to make use of its hard drive to store the
feature database. The feature vectors describing the im-
ages in the database are binned in multiple independent
ways. Each bin contains images similar to a representative
prototype. Each binning is considered through two stages
of processing. First, the prototype closest to the query is
found. Second, the bin corresponding to the closest pro-
totype is fetched from disk and searched completely. The
query process is repeatedly performing these two stages,
each time with a binning independent of the previous ones.
The scheme cuts down the hard drive access significantly
and results in a major speed up. An experimental compar-
ison between the binning scheme and a raw search shows
competitive retrieval quality.

1. Introduction

Recently, [9] showed that efficient indexing and retrieval
is possible with larger image databases than previously at-
tempted. However, databases that contain 1 million images
or more are too large to be kept in RAM of most computers.
Such databases will have to either be handled by very large
computer farms, or kept on hard drives where the access to
the image data is slow.

In this paper we investigate an approach aiming to mini-
mize the hard drive access and thus creating a fast hard drive
based image search. Features are extracted from each im-
age and quantized into an integer description as described
in [9]. Inspired by the success of locality sensitive hashing
for nearest neighbor search [3], we use multiple indepen-
dent binnings of the database. Each binning is defined by a
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Figure 1. The proposed binning scheme for fast hard drive based
image search. The feature vectors are stored on the hard drive in
multiple independent binnings. The binning is defined by proto-
type vectors that can be kept in RAM. For an image query a visual
word feature description is first extracted. Then all prototypes are
searched to find the closest to the query vector for each binning.
The associated bin is then fetched from disk and all images in it
are searched. The final query result is the best match found over
all binnings.

number of prototypes where a prototype is a vector repre-
senting an image. The images are assigned to the bin corre-
sponding to the closest prototype, which is used as a proxy
in the search. During a query we consider multiple such
binnings, and each binning requires two processing stages.
The first stage is to find the prototype closest to the query
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image. The second stage is fetching the bin from disk and
searching through all the images in the bin of that protoype.
The final result is the best image found over all binnings.

While the multiple binnings require more disk space, the
use of protoypes brings a major speed up. An additional
benefit of this scheme is that it is possible to trade retrieval
quality for speed, so that in principle almost any retrieval
time could be achieved, although the quality would eventu-
ally suffer.

In our experiments we will investigate how much the
splitting of the database influences the retrieval quality. The
retrieval quality of the binning scheme is compared to a raw
inverted file approach and the results show that with multi-
ple binning sets the quality of the raw inverted file approach
can be matched.

2. Related work and state-of-the-art
A variety of authors [6, 11, 9, 10, 4] recently presented

well working methods for image retrieval and object recog-
nition using local features [8]. Enabling real-time image
retrieval for larger and larger databases is now the focus
of many research groups. The recognition approach of
Lowe [6] can cope with around 5000 images in real-time.
The images are represented as SIFT feature vectors [6]
and recognition is done by nearest neighbor search in fea-
ture space. A k-d tree with a best-bin-first modification
is used for efficient approximate nearest neighbor search.
In [10] Obdrzalek and Matas present a method for real-time
recognition of about 100-1000 objects. They use a deci-
sion tree for sub-linear indexing. A very fast approach is
also presented by Lepetit et al. [4]. By using a random-
ized tree for keypoint indexing they achieve real-time ob-
ject recognition and tracking. A large scale video index-
ing scheme was demonstrated by Sivic and Zisserman [11].
Their system allows a search for movie keyframes at in-
teractive rate for feature-length movies. However, the cur-
rent state-of-the-art is represented by the work of Nistér and
Stewénius [9]. Their real-time demo allows object recogni-
tion from a database of 50000 CD-covers while their recog-
nition scheme is scalable up to much larger databases. The
same image representation and indexing scheme is used
throughout this work. For an efficient database access
scheme we adopt ideas from locality sensitive hashing for
approximate nearest neighbor search as described in [1, 3].
Locality sensitive hashing has already been used for image
retrieval by Grauman in [2].

3. Recognition with the vocabulary tree
We will give a short outline of the object recognition

method that is also described in [9] to introduce the ter-
minology which is used in this paper. Object recognition
proceeds by a local approach, by detecting local features,

nr. images inv. file size read size disk time
10000 40MB 200kB 10.0005s
50000 200MB 1MB 10.005s

100000 400MB 2MB 10.05s
1 million 4GB 20MB 10.5s

10 millions 40GB 200MB 15s
100 millions 400GB 2GB 60s

1 billion 4TB 20GB 510s
2 billions 8TB 40GB 1010s

Table 1. Specifics of a hard drive based inverted file approach. The
table shows the size of the inverted file database, the data to read
per query and the projected disk time per query for databases of
10000 to 2 billion images.

computing a description (feature) vector and matching with
a database of feature vectors. Each local detection (from
the MSER detector [7]) is described by a SIFT feature vec-
tor [5]. Each SIFT feature vector is then quantized with the
so-called vocabulary tree. It assigns a single integer value,
denoted visual word (VW) to a SIFT feature vector. This
eases matching a lot. Instead of computing distances be-
tween SIFT feature vectors only integer values have to be
compared. Each image is then represented as a set of vi-
sual words. An image query is performed using a weighted
voting scheme. An inverted file is created from a set of
database images. For each VW the inverted file stores the
database images where it occurs as an image list. When
querying, the image lists for all VW’s that occur in the query
image are processed and a weighted vote is added to the im-
ages in the list. The database image with the highest score
is selected as the closest match.

3.1. Recognition from the hard drive

For a certain number of images the inverted file is small
enough to live in RAM. But unless very large computer
farming is used, it has to be kept on disk at some point.
The size of the inverted file (in Bytes) is calculated as

DBinv = 4fI, (1)

where f is the number of visual words per image, I is the
number of images in the database and the factor 4 accounts
for the use of 32 bit integers. The second column of Table 1
shows the database sizes for different numbers of images.

When scoring a query image only a part of the database
has to be accessed and processed. The average amount of
data (in Bytes) to be read from the hard disk during a single
query is determined by

Dinv = 4qf2 I

v
, (2)

where f is the number of visual words per image, I is the
number of images in the database and v is the number of



visual words for quantization. The factor 4 is to get the size
in Bytes. The variable q is a correction factor to account
for an unbalanced inverted file. Some visual words occur
more often than others and this will lead to an unbalanced
inverted file. Our experiments indicate that q = 5 seems to
be a realistic estimation of this correction factor.

In addition to the time for reading the data, time for disk
seeks (a disk seek entails moving the head and waiting for
up to one revolution of the disk) has to be added. For each
single query we have to address f different parts of the
database. For f = 1000 this results in 1000 disk seeks.
Typically a disk seek takes about 10ms, amounting to 10s
for 1000 seeks. This cost is of special concern for smaller
databases. The disk access and read time tinv for one image
can be written as

tinv = fts + 4qf2 I

v
tr, (3)

where ts is the disk seek time (approx. 10ms) and tr is the
read time for 1 Byte (approx. 25ns).

The query time is dominated by the hard drive access and
read time (see Table 1 for examples). For databases up to 10
million images the disk seeks are the bottleneck. For larger
databases the amount of data to read from disk determines
the query time.

4. Multiple independent binnings

To distinguish from the feature vectors of each local im-
age region, we will refer to the vector of visual word occur-
rences as document vector. The document vectors created
by the method of [9] are defined in a 1 million dimensional
document space. A set of document vectors (prototypes)
defines a partitioning of the document space into Voronoi
cells. By randomly picking visual words and assembling
document vectors, synthetic prototype document vectors are
created. Each set of synthetic prototypes defines a different
binning of the document space. The randomly picked pro-
totype sets determine multiple independent binnings of the
document space. This is related to locality sensitive hash-
ing in the sense that the prototype sets can be thought of
as defining hashing functions. The bins defined by the pro-
totype vectors are now used to organize the image vectors
of the image database on the hard drive. Each Voronoi cell
of the document space gets assigned a different file on the
hard drive. This file will contain all image document vec-
tors that fall into the corresponding Voronoi cell in the fea-
ture space. When storing an image vector the distances to
all prototype vectors are computed and the image vector is
stored in the file associated with the closest prototype vec-
tor. This is repeated for each of the different binnings and
results in multiple copies of the database on the hard drive,
each organized in a different way.

4.1. Querying the bin structure

An image query is performed in two stages. First, the
prototype document vector closest to the query is found
by nearest neighbor search in the prototype set. The doc-
ument vectors are normalized using TF-IDF [11] (a stan-
dard weighting based on entropy). We will unless specified
otherwise assume that L1 distances are used in the near-
est neighbor search. Second, the bin corresponding to the
closest prototype document vector is fetched from disk and
searched completely. The query process is repeatedly per-
forming these two stages, for each of the different binnings
of the database. The closest image document vector over all
sets is reported as the matching one.

This scheme is more efficient than the raw inverted file
method (section 3.1) as it performs less disk seeks and reads
in a smaller amount of feature vectors. For each binning
only one bin has to be accessed. A number s of different
binnings leads to s disk seeks. When s is smaller than the
number f of disk seeks in the former scheme a speed-up
can be obtained. In addition only s bins have to be read
from disk, where a bin contains only a fraction of the whole
database. The number of document vectors in a single bin
changes with the number of prototypes b per set. A higher
number of prototype document vectors creates smaller bins
containing less document vectors to read.

The amount of data (in Bytes) to be read from the hard
disk using the binning scheme is given by

Dbin = 4q1sI
f

b
, (4)

where s is the number of different sets, I is the number of
images in the database, f is the number of visual words
per image, and b is the number of different bins. The vari-
able q1 again is a correction factor. The images may not be
distributed uniformly over all bins. A method to deal with
large bins is, to stop reading after some maximum amount.
By setting q1 to 5 we would allow to read in files up to 5
times of their nominal value, but skip the document vectors
above this limit.

The disk access and read time tbin for one image can be
written as

tbin = sq2f
bfbin

v
tb + sts + 4q1sI

f

b
tr, (5)

where tb is the time for one weighted voting operation, ts
is the disk seek time (approx. 10ms), fbin is the maximum
number of visual words per prototype document vector and
tr is the read time for 1 Byte (approx. 25ns). Here another
correction factor comes in. The variable q2 accounts for a
potential unbalancing of the inverted file used to determine
the correct bin for a query. We will set q2 = 5 for the same
reason as in section 3.1. In addition to disk seek time and
disk read time the binning scheme needs processing time to



determine the bin to read in. The binning time is determined
by the number of bins but is almost negligible compared to
the disk times. Figure 2 shows the theoretical speed gain
for the binning scheme compared to a raw hard disk based
inverted file based on Equ. 5 and Equ. 3.
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Figure 2. Query time for a 1 million image database predicted
for the hard disk based inverted file approach and for the binning
scheme with b = 10000. The binning scheme will give comparable
results at about 20 sets with 1.45 seconds retrieval time.

4.2. Trading retrieval quality for speed

A single binning set will not allow reaching the maxi-
mum retrieval quality. Binning errors are expected to occur
and a bin might be fetched that does not contain the clos-
est document vector to the query. This is dealt with by the
multiple independent binnings. Each processed binning de-
creases the overall probability of binning errors. This allows
trading retrieval quality for speed. One can preset a maxi-
mum query time and allow as many binnings as possible to
be processed within the alloted time frame. Basically any
retrieval time could be met, but eventually the quality will
suffer.

5. Implementation of the binning scheme

One detail in the implementation of the binning scheme
is the assembly of the synthetic document vectors. Our im-
plementation assembles a synthetic prototype by randomly
picking 20 to 50 visual words (VW’s) from a uniform distri-
bution. The VW’s are picked in a range from 0 to 1 million,
which reflects the resolution of the vocabulary tree. The
number of VW’s between 20 and 50 is also picked ran-
domly. Each selected VW as well as the 4 neighboring
VW’s are added to the document vector, e.g. if the VW
18225 was selected also the VW’s 18223, 18224, 18226
and 18227 are added to the document vector. This creates a
boxcar with width 5 around each selected VW’s. This pro-
cedure creates synthetic document vectors with a maximum
of 250 VW’s per vector. Another detail is that in the query

for the bin we use a discretization by 1000 VW’s, and for
query the image document vectors we use 1 million VW’s.
Searching the closest prototype to the query is implemented
as scoring using an inverted file as described in [9]. In ad-
dition the bins stored on the hard disk are also stored as
inverted files. This allows immediate scoring after the bin
data has been read in.

6. Determining the necessary number of bin-
nings

Binning errors inevitably occur and prevent us from get-
ting the optimal retrieval quality with a single binning. The
binning errors will increase with the number of bins. Fig-
ure 3 shows an empirical assessment of the number of cor-
rect bin hits depending on the number of bins.
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Figure 3. Binning hits: A higher number of bins increases the risk
of a bin miss. By using multiple binnings this can be compensated
for.

However, if one binning fails on certain document vec-
tors a different set will get them right. Thus in chaining
different binnings we will eventually get a correct bin hit
in the end. Figure 4 demonstrates this with an experiment
on a 10200 image database. Chaining multiple independent
binnings will increase the bin hit ratio.

If we assume that the probability ps of getting the cor-
rect bin within one set is independent for each set we can
compute the probability for s subsequent binnings by

p = 1− (1− ps)s. (6)

The resulting probability p will converge to 1 in the limit.
We determine an empirical value for the probability ps for a
certain image dataset and a given b and use this result to pre-
dict the graph for different numbers of binnings. Figure 5
shows that the predicted curves follow closely the empiri-
cally measured curves from a real experiment. The solid
black curves are predicted using Equation (6). The bright
curves are the empirical results. Most important is that the
empirical curves seem to converge to 1 as well, given a large
enough number of sets. The accuracy of our prediction al-
lows us to choose the optimal number of bins for a given



database size. For this experiment on a 2550 image dataset
a binning scheme with b = 1000 would lead fastest to high
quality.
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Figure 4. The effect of chaining multiple independent binnings.
Each additional set increases the bin hit ratio. The experiment
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to 1.
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Figure 5. Quality (binning hits) over time plot for the binning
scheme on a 2550 image database. Using more binning sets in-
creases the quality but takes more time. The solid black curves are
predicted using Equation (6). The bright curves are the empirical
validation, which shows that the prediction is quite accurate. The
graphs show that the binning scheme with b = 1000 would lead
fastest to high quality.

7. Retrieval results
For testing the retrieval quality the 10200 image database

from [9]1 was used. The dataset contains 4 images of the
same object from different viewpoints and with changing

1available at http://vis.uky.edu/ stewe/ukbench

scale. For the first experiment we created a training and a
test set from the image set. Each set contains one view of
each object. The training set was used to create a binned
database on the hard drive. The test set was then used to
query the database. The number of bins was set to 1000 for
this experiment. An image query returns the n closest im-
ages to the query. The computed retrieval quality gives the
percentage of correct query results. Figure 7 shows the re-
trieval quality computed for subsets of different length start-
ing with the 1st image and going to the nth image. The
graph also shows the retrieval qualities using different num-
bers of binnings (1, 2, 5, 10 and 20) and the retrieval qual-
ity achieved with the raw inverted file approach without the
binning. The quality of the raw inverted file represents the
maximum performance that can be achieved by the binning
scheme. And it can be seen that the binning scheme reaches
this performance already for 20 binnings.

For a second experiment we added 100000 other images
to the database. However for these additional images no
other views to support a query test were available. Figure 8
shows the retrieval quality for querying the 102550 images
database with the test set. The retrieval quality did not drop
due to the additional images.
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Figure 6. Samples of the 10200 images database set. Each object
occurs 4 times, taken from different viewpoints. For a 1-to-1 re-
trieval experiment we extract a test set and a training set, where
each object occurs only once.

In a third experiment we compute the quality measure
used in [9]. A database is created containing all 2550 im-
ages and the 100000 additional images. We perform queries
with the 2550 images of the test set and measure if the top 4
query results contain the 4 images of the same object. The
maximum value for this measure is 4. The experiment was
also carried out for different numbers of binnings. Figure 9
shows the results.
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Figure 7. Retrieval quality (correct rank one queries) with b =
1000. The database contained 2550 images. The 2550 images
from the test set were used for querying. With 20 different bin-
nings there is almost no difference to the inverted file method.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

#images

re
tr

ie
v
al

 q
u
al

it
y

inv. File 1 set

2 sets 5 sets

10 sets 20 sets

Figure 8. Retrieval quality (correct rank one queries) with b =
1000. The database contained 102550 images. The 2550 images
from the test set were used for querying. With 20 different bin-
nings there is almost no difference to the raw inverted file method.
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Figure 9. Retrieval quality (number of correct images in the top 4
results) with b = 1000. The database contained 110200 images.
The 2550 images from the ground truth test set were used for
querying. With 15 different binnings there is almost no difference
to the raw inverted file method.

8. Conclusion

An image search scheme based on splitting the database
into multiple independent binnings has been presented. The

scheme significantly reduces the amount of data to process
per image query. When the database is stored on a hard
drive and the data access is slow the presented scheme pro-
vides a significant speed up. The experiments showed that
the binning scheme can provide the same retrieval quality as
a raw search. In addition it is possible to trade retrieval qual-
ity for speed, which essentially allows meeting any retrieval
time. It is tempting to imagine that this binning scheme
will allow image search on databases beyond the sizes so
far attempted, without the use of massive computer farm-
ing. Maybe even content based image search on web scale
could be within reach.
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