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Abstract
We propose a linear programming relaxation scheme

for the class of multiple object tracking problems where
the inter-object interaction metric is convex and the intra-
object term quantifying object state continuity may use any
metric. The proposed scheme models object tracking as a
multi-path searching problem. It explicitly models track in-
teraction, such as object spatial layout consistency or mu-
tual occlusion, and optimizes multiple object tracks simul-
taneously. The proposed scheme does not rely on track ini-
tialization and complex heuristics. It has much less average
complexity than previous efficient exhaustive search meth-
ods such as extended dynamic programming and is found to
be able to find the global optimum with high probability. We
have successfully applied the proposed method to multiple
object tracking in video streams.

1. Introduction
Tracking multiple objects simultaneously is key for

many vision applications, such as visual navigation and ob-
ject activity recognition. Even though each object can be
tracked separately, tracking objects together is important for
obtaining good results if objects have complex interactions
[1]. We categorize object interactions into two classes. The
first type of interaction constrains the object relative loca-
tions, i.e., objects tend to keep relative positions or spatial
layout during a short period of time. The second type of in-
teraction is object mutual occlusion, i.e., an object in front
occludes other objects in the same region. Explicitly model-
ing interaction of objects enables tracking multiple objects
more robustly, especially in cluttered environments. But,
the search space also increases drastically compared to that
of tracking objects separately. Naive exhaustive search be-
comes intractable. Efficient exhaustive searching schemes
such as extended dynamic programming [1] are still too
complex to be applied to problems with a medium num-
ber of observations and objects. We propose a linear pro-
gramming relaxation scheme for a specific class of multi-
ple object tracking problems, in which the metric for inter-
object position interaction term is convex while the intra-
object terms quantifying object state continuity along time
may use any metric. The proposed scheme explores a large
search space efficiently and almost always gives a global
optimum because of the special structure of the formula-
tion.

Multiple object tracking has been studied intensively.
For example, Kalman filtering has been a classic scheme
for object tracking. Recently, particle filtering has been
popular for tracking multiple objects such as ants [2] with

complex interactions. Particle filtering has also been stud-
ied for tracking hockey players [3] in which object inter-
action is not explicitly modeled. Bayesian networks have
been applied to optimizing trajectories of football players
in video [5]. This approach does not consider track interac-
tion among objects.

Dynamic programming (DP) is also widely applied to
multiple object tracking. The single chain Viterbi algorithm
can be extended [1] to optimize multiple tracks simultane-
ously. The computational complexity of extended DP is
O(mk2n), where k is the number of observations at each
stage, n is the number of objects and m is the length of
the sequence. Extended DP is thus hard to apply to large
scale problems. An efficient approximate dynamic pro-
gramming scheme [4] has been studied to find a single ob-
ject’s path with heuristics used to determine the sequence of
path assignments in a multiple-camera setting. While sim-
ple heuristics such as best-track-first assignment works well
for multiple camera tracking, it does not always give correct
solutions when objects have complex mutual occlusion pat-
terns, especially for single camera applications.

Linear programming (LP) is another approach that can
be used for more efficient search in object tracking. Op-
timizing object tracks using 0-1 Integer Programming [6]
has been studied for radar data association. This formula-
tion is different from the proposed scheme in that a variable
is defined for each feasible trajectory and object tracking
is solved as a set packing problem. Other approximation
methods for solving similar integer LP formulations as [6]
are studied in [7, 8], which turn out to be quite similar to the
sequential DP method [4]. Unlike previous LP methods,
our proposed scheme is based on a multiple-shortest-path
model that tries to connect edges into paths and has much
fewer variables. Belief Propagation (BP) [9] has also been
used for optimizing hand tracking. Occlusion is explicitly
modeled in this method. However, multiple object track-
ing results in a loopy graph structure making it difficult to
guarantee convergence to a global optimum.

Even though intensively studied, robust and efficient
tracking of multiple objects with complex interactions re-
mains unsolved. In this paper, we propose a novel linear
programming relaxation scheme to optimize multiple object
tracks simultaneously by explicitly modeling spatial layout
constraints and mutual occlusion constraints. We formu-
late object tracking as a multipath searching problem. Each
path is composed of a sequence of states, e.g., locations
and appearances, of an object through time represented by
nodes in a graph. Different tracks are constrained so that
objects cannot occupy the same spatial region. Convex
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penalty terms are included to constrain the consistent ob-
jects’ layout in space, i.e., the objects’ relative positions do
not change abruptly from frame to frame. The state conti-
nuity metric term along time may use any metric. Based
on the special structure of our formulation, a linear pro-
gramming relaxation approach effectively solves the path
searching problem when paths overlap and objects occlude
each other. As our results illustrate, the linear program al-
most always yields integer solutions that globally optimize
object tracks and has low order polynomial average com-
plexity.

2. Multiple Object Tracking
In this section, we describe our linear programming

based method for optimizing multiple object tracks in con-
tinuous video frames. Intuitively, at each frame we repre-
sent all the possible spatial locations of each object from
the observations as nodes based on attributes of the ob-
jects. (In our examples, we determine possible bounding
boxes for objects’ locations based on background subtrac-
tion or appearance characteristics of objects. These bound-
ing boxes are also used to determine what it means for one
object to occlude another.) Over a window of frames, these
nodes form a graph where a path connecting nodes repre-
sents a possible spatial trajectory of an object over time in
the video. This is represented in Fig. 1. However, if one ob-
ject occludes another, there is a break in the track of one ob-
ject. We have a special occlusion node that allows the path
for an occluded object to be accounted for in that particular
frame if there is no other non-overlapping location for the
potentially occluded object. This graph forms the basis for
formulating a cost function based on all the possible paths
and constraints, leading to a linear program that may be ef-
ficiently solved. The algorithm optimizes the states for all
the objects together. Thus, it finds consistent paths for all
the objects over a window of video frames and assigns a
meaningful interpretation of location or status of occlusion
to each object as described more formally below.

2.1. Problem Statement
In multiple object tracking, we need to locate objects

(positions, poses etc.) through a sequence of video frames.
For each video frame, we assume that there is a set of obser-
vations for each object, which are obtained by using meth-
ods such as background subtraction or template matching.
These observations are not reliable and may contain many
false positives. Misdetection of an object may also occur.
We wish to obtain object locations in a sequence of video
frames based on the assumption that an object usually does
not change appearance and location abruptly. Apart from
finding the correct trajectories for all the objects, we also
need to determine whether an object is visible in a video
frame: objects may disappear due to occlusion or moving
out of scene.

2.2. Network Model
In the following, we study multiple object tracking based

on a network model in which sub-models in our formula-
tion interact with each other. This approach contrasts with
the previous trellis model used in single-chain dynamic pro-
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Figure 1. The network model for multiple object tracking.

gramming. Fig. 1 illustrates the network model of the mul-
tiple object tracking.

In Fig. 1, an object’s possible location and appearance
states are represented as round nodes. For a given frame,
hypothesized locations (i.e., observations) for each object
may be different, and therefore the sub-network for each
object may contain a different number of nodes. The rect-
angular nodes in Fig. 1 are the occlusion nodes that provide
a node to represent that an object is occluded and does not
have a spatial location. A source node and a sink node,
shown as diamond nodes in Fig. 1 are also included for
each object sub-network to represent the start and end of
the object tracking sequence. Sink nodes are included just
for convenience; they do not correspond to states of objects.
The solid arcs between nodes indicate possible state transi-
tions. A connected set of nodes between a source and sink
node represents the spatial trajectory of an object.

We also model mutual occlusion among objects in the
network. A spatial conflict set is defined for each node in
the network. Nodes in a spatial conflict set correspond to
object states occupying the same spatial location. As shown
in Fig. 1 the spatial conflict set for node vn,m,i includes the
node itself and nodes in the ovals in the other objects’ sub-
networks that would overlap the region of vn,m,i. Note that
the occlusion node for each object never has a spatial con-
flict, so it will never be in a spatial conflict set. Only one
node in a spatial conflict set may be selected for connect-
ing an object path as this represents the visible object at that
location in space. Once a node is selected for one of the
objects, all the other objects must either select a node that
includes a different spatial location for that frame or the oc-
clusion node. The above condition is defined as the object
mutual occlusion constraint. We also include a spatial lay-
out constraint for all the objects. This is defined in the net-
work model to constrain objects’ relative locations at each
time instant. Multiple object tracking can thus be modeled
as finding optimal paths from the source nodes to the sink
nodes for all objects, which satisfies the object interaction
constraints.

We use the following notation to precisely define the



problem in an LP framework. For object n, its source node
is denoted as sn and its sink node as tn. sn corresponds
to the location and appearance of object n in frame 0. The
source node also provides an initial template node for com-
puting trajectory costs as described below. For each video
frame, we insert nodes corresponding to all the observations
of object n at each time instant together with an occlusion
node. vn,m,i denotes the node indicating that object n is as-
signed state i in frame m. The occlusion node is always the
node with the largest state number i. The source node sn
is also denoted as vn,0,0, and the sink node tn as vn,M+1,0,
where M is the length of video sequence. We connect nodes
in successive frames with arcs as shown in Fig. 1 using
a fully connected pattern. For most applications, partially
connected patterns can also be used to simplify the problem
based on heuristics, for example, that objects do not move
far between successive frames.

A cost c(vn,m,i, vn,m+1,j) is assigned to each arc, which
indicates the cost of state i at time m and state j at time
m+1 being on the trajectory of object n. The cost function
can be convex or non-convex. An arc’s cost usually contains
two parts: the cost of choosing a state at a time instant and
the cost of state transition from i to j. In this paper, the cost
of arc connecting node vn,m,i and vn,m+1,j is defined as

c(vn,m,i, vn,m+1,j)

=




g(sn, vn,m+1,j)+
λ1 · g(vn,m,i, vn,m+1,j)+
λ2 · d(vn,m,i, vn,m+1,j)

vn,m,i, vn,m+1,j
are not occlusion

nodes and not
sink nodes

ca
const + g(sn, vn,m+1,j)

vn,m,i is occluded
and vn,m+1,j is not

cb
const otherwise

where function g(.) compares the similarity of an object ap-
pearance corresponding to nodes in the network, e.g., by
comparing color histograms in bounding boxes; d(.) com-
putes the spatial distances of two states, e.g., the distance
of two bounding boxes. λ1 and λ2 are constant coefficients
to control the weight of temporal smoothness. cb

const and
ca
const are constant costs penalizing when an object disap-

pears or reappears. Thus, if an arc leads into an occlusion
node or a sink node, it bears a constant cost. The cost of an
arc from an occlusion node to a nonocclusion node includes
the similarity measurement of the destination node to the
template object (the source node) plus a constant. When
both of the nodes are non-occlusion nodes, the edge con-
necting the nodes has weight equaling the summation of
three terms: the similarity of the target node to the tem-
plate object, the appearance similarity of detections in two
successive frames and a term that penalizes large spatial dis-
placement between video frames.

In modeling the object occlusion constraint, we need
to specify the spatial conflict set for each non-occlusion
node vn,m,i. The spatial conflict set for node vn,m,i is de-
noted as O(vn,m,i) which includes vn,m,i and nodes from
other sub-networks whose regions are highly overlapping
with the region of node vn,m,i. To determine whether
nodes are included in a spatial conflict set, we consider two
types of overlapping regions. The first one includes par-
tially overlapped regions as shown in Fig. 2 (a). The sec-
ond one includes completely overlapped regions as shown

Object 1 observation

Object 2
observation 

(a) (b)

Object 1
observation

Object 2
observation

Figure 2. Overlapped regions. (a): Partially overlapped regions;
(b): Fully overlapped regions.
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Figure 3. Spatial layout consistency.

in Fig. 2 (b). There are multiple approaches to determine
whether to include a node in the spatial conflict set. For
example, one approach uses the probability of two bound-
ing boxes overlapping. This probability is calculated using
the ratio of the overlapping area to the average area of the
rectangular regions. If the ratio is sufficiently large, the two
regions cannot be visible at the same time and nodes cor-
responding to these regions are in the same spatial conflict
set. Another approach uses a simpler measurement based
on the total city-block distance of the 4 corners of the two
bounding boxes. In this case, if the difference is below some
threshold, then the two bounding boxes are overlapping and
the nodes should be included. If the difference is large then
either the objects are not overlapping or the size of two ob-
jects is very different and the corresponding nodes do not
belong to a spatial conflict set. We use this latter approach
in our examples.

Apart from the occlusion constraint, we also would like
to keep the spatial layout of objects stable over a short pe-
riod of time. To model this constraint, we keep the spatial
displacement vectors between objects as similar as possible
across time. As shown in Fig. 3, the vectors from object
n2 to object n1 tend to remain unchanged at time instant m
and instant m+1, i.e., ||(pn1,m+1 −pn2,m+1)− (pn1,m −
pn2,m)|| tends to be a small number. In fact, vector p can be
more than 2D. For example, p can be a 4D vector represent-
ing the 2 corners of bounding boxes. This second constraint
is a soft one and implemented as a regularization term in the
objective function.

2.3. Discrete Optimization
An energy function for optimizing object tracks can thus

be written as follows.

min
paths

∑
n,m

∑
(vn,m,i,vn,m+1,j)

on a path

c(vn,m,i, vn,m+1,j) + µ
∑
m

∑
{n1,n2}

∈N

||(pn1,m+1 − pn2,m+1) − (pn1,m − pn2,m)||

s.t. at most one path goes through O(vn,m,i), ∀vn,m,i

where pn,m is the location of object n at time instant
m. For instance, if we use bounding boxes to quan-



time m-1 time m time m+1
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Figure 4. Linear programming formulation.

tify the location of an object, pn,m is a 4-element vector
(pn,m,1, pn,m,2, pn,m,3, pn,m,4) in which (pn,m,1, pn,m,2)
is the top-left corner x-y coordinate of the bounding
box and (pn,m,3, pn,m,4) is the right-bottom corner x-y
coordinate. N is the set of neighboring objects. µ is a co-
efficient to control the weight of the spatial layout regular-
ization term. In this paper, we assume all the object pairs
are neighbors, i.e., N contains all the object pairs. We as-
sume that the norm ||.|| is the L1 norm. Using the L1 norm
enables us to relax the optimization into a simpler linear
program. In fact, the L2 norm can also be used and the re-
laxation is a quadratic program which can also be efficiently
solved. In the following, we use the L1 norm and LP relax-
ation to illustrate the concept.

Because of path interaction, searching algorithms need
to consider all the paths simultaneously and thus have to
search a large space. Naive exhaustive search is not an
tractable option. This optimization problem has convex
(L1) inter-object regularization terms, while the intra-object
regularization term embedded in the arc cost may use any
metric. As shown in the following section, this type of prob-
lem can be relaxed into a convex program that can be effi-
ciently solved.

2.4. Linear Programming Relaxation
To convert the above discrete optimization problem into

a linear programming relaxation we embed the discrete
search space into a continuous one as follows.

We convert the objective function into a linear one by
introducing variable ξ(n,m,i),(n,m+1,j) to indicate whether
arc (vn,m,i, vn,m+1,j) is on the path of object n. If the arc
is indeed on a path, the variable should be 1 and otherwise
is 0. We also define variable yn,m,i to be the summation of
ξ corresponding to all the incoming arcs of node vn,m,i. Let
K(n,m−1) be the number of nodes for object n at time m−1,

yn,m,i =
∑K(n,m−1)−1

j=0 ξ(n,m−1,j),(n,m,i). Thus, yn,m,i in-
dicates whether node vn,m,i is on the path of object n. In
the ideal case, yn,m,i will be 1 if the node is on the path
and 0 otherwise. Object location is represented with vari-
ables p. pn,m,l is the lth element of the location of object
n at time m. pn,m,l equals the linear combinations of ob-
servations with coefficients yn,m,i. Fig. 4 illustrates these
notations with a simple case. Based on the energy function
defined, the cost of a path is thus the linear combination of
edge costs plus an L1 norm regularization term. By intro-
ducing non-negative auxiliary variables, we can further turn
the L1 norm terms into linear functions. The path finding

can therefore be relaxed into the following linear program:

min
∑

For all edges (vn,m,i,vn,m+1,j)

ξ(n,m,i),(n,m+1,j)·

c(vn,m,i, vn,m+1,j) + µ
∑
m,l

∑
{n1,n2}∈N

(p+
n1,n2,m,l

+ p−n1,n2,m,l)

subject to:
K(n,1)−1∑

j=0

ξsn,(n,1,j) = 1, ∀n

K(n,M)−1∑
i=0

ξ(n,M,i),tn
= 1, ∀n

K(n,m−1)−1∑
i=0

ξ(n,m−1,i),(n,m,j) =

K(n,m+1)−1∑
l=0

ξ(n,m,j),(n,m+1,l), m = 1..M, ∀n, j

yn,m,i =
K(n,m−1)−1∑

j=0

ξ(n,m−1,j),(n,m,i),

yn,m,i +
∑

vq,m,j∈O(vn,m,i),q �=n

yq,m,j ≤ 1, m = 1..M, ∀n, i

pn,m,l =
K(n,m)−1∑

i=0

φl(rn,m,i)yn,m,i, m = 1..M, ∀n, l

φl(·) extracts the lth element of location vector

p+
n1,n2,m,l − p−n1,n2,m,l = pn1,m,l − pn1,m+1,l

− pn2,m,l + pn2,m+1,l, {n1, n2} ∈ N , m = 1..M − 1,

ξ, p+, p− ≥ 0

In the above equation, rn,m,i is the location vector, e.g.,
bounding box coordinates, corresponding to node vn,m,i.
Occlusion nodes correspond to a special location, e.g., zero-
size bounding box at the center of an image. p+

n1,n2,m,l and
p−n1,n2,m,l are non-negative auxiliary variable pairs, which
are used to turn the L1 norm smoothness term into a linear
function.

We use a standard linear programming trick [10] to
convert an absolute value term into a linear function. In
the constraint, the difference of the auxiliary variable pair
p+

n1,n2,m,l and p−n1,n2,m,l equals the location vector differ-
ence of two neighboring objects, for which we would like
to compute the absolute value. When the linear program
is finally optimized, at least one of the auxiliary variables
in each pair will be zero. Otherwise, we can always sub-
tract the smaller one of the pair from each variable and get
a feasible solution with smaller objective function and one
variable in the pair becomes zero, which contradicts the op-
timum solution assumption. Therefore the sum of the aux-
iliary variables in the objective function equals the absolute



value of the spatial consistency term in our formulation,
when the LP is optimized. The linear program is equiva-
lent to the original discrete optimization if the linear cost
term equals the original cost term, which will be the case if
ξ are further constrained to be 0 or 1. The linear program
is thus a linear approximation or relaxation of the discrete
optimization problem.

The first three constraints set out the unity flow continu-
ity constraints that are necessary conditions for the solution
to be a path for each object. The constraint on y guarantees
that no two paths go through the same spatial conflict set,
i.e., if one path goes through a position other tracks tend to
pass these positions will be occluded. The spatial conflict
set is also illustrated in Fig. 4.

If we constrain the variables of ξ to be 0 or 1, the integer
program exactly solves the multiple object tracking prob-
lem. We drop the integer constraint and obtain a linear pro-
gramming relaxation which can be solved efficiently. There
is no guarantee that the linear program always gives integer
solutions for ξ. For real problems, most of ξ are indeed 0s
or 1s and therefore gives the globally optimized solution.
As shown in the experiments, the linear program has a high
probability of directly giving the global optimal solution.

The simplex method for linear programming has expo-
nential complexity in the worst case. Linear programming
is fast for real applications [10]; for our LP formulation, its
average complexity is approximately O(n2km)(2log(k) +
2log(n) + log(m)), in which k is the number of observa-
tions for each object, n is the number of objects and m is
the number of frames in optimization. In comparison to
extended DP, the linear program has much lower average
complexity.

Example 1: To illustrate how our approach works we
track 2 objects in 340 consecutive video frames. We assume
that object histograms are known. At each time instant,
potential object locations are detected as bounding boxes.
Each bounding box is represented using a 4-element vec-
tor representing 2 opposite corners. Spatial conflict sets are
then determined for each bounding box. In this example,
all the bounding boxes detected are candidates for object 0
or 1, hence, the sub-networks for each object are the same.
Grayscale color histograms with 64 bins are used as the fea-
tures for object appearance identification. In this example,
a neighboring set only contains one pair {0,1}. We build a
linear program for this problem based on our proposed LP
relaxation scheme. The LP takes 4628 simplex iterations.
Values of p give locations of objects. If the value of y at
an occlusion node is greater than 0.5, the object is set oc-
cluded at the time instant. The tracking result is shown in
Fig. 5. The top-left corner x and y-coordinate of the bound-
ing boxes for both objects are shown in Figs. 5 (a) and (b).
For this example, LP relaxation has integer solutions for ξ
and therefore achieves its global optimum. As shown in
Fig 5 the object paths are quite good for both x and y coor-
dinates even when the objects overlap each other.

As a comparison, we apply DP with best-track-first as-
signed heuristics to the same data. The energy function of
DP is the same as the proposed scheme except for the spa-
tial layout consistency term. Approximate DP is not eas-
ily extended to include such regularization terms since it
optimizes each track separately and then assigns tracks se-
quentially. Fig. 6 shows the tracking result of approximate
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Figure 5. Tracking 2 objects in 340 successive video frames using
the proposed scheme. Green and blue labels indicate object 0 and
1 respectively.

DP. In this example, DP first picks the object 0 track as a
better fit and determines the track for object 1 after remov-
ing assigned boxes for object 0. As shown in this example,
greedy track assignment selected wrong labels at the first
and third occlusion instances. Simply reducing the occlu-
sion label cost will not solve the problem and it also causes
many missed detections.

2.5. Online Multiple Object Tracking

We have studied an LP based method to track multiple
objects by optimizing tracks in a sequence of video frames.
This scheme can be extended to online video tracking by ap-
plying the tracking scheme as a moving window filter. For
our long video sequences we use a video segment window
size of between 15 to 300 frames with 1 frame overlapping
between segments. An object list keeps the histogram of
object templates. The locations of object templates are also
updated at the end of each video segment. The tracking
network is constructed by using the templates as “obser-
vations” in the zero stage and another M successive video
frames are used in constructing the rest of the network.

Objects can also be detected automatically for back-
ground subtraction based object tracking. If we find a con-
sistent object which is not on the track of previous video
segment, we insert it into the object list. The consistency
is measured by a backward and forward testing approach
based on the proposed tracking scheme. We check the du-
ration of visibility and the cost of track in backward and
forward tracking. If a new object has track cost lower than
a threshold and appears in more than 75% of the testing pe-
riod, it is inserted into the template list.
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Figure 6. Tracking result using approximate DP for Example 1.

3. Experiment Results
We report our results using our method for tracking

multiple objects on 4 different video sequences. These
video sequences are in CIF format with frame rate 15–30
frames/second.

3.1. Tracking Two Stuffed Animals
Fig. 7 shows the tracking result of the proposed method

for a 307-frame video. 2 toy objects are tracked through the
video frames. There are complex occlusions between the
two objects. The templates for the two objects are set using
the first video frame. A sub-image is used as the feature
in tracking. Object observations are obtained at local peaks
of the template matching map. Approximately 80 detec-
tions are found for each object in each video frame which
appear as nodes in the graph providing many path possi-
bilities. In this experiment, LP optimizes each 20-frame
segment including the template frame in a sliding window
fashion. Despite complex occlusions, the proposed method
tracks the objects correctly along the video sequence.

3.2. Tracking Fast Moving Squash Players
In another experiment, we apply the proposed scheme

to a 1351-frame squash video sequence with 2 players as
shown in Fig 8. The candidate objects are detected by back-
ground subtraction similar to method used in [4]. The video
includes complex object interaction and mutual occlusion.
Noisy background subtraction also makes object tracking a
hard task.

In this experiment, we convert color image into grayscale
and use a rough 64-bin histogram as features. The proposed
linear programming relaxation is then applied to the video
sequence in sliding window fashion the same as the first ex-
periment. The proposed scheme accurately follows the ob-

ject locations through the video sequence. Fig. 8 illustrates
sample frames of the tracking result and Fig. 9 shows the
object locations at each time instant through time (occluded
objects are not shown). In the 1351-frame video sequence,
object 0 has 7 wrong label assignments and object 1 has 5
wrong detections. The average object tracking precision is
about 99% for this example. LP also has a high probabil-
ity of directly obtaining the global optimal solution. Only
3 segments do not have fully integer solutions for ξ in 75
video segments.

3.3. Comparison with DP on Tracking Three People
Walking in an Office

Fig. 10 and and Fig. 13 show the result of tracking three
objects with the proposed method for a 2431-frame video.
In this experiment, we use background subtraction to detect
bounding boxes for potential object locations. The features
of objects are grayscale image histograms with 64 bins in-
side a bounding box. Bounding boxes detections are noisy
because of the large compression ratio of the video and
complex object interaction. The scales of bounding boxes
are also not accurate, which results in large portions of the
background inside some bounding boxes. The sliding win-
dow setting is the same as previous experiments. Objects
are automatically detected in this example using the method
in Sec. 2.5.

The proposed scheme can deal with complex occlusions
and objects moving out of the scene and coming back. Ob-
ject 0 has 5 wrong detections, object 1 has 22 wrong detec-
tions and object 2 has 125 wrong detections. Overall the
accuracy rate is 94% per frame. In this experiment, 4 seg-
ments do not have fully integer solutions for ξ in a total of
135 video segments.

To compare methods, we apply DP to each single person
with exactly the same network weight settings. The result
is shown in Fig.11. Because no object interaction constraint
is enforced, DP often assigns different labels to the same
object and sometimes fails to locate an object in the scene.
Simple heuristics do not always give the correct solution.
DP with best-track-first assigned heuristics has 67, 37 and
319 wrong tracking errors for object 0, 1 and 2 respectively.
The accuracy is 83% per frame. Fig. 12 shows sample video
frames where the LP approach improves the tracking result.

3.4. Tracking 4 Players in a Double-Squash Game
In Fig. 14, we applied our method to a 500-frame double-

squash video sequence. There are four objects in the video
and there are about 10 detections in each frame. The play-
ers in the same team wear the same clothing. In this exper-
iment, we use the proposed scheme to optimize tracking in
the whole video sequence rather than shorter segments. We
would like to obtain a global optimal solution considering
only the occlusion constraint.

We use a basic branch and bound method to obtain the
global solution. Our method finds the global optimal in 3
minutes using a 2.6GHz PC which is much faster than ex-
tended DP which needs about an hour to compute the result.
Since LP solution is very near the global optimum, branch
and bound converges very soon. We use branch and bound
method here to obtain a global optimum so that we can have
a fair comparison with extended DP.



Figure 7. Tracking 2 toy objects with the proposed scheme. Se-
lected frames from 307 frames.

Figure 8. Squash. Selected frames from 1351 frames.

As shown in Fig. 14 and Fig. 15 , the tracker works well
in following multiple objects during a long sequence. In
Fig. 15, when objects are occluded, their spatial locations
are set to (1,1), which are shown as abrupt drops in the
curves. Even though we obtain a global optimal solution,
the result is not perfect. Sometimes errors occur for dark
team players (player 0 and 2) when the two players occlude
each other and cause their identities to be exchanged. Such
errors happen due to both unreliable bounding box detec-
tion using background subtraction and occlusion between
objects with very similar appearance.

Fig. 16 shows typical average running times of the lin-
ear program using a 2.6GHz PC. Random observations and
color histograms are generated in each frame. Each exper-
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Figure 9. Object locations for 2 squash players. (a): X-Locations
of objects; (b): Y-Locations of objects.

Figure 12. Sample frames where DP with simple heuristics does
not yield correct solution while the proposed scheme does. The
first row shows sequence DP frames. Second row shows results
with the proposed method.
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Figure 13. Objects locations for 3-people tracking. (a): X-
Locations of objects; (b): Y-Locations of objects.
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Figure 14. Double Squash. Selected frames from 500 frames.



Figure 10. Tracking 3 people with the proposed scheme. Selected frames from 2431 frames.

Figure 11. Tracking 3 people with separate DP for each object. Selected frames from 2431 frames.
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Figure 15. Objects locations for 4 squash players. (a): X-Locations
of objects; (b): Y-Locations of objects.
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Figure 16. The complexity of the proposed scheme.

iment is repeated 10 times and running times are averaged.
Fig. 16 (a) shows the typical running time of our method
for different numbers of observations. Fig. 16 (b) shows the
typical running time of our method for different numbers of
objects. Simultaneously optimizing all the tracks using the
Viterbi algorithm has considerably higher spatial and tem-
poral complexity. In one case, extended DP takes about 6
hours to optimize 3 objects in 20 video frames with 50 ob-
servations in each frame, while the proposed scheme con-
verges in tens of seconds as shown in Fig. 16 (a). Thus, our
method requires considerably less computation time than
other approaches and still achieves good accuracy.

4. Conclusion
In this paper, we propose a novel framework for optimiz-

ing multiple object tracking that can be solved efficiently
based on a linear programming relaxation. The proposed

scheme explicitly models track interaction such as the spa-
tial layout constraint and object mutual occlusion. Exper-
iments show that the proposed scheme works robustly in
tracking objects with complex interactions in long video se-
quences. The linear program relaxation can also be solved
more efficiently than previous methods such as extended
dynamic programming. Thus, we believe our approach pro-
vides a useful method for multiple object tracking in video
sequences.
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