Nearest First Traversing Graph
for Simultaneous Object Tracking and Recognition

Junya Sakagaito and Toshikazu Wada
Department of Computer and Communication Sciences
Faculty of Systems Engineering, Wakayama University

twada@ieee.org

sakajunevrl.sys.wakayama-u.ac.jp,

Abstract

This paper presents a new method for simultaneous ob-
Ject tracking and recognition using object image database.
This application requires two searches: search for object
appearance stored in the database and that for pose pa-
rameters (position, scale, orientation, and so on) of the
tracking object in each image frame. For simplifying this
problem, we propose a new method, pose parameter em-
bedding (PPE) that transforms the original problem to an
appearance search problem. The nearest neighbor (NN)
appearance search in this problem has a special property
that gradually changing queries are given. For this prob-
lem, graph based NN search is suitable, because the pre-
ceding search result can be used as the starting point of the
next search. Delaunay graph can be used for this search,
however, both the graph construction cost and the degree
(number of mean edges connected to a vertex) drastically
increase in high-dimensional space. Instead, we propose
nearest first traversing graph (NFTG) for avoiding these
problems. Based on these two techniques, we successfully
realized video-rate tracking and recognition.

1. Introduction

In this paper, we address a problem of simultaneous ob-
ject tracking and recognition, which estimates both classes
and pose parameters of objects in each video frame.

Most methods proposed so far use connotational (para-
metric) models that represent multiple appearances of an
object by changing model parameters. This approach has
the following limitations: 1) Designing an object model re-
quires human support, i.e., a model totally depends on the
designers thought. 2) Modifying the model using additional
samples enforces re-training of whole model using all train-
ing samples. 3) A single model cannot represent appear-
ances of multiple objects.

If we use a denotational model of an object, i.e., a set

1-4244-1180-7/07/$25.00 ©2007 IEEE

nearest
attern §

ppearance DB

Figure 1. Simultaneous object tracking and recognition

of object images, above limitations can be solved: 1-2) Ap-
pearances of an object can be automatically modeled and
modified only by storing object images. 3) Appearances of
multiple objects can be included in a single model. Because
of these advantages, we formalize the problem as an image
retrieval problem using a denotational model.

In this formalization, query image is extracted from an
image using object frame (See Figure 1), and the nearest
neighbor (NN) search is performed for finding the image
nearest to the query. The distinguishing properties of this
problem from others are 1) the object frame have to follow
the moving object, and 2) the NN search query image will
not change drastically.

The first property implies that the searches for pose and
appearances have to be done simultaneously in the product
space of pose parameters and appearances. This requires
complicated hybrid search, because the search algorithms
in pose parameters and appearances are quite different. For
simplifying this problem, we propose pose parameter em-
bedding (PPE) that transforms the search space to the ap-
pearance space.

The latter property implies that the NN search result of
an image frame can be utilized for next search. This is be-
cause the object appearance changes gradually, and hence,
the NN search results for consecutive image frames will be
close in most cases. For utilizing the previous search re-
sult, nearest-first traversing (NstFT) on a graph is suitable.
This NN search is a special case of the best-first travers-
ing on a graph, where the best vertex is the nearest ver-
tex to the query. NstFT requires Delaunay graph for accu-
rate NN search, however, the Delaunay graph construction
in high dimensional space is impractical, because the com-
putational complexity for the graph construction exponen-
tially increases with the dimensionality of the space. Fur-
thermore, the degree (number of edges connected to a ver-
tex) of the Delaunay graph becomes considerably big. In-
stead, we propose a new graph, nearest first traversing graph
(NFTG). NFTG can be constructed efficiently even in high
dimensional space and has low degree. NstFT using NFTG
can find NN vertex when the query is close to one of the
vertices. As well, complete NN vertex can be found us-
ing NFTG, by performing an additional search followed by
NstFT.

Based on the proposed methods, PPE and NFTG, we im-
plemented an object tracking and recognition system and
confirmed that it successfully tracks and recognizes objects
in image sequences and the processing speed for each im-
age frame is less than 10[ms] using a PC with Pentium4,
3GHz. This processing speed enables on-the-fly processing
of NTSC and PAL video streams.

2. Related Works
2.1. Object Tracking

Tracking an object in an image sequence is a basic
and important technology for Computer Vision. Recently,
promising methods have been proposed, e.g., Markov chain
Monte Carlo (MCMC) based object tracking[10], mean-
shift based object tracking[7], and so on. Object tracking
continuously searches a given object in each image frame
and determines its position and pose by corresponding the
object model with the local image. Tracking methods can
be classified into two types: feature based and appearance
based approaches. Feature based approach uses local fea-
tures as tracking cue, such as lines, points, or regions. Such
methods are insensitive to local occlusions. On the other
hand, appearance-based approach uses an object image as
the model. The advantage of this approach is the ability
dealing with complex objects that cannot be described by
the local features. Because of this advantage, we confine
ourselves to the latter approach.

Appearance models for visual tracking can be classified
into two types:

e Single appearance based model: Object model is de-

signed based on an object image.

e Multiple appearance model: Object model is designed
based on multiple object images. We regard 3D model
is equivalent to this model.

The well-known single appearance based object tracking
is the template matching[2]. For adapting to the appearance
changes, variable templates have been proposed, which
deals with affine transform, perspective projection (for pla-
nar object), elastic deformation, illumination changes, and
so on. As well, updating template matching is widely
used, which substitutes the template by the sub-image that
matches to the template.

The single appearance based tracking is easily applied to
simple tracking problems, i.e., only by specifying the ob-
ject region on an image frame, object pose on each succes-
sive frame can be estimated. However, a drastic appearance
change causes erroneous estimation. Especially, template
updating suffers from misupdating, which causes tracking
failure.

For solving these problems, multiple appearance models
have been proposed. These models are classified into three

types:

e 3D models: designed or measured geometric models

[11].

e Subspace based model: subspaces spanned by the
eigenvectors of correlation or covariant matrix [9].

e Parametric eigen-space[12] based model: object mod-
els represented by the manifold in the subspace [4].

Tracking methods employing these models are more ro-
bust than the single appearance based methods. This is be-
cause the models involve possible appearances of the object.

3D model based tracking methods are robust, but it re-
quires special measurement device or design process to ob-
tain the 3D model suitable for the target. Subspace and
parametric eigen-space models have a potential that geo-
metric and photometric invariants can be obtained in the
subspace. The drawback of these methods is the conflict be-
tween the accuracy and the speed. For the real-time process-
ing, we cannot use high-dimensional subspace, which does
not guarantee accurate matching. Conversely, for mapping
an image into high-dimensional space, it requires many in-
ner product operations between images, which slows down
the processing speed.

2.2. Nearest Neighbor Search

The nearest neighbor (NN) search in the appearance
space should be done in real-time (video-rate). A brute-
force NN search cannot find the nearest pattern in real-time
from a huge number of appearances.

Pose space

Q
=
SV
50
<
&
%
<

d e
(a) Mapping from appearance to pose (b) Pose parameter correction

Figure 2. Pose parameter embedding

NN search based on space decomposition, such as, k-
d tree[3] or ANN [1] cannot be applied to this problem,
because the appearance (image) vector is a pretty high di-
mensional vector and the tree construction may fail in these
method.

Tree based nearest neighbor search in metric space
has been proposed, e.g., VP-tree[14] MVP-tree[5] and
GNAT][6]. These methods are not suitable for the continu-
ous NN search problem, because every NN search using tree
structure starts from the root node and the previous search
result cannot be utilized for successive search.

Graph based nearest neighbor search algorithm is suit-
able for the tracking problem, because the previous NN
search result can be used as the starting point of the next
search. All graph based nearest neighbor search algorithms
employ nearest-first traversing (NstFT) described in 4.1.
For accurate NN search by NstFT, we have to use Delau-
nay graph[13]. However, the graph cannot be constructed
in high-dimensional space, because the construction cost of

the Delaunay graph with n vertices in D-dimensional space
is O(nlD/21+1),

3. Pose Parameter Embedding

Pose parameter embedding defines the mapping from ap-
pearances to pose parameters (Figure 2 (a)). This is done
by embedding the pose correction parameters to misaligned
appearances. In the tracking procedure, by finding the pat-
tern nearest to the sub-image in the object frame, embedded
parameters are also found. According to the embedded pa-
rameters, misaligned object frame can be corrected (Figure
2 (b)). As a result, object in the image space can be tracked
only by searching the appearance space.

The idea of PPE is similar with the idea of “motion tem-
plate” [9] , which directly represents the changes in bright-
ness induced by the object motion. By using the motion
template, object motion parameters can be estimated from
the matching result. This means that the search in the pose
parameter space is not necessary. The difference of the

PPE from the motion template is that PPE can be more ro-
bust, because PPE does not “estimate” the object motion.
It stores actual pose correction parameters corresponding to
the misaligned images, and we can find accurate parameters
by the nearest neighbor search.

4. Nearest First Traversing Graph
4.1. NN search using NFTG

By PPE, the problem becomes the NN search among the
stored images. For the real-time search of continuous query
images, we employ graph based search algorithm: nearest-
first traversing (NstFT). Here, we provide a formal descrip-
tion of NstFT.

Algorithm 1 (Nearest-first traversing (NstFT)) Stepl
Suppose a graph G consisting of vertices (images) V'
and edges E: G = (V, E). Select a vertex x. from V
as the current vertex.

Step2 Create the vertex set adjacent to x. : A(x.) =
{x | (x,x.) € E}. For each element x;, € A(xc),
distance between xj, and query (image) X4 is com-
puted and find the minimum distance: d(xq, A(x.)) =

min d(xq,Xy), where d(x;,Xx;) represents the
Xk EA(Xc)

distance between X; and X ;.

Step3 If d(xq, A(x)) < d(xq,Xc), i.e., the nearest ver-
tex in the adjacent vertices is nearer than the current
vertex, set the nearest vertex as the current vertex:

X, = arg min d(xq,Xy), and go to Step2. Oth-
X EA(Xe)

erwise X is nearest to Xg.

As discussed above, if we use Delaunay graph as G, we
can find the NN image by this algorithm. But the computa-
tional complexity of the graph construction is very expen-
sive, and the number of distance computations is big, be-
cause the number of edges connected to a vertex is at least
D +1in D-dimensional space. That is, the Delaunay graph
based nearest neighbor search is impractical.

Our idea is to relax the NN criterion, i.e., guaranteeing
true NN search only for x, € V. This relaxed condition is
defined as below.

Definition 1 (quasi-nearest neighbor: QNN)

Let x4 be the query, QNN (x,) be the NstFT result for xg,
and NN(x,) be the true NN for x4. Then the condition is
x4 € V= QNN(x,) = NN(x,).

We call QNN (x4) quasi-nearest neighbor.

The problem is how to define the graph for QNNIN. This
graph is named Nearest First Traversing Graph (NFTG)
having the following properties:

Figure 3. Despite xnyn is the nearest point to xq, NstFT starting
from x; to x4 is stuck at xs.

+——— Inserted edge

S ex,

Figure 4. Nearest vertex selection rule: Candidate set is C' =
{x1,x2,x3,x4} for vertex x,. By inserting an edge (xs,X1),
non-stuck condition stands for all vertices in C.

Connectivity: There must be at least a path between arbi-
trary pair of vertices in the graph.

Monotonicity: NstFT can find NN vertex NN(x,) for any
xq € V . In other word, in NstFT procedure, the
distance d(x.,x,) between the current vertex x. and
query image X, must decrease monotonically and fi-
nally x. = x, stands.

If the monotonicity stands by adding an edge to a non-
monotonic graph, then the connectivity as well as the mono-
tonicity stand at this moment. Then the problem becomes
how to guarantee the monotonicity.

4.2. Monotonic Graph

For guaranteeing the monotonicity, we first investigate
non-monotonic graph, which contains stuck points, i.e.,
points satisfying the following condition:

Definition 2 (Stuck condition)

Ifavertexxs € V does not have adjacent vertexx € A(xs)
satisfying d(x,x4) < d(Xs,X4), NstFT from xs to Xq
is stuck at x5. We denote this condition by a predicate
Stuck(xs,Xq) .

An example of stuck point is illustrated in Figure 3. As
shown in this figure, since x; does not have neighboring
vertex nearer to x4 than x,, NstFT is stuck at x;.

By negating the predicate, we can represent non-stuck
condition = Stuck(xs,%4). Note, this condition does not
guarantee that NstFT from x; to x4 is not stuck, i.e., this

local condition is just a necessary condition for the global
property; monotonicity. However, if the non-stuck condi-
tion stands for any combinations of x, and x4, then NstFT
will not be stuck at any vertex. This leads the following
Lemma.

Lemma 1 (Monotonic condition) Those graphs
having no stuck point are monotonic. For-
mally, a monotonic graph satisfies "X, Xq S

1% {EX € A(xs) {d(x,xq) < d(xs,xd)}} .

4.3. NFTG construction

The monotonic condition defines the class of monotonic
graphs. Then the next problem is how to create an instance
of monotonic graph for given vertices V.

By iterating the edge insertion between those verticesx
and x. satisfying Stuck(xs,x.), an NFTG can be created.
The NFTG created by this procedure depends on the or-
der of edge insertions, i.e., if we change the order, different
NFTG will be created.

However, finding the optimal edge insertion is obviously
time consuming. Instead, we employ a simple rule, nearest
vertex selection. This is because most of the spheres cen-
tered at x € C, (C = {x € V|Stuck(xs,x)}) that pass x,
are nested and the smallest one has the maximum possibil-
ity that other spheres include it as shown in Figure 4. This
implies that if we insert an edge between x and its near-
est vertex in C', the stuck condition between x, and other
vertices in C'will be relaxed. For a vertex x; in this fig-
ure, candidate set is C' = {x1, X2, X3, X4}. By inserting an
edge (x1,x2) selected by the nearest vertex selection rule,
non-stuck condition stands for all vertices in C'.

Based on the discussion above, we propose Algorithm 2
for NFTG construction.

Algorithm 2 (Nearest-first traversing Graph construction)

Stepl Let V be a given vertex (image) set, and E = ¢ .
Step2 Foreachxs €V,
C = {x € V|Stuck(xs,x)}, x4 = arg)I(nelg d(xs,x)
E=FEU{(xs,%q)}
Step3 Check whether G = (V, E) is monotonic or not.

If monotonic then the graph construction completed.
Otherwise, go to Step2.

An example of the NFTG construction by Algorithm2
is shown in Figure 5. The graph is constructed after three
iterations of Step2 in Algorithm?2.

4.4. Properties of NFTG

In the case of Figure 5, the mean degree (number of
edges connected to vertex) is 3.2, which is greater than the

Third Iteration
(End of construction)

ot “
Initial points First Iteration Second Iteration

Figure 5. NFTG construction for 40 vertices in 2D space. (Edges
64, Mean number of branches 3.2,)

110

‘Delauﬁay L
100 | NFTG ——

Average of Branch

0 10 2 3 40 50 60 70 8 9 10
Dimension

Figure 6. Mean degree (number of edges connected to a vertex)

against dimensions. In the case of Delaunay graph, theoretical

lower bound of degree is shown, because the graph construction in

high dimensional space is impossible. The error bars represent the

standard deviations. Each graph has 1000 vertices.

Distance computafion ——
ruct

ista
04 Graph construction

Distance computation —— 60 Total -x

Graph Construction o
Total

Time (5)

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Dimension

Figure 7. Elapsed time for
graph construction against di-
mensions. Each graph has 5000
vertices generated randomly.

Figure 8. Elapsed time for
graph construction against
number of vertices. Vertices
are generated randomly in 100
dimensional space.

lower bound of Delaunay graph (D + 1 = 3), where D is
the dimension of the space. This fact implies that the NstFT
using Delaunay graph is faster than NstFT using NFTG in
2D case. For clarifying this point, we constructed NFTG
for randomly generated 1000 vertices by changing the di-
mension of the space. Figure 6 shows the mean degrees of
NFTG and Delaunay Graph. From this figure, we can notice
that NFTG has smaller degree in higher dimensional space
than 10, and it saturates to 25 when the dimensionality in-
creases.

The computational complexity of the graph construction
for n images in D dimensional space can be evaluated as

e O(Dn?) for distance table computation,

e O(B(D)n) for graph construction, where B(D) rep-
resents the mean degree. This is because the number
of distance table lookup and comparison depends on

a) NstFT search using NFTG

(b) NN sch

Figure 9. Comparison between NFTG based search and NN
search: 2000000 query points are randomly generated and these
points are colored by “nearest” vertex colors.

dyyy = d(x, ONN (x,))
O NN(x,)
O QNN(x,)

Figure 10. True NN vertex NN(x4) is in the sphere with radius
2donn centered at QNN(xg).

the number of iterations of Step2 in Algorithm?2 that is
proportional to B(D).

Figure 7 and 8 show the elapsed time against space di-
mensions and number of vertices (images), respectively.
These results are obtained by using a Linux (kernel-2.2.6)
PC with Xeon 3.06 GHz dual CPU and 4GB memory. From
these figures, we can notice the following facts: 1) Distance
computation is dominant in the total elapsed time, 2) NFTG
can be constructed in high-dimensional space.

4.5. Refinement for NN search

As described before, NstFT search using NFTG is not
equivalent to NN search for those queries x, ¢ V' . We call
this search quasi-nearest-neighbor QNN search. The dif-
ference between NN and QNN is shown in Figure 9. From
this figure, we can confirm that NFTG based search can find
correct result for queries close to vertices.

For the true NN search, we can utilize the NFTG search
result. Let x4 be the query, QNNN(x,) be the NstFT result
for x4 using NFTG, and NN(x,) be the true NN vertex. As
shown in Figure 10, the following inequation stands:

d(QNN(x,), NN(x,)) < 2d(QNN(xy), %)

By using this constraint, we can find NN(x,) starting
from QNN(x,). We can use breadth first graph search al-
gorithm with the above bounding condition. Actually, Fig-
ure 9 (b) is drawn by the graph-search based on this refine-
ment algorithm.

1000 T(2D)

—®— NstFT(2D)

900 Ne T+ Refine(2D)
NerFT(10D)
800
¥ NstFT(10D)
—8— Ne/FT+Refine(10D)
700
——+——NerFT(100D)

600| ——NetFT(100D)

NerFT+Refne(100D)

500

400

300

Number of Distance Computation

?ZZM -

Number of vertices

Figure 12. Prototype Images
without translation and scaling.

Figure 11. Number of distance
computation against number of
vertices.

4.6. Further Acceleration

It is clear if a graph can be used for NstFT (Nearest
First Traversing), the graph can be used for Nearer First
Traversing (NerFT). By slightly modifying the current ver-
tex selection rule in Algorithm 1, NerFT can be realized.
That is, if a vertex x; adjacent to current vertex x. sat-
isfies d(x4,xx) < d(x4,X.), then xj, is selected as next
X.. NerFT is faster than NstFT while keeping the QNN
property, i.e., NerFT using NFTG can find NN vertex for
x, € V. However the search result of NerFT differs from
that of NstFT for x, ¢ V' using the same NFTG.

5. Experiments

In the experiment, we first examine the speed of pro-
posed search algorithms, and show the simultaneous track-
ing and recognition results.

5.1. Experiment 1: Search speed

Figure 11 shows the number of distance computations
under different conditions and algorithms. In this exper-
iment, vertices are grouped into several clusters using k-
means clustering, and one of the cluster center nearest to
the query is selected as the starting point of the search. In
2D space, NerFT, NerFT with refinement, and NstFT re-
quire very small number of distance computations (NerFT
< NerFT+ Refinement < NstFT). In 10D space, the order
is changed (NerFT < NstFT<<NerFT+Refine). In 100D
space, NerFT+Refine method degenerates to brute force
search. This fact shows that pure NN search is impractical
in high dimensional space. If we can use densely sampled
prototypes and/or the tracking task does not require accurate
but fast NN search, we should use NerFT or NstFT.

Table 1. Elapsed time and Number of distance computation for
each image frame

Elapsed Distance com-

time[ms] putation[times]

NstFT | NerFT | NstFT | NerFT
Sequencel | 5.7 3.98 27.922 | 16.971
Sequence2 | 6.25 4.00 29.324 | 17.529
Sequence3 | 5.7 3.89 24.487 | 16.186
Sequence4 | 6.5 4.21 29.540 | 18.163
Sequence5 | 6.14 3.92 28.887 | 15.657

5.2. Experiment 2: Object detection, tracking and
recognition

This experiment demonstrates the results of object detec-
tion, tracking, and recognition. These three tasks are done
by a single algorithm; NstFT (or NerFT) using NFTG with
Pose Parameter Embedding.

We applied our algorithm to face detection, tracking, and
recognition problem. Each prototype is 40x40 RGB color
image, i.e., 4800 dimensional vector. The number of per-
sons is 5, and 5 images are taken from different directions
for each. Number of horizontal and vertical translation is 49
(=7x7), and the number of scaling is 3 (1.25, 1, 0.75). Then
the number of prototype image is 3675=(5x5x7x7x3). The
prototype images without translation and scaling is shown
in Figure 12.

On a Linux (kernel-2.2.6) PC with Xeon 3.06 GHz dual
CPU and 4GB memory, elapsed time for distance table
computation is 521 [sec] and for graph construction 5.0[sec]
without SSE2 acceleration.

Compared with Figure 6, the resulted NFTG has less
mean degree; 14.105345 even in 4800 dimensional space.
This is because the distribution of the prototype images is
not uniform. This non-uniform distribution is also conve-
nient for NFTG construction, i.e., the number of Step2 iter-
ation in Algorithm 2 is only 22.

In the detection phase at initial frame, 24 object frame
positions are examined for 640x480 image to find initial po-
sition. It consumes 0.130 [sec].

In the tracking phase, NstFT (or NerFT) is performed
for each image frame using vertex obtained in the previous
search. The elapsed time and the number of distance com-
putation for each image frame are summarized in Table 1.

From this table, we can notice that both NstFT and
NerFT can track and recognize the object within the NTSC
video cycle (33[ms]). NerFT is faster than NstFT.

Figure 13 shows snap shots of the tracking, and recog-
nition results. Since NerFT and NstFT produces almost the
same results, NstFT results are shown in this figure. Green
rectangle represents object frame and the search results are
shown at right bottom corner of each image. From this fig-
ure, we can confirm the accuracy of the search.

Figure 14 shows the correspondence between image

M
Flgure 13. Snap shots of the tracklng and recogmtlon (Sequence 5
is omitted.)

Sequence1
Sequence2

Sequence3
Person|ID Sequenced
Sequence5
5

4

3

0 20 40 60 80 100 120 140 160 180
frame

Figure 14. Recognition Result.

Figure 15. Comparison between NstFT and NstFT +Re-

finement(NN search). Top: NstFT (QNN), Bottom:
NstFT+Refinement (NN).

frame and person ID. Since this recognition can be regarded
as 1-NN classification, it has enough generalization prop-
erty when we use many prototype images[8]. From this fig-
ure, we can clearly classify the person in image sequences
based on the majority of the recognition results. The advan-
tage of simultaneous object tracking and recognition is that
we can accumulate the series of recognition results for each
object frame to obtain a reliable recognition result.

In the case of true NN search by NstFT+Refinement,
mean elapsed time and distance computation are 3100[ms]
and 1587.8[times], respectively. From this result, it is
clear that true NN search cannot be applied to real-time
application. Figure 15 shows the comparison between
NstFT(QNN search) and NstFT+Refinement(NN search)
for Person ID:2. From this figure, we can notice the dif-
ference between them can be negligible.

6. Conclusion

In this paper, we proposed PPE and NFTG for simultane-
ous object tracking and recognition. By PPE technique, the
problem is transformed to the appearance search problem.
NFTG is the data structure for continuous and approximate
NN search in high-dimensional space. Based on both meth-
ods, we successfully realized real-time tracking and recog-
nition.

Since this paper mainly focuses on the algorithms for
simultaneous object tracking and recognition, the current
system can be easily affected by illumination change. This
problem will be addressed in the future work.

References

[1] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu.
An optimal algorithm for approximate nearest neighbor
searching. Journal of the ACM, 45:891-923, 1998. 3

[2] D. Barnea and H. Silverman. A class of algorithms for fast
digital image registration. /[EEE Trans. Computers, 21:179—
186, 1972. 2

[3] J. Bentley. Multidimensional binary search trees used for
associative searching. Comm. of ACM, 18:509-517, 1975. 3

[4] M.J. Black and A. Jepson. Eigentracking: Robust matching
and tracking of articulated objects using a view-based repre-
sentation. IJCV, 26:63-84, 1998. 2

[5] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for
high dimensional metric spaces. 1997 ACM SIGMOD, 1997.
3

[6] S. Brin. Near neighbor search in large metric spaces. 21st
Conf. on very large database, pages 574-584, 1995. 3

[7] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking
of non-rigid objects using mean shift. CVPR, 2:142-149,
2000. 2

[8] T. Cover and P. Hart. Nearest neighbor pattern classifica-
tion. IEEE Transactions on Information Theory, 1T-13:21-
27,1967. 7

[9] G. Hager and P. Belhumeur. Efficient region tracking with
parametric models of geometry and illumination. I[EEE
Transactions on Pattern Analysis and Machine Intelligence,
20:1125-1139, 1998. 2, 3

[10] M. Isard and A. Blake. Contour tracking by stochastic prop-
agation of conditional density. ECCV, 1:343-356, 1996. 2

[11] 1. Matthews and S. Baker. Active appearance models revis-
ited. IJCV, 60:135-164, 2004. 2

[12] H. Murase and S. Nayar. Visual learning and recognition of
3-d objects from appearance. IJCV, 14:5-24, 1995. 2

[13] A. Okabe, B. Boots, K. Sugihara, and S. Chiu. SPATIAL
TESSELATIONS: Concepts and Applications of Voronoi Di-
agrams. JOHN WILEY & SONS, Chichester England, 2nd
edition, 2000. 3

[14] P. Y. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. Fourth Annual
ACM-SIAM Symp. on Discrete Algorithms, 1993. 3

