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Abstract

Support Vector Regression (SVR) is now a well-
established method for estimating real-valued functions.
However, the standard SVR is not effective to deal with out-
liers and structured outliers in training data sets commonly
encountered in computer vision applications. In this pa-
per, we present a weighted version of SVM for regression.
The proposed approach introduces an adaptive binary func-
tion that allows a dominant model from a degraded training
dataset to be extracted. This binary function progressively
separates inliers from outliers following a one-against-all
decomposition. Experimental tests show the high robust-
ness of the proposed approach against outliers and residual
structured outliers. Next, we validate our algorithm for ob-
ject tracking and for optic flow estimation.

1. Introduction

Estimation of a real-valued function from finite set of
samples so as to explain their structure is a central problem
in statistics. Introduced by Vapnik [21], Support Vector Re-
gression (SVR) has become an emerging technique to solve
this kind of problem. However, the standard approach is
sensitive to a weak error rate in the training set. This sensi-
tivity is a central drawback in some real image applications
where datasets are highly degraded. In such applications,
the structure to be estimated is often corrupted by outliers
and sometimes also by residual structured outliers. Out-
liers are bad measurements, which may arise from physical
imperfections in sensors or/and from previous image pre-
treatments. Generally, outliers are considered as uniformly
distributed [22], [3], etc.. Structured outliers are measure-
ments from one or more additional (residual) structures. In
this paper, we propose a new estimator being able to resist
these two types of errors. The proposed method is based
on a weighted version of Support Vector Regression : Crisp
SVR (C-SVR). The principle of the weighted SVR is to as-

sign each datum a different penalty coefficient according to
a predefined criterion. This concept has been already in-
troduced in SVM based classification problem [10]. We
propose a new methodology to extract a single (dominant)
model in a degraded dataset. A binary function progres-
sively separates inliers from outliers of the training data
set and updates the weight values after each SVR estima-
tion. It is based on the comparison of the absolute value of
residuals with an adaptive threshold and thus it realizes a
crisp data partition in two subsets. We show experimentally
that the proposed method can tolerate up to 80% randomly
distributed outliers in the data set and is resistant to resid-
ual structured outliers. We also show that these robustness
properties are also preserved in a nonlinear context.

This approach, although similar to the robust SVR based
approach of Colliez et al.in [5] and the Multiple Model Esti-
mation (MME) method proposed by Cherkassky and Ma in
[4], differs from them by several points : Firstly, in [4, 5],
outliers are removed from the data set with a rejection cri-
terion based on the absolute value of residuals and the esti-
mation is updated with the remaining data subset. C-SVR
directly integrates the data partition in the SVR formulation
by the way of weights as in the Reweighted Least Squares
Estimator [17]. In this way, the data partition is naturally
based on the concept of support vectors which is an essen-
tial property of SVM theory. Secondly, in [4], the threshold
is proportional to the standard deviation of additive noise in
the dominant structure and the noise level is known a pri-
ori. In C-SVR, the threshold is adaptive and no information
about noise level is needed. Thirdly, in a very degraded
training data set, an analytic estimation of the SVM param-
eters ε and C such as proposed in [4] seems incomplete. In
C-SVR, no analytic estimation of the parameters ε and C
is necessary. The only assumption is to consider a small
fixed ε value in order to obtain an initial estimate close to
the dominant structure.

The paper is organized as follows. Section 2 presents
the proposed weighted version of SVR and enlightens the
reader about the terms contributing to robustness. In section
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3, the performances of C-SVR are studied and compared
with other standard robust regression approaches. Finally,
we apply this approach for rigid object tracking in image
sequence and for the optic flow computation problem .

2. Weighted Support Vector Regression

2.1. Principle

Consider a training data set S =
{(x1, y1) , (x2, y2) , ..., (xn, yn)}, where each xi ∈ Rd

denotes an input value and has a corresponding target value
yi ∈ R. The standard SVR builds a nonlinear function
: f (x) = (w, φ(x)) + b, such as the regression vector
w ∈ Rd and the bias term b ∈ R minimize the following
constrained optimization problem [21, 1]:

min
w,ξi,ξ∗

i

L =
1
2
‖w‖2 + C

∑
i∈S

(ξi + ξ∗i )

sc :

⎧⎨
⎩

ri = yi − (w, φ(xi)) − b ≤ ε + ξi

−ri = −yi + (w, φ(xi)) + b ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(1)

where the function φ(.) is a nonlinear application from Rd

to high dimensional space called feature space. This formu-
lation adopts the ε linear insensitive loss function proposed
by Vapnik [21], which does not penalyse errors below some
ε > 0. The form of the loss function is one of the funda-
mental keys to ensure robustness properties of an estimator.
Besides, the form of the loss function is closely connected
to noise modelling [21, 1] and this correspondence is ob-
tained by maximizing the a posteriori probability (MAP).
The slower the loss function increases with the errors, the
more robust the estimation is. Thus, the linear ε-insensitive
loss function presents the best characteristics of robustness
among other common loss functions. The presence of er-
rors in the data set is measured by other internal parame-
ters ξi and ξ∗i called ”slack variables”, which characterize
the deviation of training samples outside the ε-margin. The
control of the global deviation is managed by the parameter
C in (1). The larger C is, the more sensitive to errors the
solution is and the more complex the model is. In standard
SVR, the values of ε and C must be specified beforehand.
Therefore, standard SVR is still not sufficiently robust. In
fact, as we will show it later, a small percentage of outlier
contamination (<50%) is sufficient to force SVR to produce
arbitrarly large values (small breakdown point). We propose
here to develop a weighted SVR-based technique which can
tolerate more than 50% outliers in the data. Let χ(k)

i denotes
the weight factor associated with the pair (xi, yi) at step k.
The principle of the proposed approach consists of refin-
ing the regression vector w(k) (estimated at step k) with
a modified SVR where each penalization term in the sum
is weighted by χi.The constrained optimization problem of

the weigthed SVR is formulated as follows :

min
w(k),ξi,ξ∗

i

L =
1
2
‖w(k)‖2 + C

∑
i∈S

χ
(k)
i (ξi + ξ∗i )

sc :

⎧⎪⎨
⎪⎩

r
(k)
i = yi −

(
w(k), φ(xi)

) − b(k) ≤ ε + ξi

−r
(k)
i = −yi +

(
w(k), φ(xi)

)
+ b(k) ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0

(2)

It turns out that the previous optimization problem can be
solved more easily in its dual formulation. For that, we
construct the corresponding Lagrangian function which is
expressed by :

Lp =
1
2

∥∥∥w(k)
∥∥∥2

+ C
∑
i∈S

χ
(k)
i (ξi + ξ∗i ) (3)

−
∑
i∈S

αi

(
ε + ξi − r

(k)
i

)
−

∑
i∈S

α∗
i

(
ε + ξ∗i + r

(k)
i

)

−
∑
i∈S

(ηiξi + η∗
i ξ∗i )

where α
(∗)
i and η

(∗)
i are nonnegative Lagrange multipliers.

First, we differentiate Lp with respect to w, b, and ξ
(∗)
i .

Then, the resulting conditions of optimality are substituting
in (3) and the dual problem becomes :

max
αi,α∗

i

L = −1
2

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j ).(φ(xi), φ(xj))

(4)

−ε
n∑

i,j=1

(αi + α∗
i ) +

n∑
i=1

yi(αi − α∗
i )

subject to:
∑n

i=1(α
∗
i −αi) = 0 and α∗

i , αi ∈ [0, χ
(k)
i C].

Where the dual variables αi and α∗
i are determined by

Quadratic Programming techniques [1]. Then, the vector
solution ŵ and the estimated function f̂ are obtained from
the following expressions:

ŵ =
n∑

i=1

(αi − α∗
i )φ(xi) (5)

f̂(x) =
n∑

i=1

(αi − α∗
i )(φ(xi), φ(x))+b (6)

In expressions (4) and (6), the inner product in feature space
(φ(xi), φ(x)) can be favourably replaced by a kernel func-
tion K(xi,x). Kernel functions enable dot product to be
performed in high dimensional feature space using low di-
mensional input space without knowing an explicit expres-
sion of φ. Some common kernel functions are: the linear
kernel function, the polynomial kernel function, the radial
basis kernel function, etc.



2.2. Influence of the weight factors χ
(k)
i

As we can see, the introduction of the weight factors
χ

(k)
i does not change the dual formulation problem of the

standard SVR (see [21, 1]). However, the upper bounds
of Lagrange multipliers α

(∗)
i are modified by dynamical

boundaries (the upper bounds become χ
(k)
i C instead of C,

see the constraints of Eq. 4). To explain the effect of the
weight factors, the values of the dual variables α

(∗)
i and

their corresponding slack variables ξ
(∗)
i are analysed from

Figure 1. Figre1 1-a shows a typical result of the linear
SVR where the optimal line is illustrated by a solid line and
the ε-margin by dotted lines. According to this figure, the
data set can be divided into 3 subsets: data points inside
the margin (’•’), data points on the margin (’�’) and data
points outside the margin (’*’). In practice, a simple test
on the pair (αi, α

∗
i ) (Fig. 1-b) makes it possible to classify

the data in these three groups. As we can see from this ta-
ble, only the subsets on (’�’) and outside the margin (’*’),
corresponding to α

(∗)
i �= 0, give a non-zero contribution to

SVM solution (see Eq. 5 and 6). The data inside the mar-
gin (’•’) are considered as not support vectors and therefore
have no contribution to SVM solution. This property is de-
fined by α

(∗)
i = 0 and ξ

(∗)
i = 0. Then, on the assumption

that an outlier is identified, we can nullify its effect by forc-
ing to 0 its corresponding slack variable ξ

(∗)
i .

(a) (b)
Figure 1. (a) Location of SVs and non SVs with respect to the mar-
gin. (b) Values of slack variables and dual variables for different
subsets.

2.3. Outlier rejection rule

Following the previous idea, we propose a binary rule for
outlier detection : The value 1(0) is assigned to the weight
χi when the data point i has an absolute residual value lower
(higher) than a given cut-off value M. So, the weight χi at
time k+1 is determined by the following expression:

χ
(k+1)
i =

(1 + sign(M (k) − |ri|(k)))
2

∀ i ε S (7)

where the cut-off value M is proportional to the maximal
absolute value of residuals, i.e. :

M (k) = β max
i∈S

(
χ

(k)
i . |ri|(k)

)
, 0 < β < 1 (8)

and ri = yi − f̂(xi) represents the residual value between
the data and the estimated function. As for the parameter β,
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Figure 2. Evolution of the binary margin according to the value of
β. β=0.5 (a), β=0.7 (b), β=0.9 (c).

it manages the proportion of data which must be removed
from the training data set at each step. To illustrate its influ-
ence, we consider a training data set composed of a domi-
nant linear structure and randomly distributed outliers (Fig.
2). In this example, the outlier percentage is about 70%.
Each figure depicts the evolution of the binary margin (i.e
f̂(x)(k)±M (k)) according to the value of β. The data points
outside the binary margin have zero weights. In figure 7.a,
β is fixed at 0.5. In this example, the proportion of removed
data is high and the convergence is not guaranteed. For the
values of β =0.7 and 0.9, the proportion of removed data
is enough to ensure the convergence (Fig. 2.b and 2.c). Of
course, the higher the value of β will be, the longer the com-
putation time will be (k = 9 for β = 0.7 and k = 19 for β =
0.9). Then, the crisp weighted SVR algorithm can be sum-
marized below :
1. Initialize β and set χ

(k=0)
i = 1, 1 ≤ i ≤ n.

2. Compute w(k)and b(k) from Eq. 9. Compute the
residuals r

(k)
i and the cut-off value M (k)with Eq. 11.

3. Update χ
(k+1)
i with Eq. 10.

4. If the reconstruction error ‖f̂(x)(k) − f̂(x)(k−1)‖ ≤
ζ(� 1), then stop. Otherwise, k ←− k + 1 and go to step
2.

As we can point out to the reader, the proposed strat-
egy is rather similar to M-estimators which use generally a
weighting strategy to solve a regression problem. Usually,
the weighting functions in M-estimators are real-valued,
piecewisely defined and use a cut off point which is pro-
portional to the scale of the data. The performance of the
M-estimators lies in a robust scale estimate which is com-
monly solved with the MAD estimator. However, the MAD
estimator is inaccurate when the outlier contamination (
uniformly distributed outliers) is more than 50% or when
other structured outliers are present. One of the contribu-
tions of our SVR based estimator is to propose an adap-
tive cut off point (Eq. 8) which involves no scale estimate.
Of course, a real-valued weight function such as Huber’s



function or Tuckey’s function could also replace the binary
weight function defined by Equation 7. The robustness of
the proposed approach depends on both the weak robust-
ness of standard SVR and the proposed iterative weighting
strategy. Thus, we obtain a very robust estimator and less
sensitive to initialization than M-estimators.

3. Performances and comparative results

3.1. Linear regression tests

First, the performances of our algorithm in line fit-
ting will be demonstrated and its tolerance to large per-
centages of outliers will be compared with standard SVR,
Cherkassky’s method (MME) [4] and other robust popu-
lar estimators such as Least Median of Squares (LMedS)
[17], Least Trimmed Squares (LTS) [16], and recently Vari-
able Bandwidth Quick Maximum Density Power Estimator
(VBQMDPE) [22]. In order to compare the abilities of the
methods to resist different percentages of outliers, we will
draw the ”breakdown plot” [11]. This curve illustrates the
evolution of the relative error between the estimated solu-
tion and the true solution according to the contamination
rate. In the following tests, we fixed ε=0.001, C=10 for
the standard SVR and other SVR-based techniques. For
Cherkassky’s method [4], we assume that the noise level
σ for the domimant structure is known and the value of the
threshold in [4] is constant (=2σ). For the proposed ap-
proach, we put β=0.7.

- Experiment 1: Influence of outlier percentage on
single linear model regression. In this experiment, 300
data are composed of a noisy linear structure with outliers.
n1 data points define a single line y=-x+100 corrupted by a
gaussian noise with zero mean and unit variance σ, and nO

data points are uniformly distributed in the range of (0,100).
The percentage of outliers in the data points changes from
10% to 95%. We repeat this experiment 100 times and the
averaged results are shown in Figures 3. Figures 3 illus-
trates the evolution of the relative error (breakdown plot) of
the slope a of the estimated line for the six methods. This
figure clearly shows three levels of robustness : a first group
with the standard SVR and LTS which first break down be-
tween 30 and 40% outliers, a second group with LMedS and
MME which break down between 50 and 60% outliers, and
next VBQMDPE and C-SVR which break down between 70
and 80% outliers. In the third group, C-SVR (β=0.7) clearly
outperforms VBQMDPE which is less stable in this inter-
val and breaks down more quickly. These results show that
C-SVR is very robust against uniformly distributed ouliers
and outperforms the more standard robust estimators. In
the next section, we illustrate the robustness behaviour of
C-SVR in the presence of residual structured outliers in the
data.

-Experiment 2: Multiple linear model regression. In
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Figure 3. Breakdown plots of studied regression estimators. The
x-axis represents percent data contamination and the y-axis char-
acterizes the relative error for the slope.
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Figure 4. Illustration of line fitting with different robust ap-
proaches. Step edge (a). Three crossed lines (b)

this experiment, we investigate the characteristics of the six
methods to fit lines in presence of outliers and residual lin-
ear structures. Every line is corrupted by gaussian noise
with zero mean and different variance σ. The ith line has
ni samples. We add nO uniformly distributed outliers in
the range of (0,100). The training data sets are defined as
follows:

A step : x=(0 60), y=30, n1=150, σ=1.5 (’�’);
x=(40,100), y=60, n2=80, σ=2 (’+’); n0=100 (’o’) (Fig.
4-a)).

Three crossed linear structures : x=(40,100), y=x+3,
n1=80, σ=1 (’�’); x=(0,80), y=35, n2=50, σ=1 (’*’);
x=(10,80), y=-x+100, n3=150, σ=4 (’
’); n0=100 (’o’)
(Fig. 4-b)).

The line fitting results are shown on Figures 4.a and 4.b.
Figure 4.a illustrates, for example, a pair of range surfaces
forming a step discontinuity. Fitting a model to this kind of
data is problematic because a standard fit (a least-squares
fit ) is skewed so much that it crosses (or ”bridges”) the
point sets from both surfaces, placing the fit in close prox-
imity to both point sets. It is besides what occurs for stan-
dard SVR, MME and LTS whereas VBQMDPE, LMedS
and C-SVR seem less sensitive to this discontinuity. The
second test (Fig. 4.b.) shows three crossed lines with dif-
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Figure 5. Extraction of a dominant nonlinear structure with SVR,
MME and C-SVR. Noisy sinusoidal signal with outliers (a,b) .
Noisy sinusoidal signal with outliers and a residual sinusoidal sig-
nal (c,d) .

ferent variances. Despite a high noise level, the dominant
structure is correctly estimated by C-SVR. LTS, LMedS and
VBQMDPE are close to the solution whereas standard SVR
and MME fail. These examples show the abilities of the
proposed approach to extract correctly a dominant structure
from highly corrupted datasets. Of course, several comple-
mentary works as in [19] will have to be made in order to
characterize the robustness limits of the proposed approach
in multiple structure cases.

3.2. Nonlinear regression tests

The great advantage of SVR-based approaches com-
pared to standard robust estimators, such as those studied
here, is to be able to treat nonlinear structures by simply
changing the kernel function. In this test, we experimen-
tally demonstrate that the previous robustness properties are
preserved in a nonlinear context.

In this experiment, we use the radial basis function ker-
nel with a width fixed to 1. We generated two datasets, each
with a total of 350 data points :

- The first example includes a noised sinusoidal signal
(gaussian noise with σ=0.3, n1=100, ’o’) corrupted with
nO =250 data points uniformly distributed in the range of
(60,100) (’+’) (Fig. 5-a and 5-b ).

- The second example includes a noised sinusoidal sig-

nal (gaussian noise with σ=0.3, n1=150, ’o’), a noised sinu-
soidal signal (gaussian noise with σ=0.3, n2=100,’�’) and
nO =100 data points uniformly distributed in the range of
(60,100) (’+’) (Fig. 5-c and 5-d).

The estimation of the dominant structures from both
datasets is illustrated in Figure 5. In each figure, the grey
curve represents the reconstruction result of standard SVR
(first iteration of MME or C-SVR), the black curve illus-
trates the final result of the MME approach (Fig.5-a and 5-
c) or the C-SVR approach (Fig.5-b and 5-d) and, the dashed
curves the intermediate reconstructions. The results illus-
trated on Figures 5.b and 5.d confirm that C-SVR is able
to extract nonlinear dominant structures even in a very dis-
turbed context. On the other hand, the standard SVR and
MME are not adapted to solve this kind of situation and fail
to correctly extract the dominant structure (Figure 5.a and
5.c).

4. Real data tests

4.1. Application to video object tracking

In this section, we illustrate the performance of the
proposed approach for rigid object tracking in image se-
quences. Here, the tracking problem is formulated as dis-
covering the geometric transforms of object images be-
tween frames according to the extracted feature correspon-
dences. In order to obtain a valid estimate of the transforms,
a correct detection of feature correspondences is essential,
which is, however, not easy in practice due to three factors
: (1) the similarities, such as similar intensities and shapes,
shared among features; (2) the occlusions and (3) the noise,
which might also drive the data away from where they
should be. Therefore, developing a robust feature match-
ing technique is especially important.

In this study, the matching problem is solved with a two-
step algorithm. The first step computes the ”corners” on
the object of interest in two consecutive frames. These fea-
ture points are extracted according to the Harris operator
[8]. Then, the best correspondences are selected in the sense
of both shape similar and intensity agreeing. The intensity
based similarity measure is defined by the similarity of the
histograms computed in the neighborhood of feature points.
We use Bhattacharyya coefficient as a measure of similar-
ity between two histograms [6]. The shape based similarity
measure is based on the maximum-likelihood edge template
matching technique of [14]. For simplicity, we assume the
object motions to be locally affine. The affine transform of
object images is formaluted as follows:(

x′

y′

)
=

(
a1 b1
a2 b2

)(
x
y

)
+

(
c1
c2

)
(9)

where the coefficients (a1, b1, c1, a2, b2, c2) are the affine
parameters and (x’,y’)/(x,y) are the points in the target tem-
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Figure 6. Tracking of a target book in a color image sequence
(200 frames). Black rectangles are the results of the C-SVR based
tracking and grey rectangles are the results of the MME based
tracking.

plate images. The estimation of the affine parameters can
be reformulated as a regression problem. Under SVR for-
malism, if we put w=(a1, b1, c1, a2, b2, c2), we obtain two
constraint sets :

one constraint over x’ :⎧⎨
⎩ rx′

i
= x′

i −
(
w, φx′

i
(xi, yi)

)
− b ≤ ε + ξx′

i
,

−rx′
i
= −x′

i +
(
w, φx′

i
(xi, yi)

)
+ b ≤ ε + ξ∗x′

i

,

and one constraint over y’ :⎧⎨
⎩ ry′

i
= y′

i −
(
w, φy′

i
(xi, yi)

)
− b ≤ ε + ξy′

i
,

−ry′
i
= −y′

i +
(
w, φy′

i
(xi, yi)

)
+ b ≤ ε + ξ∗y′

i

where φx′
i
(xi, yi) = (xi, yi, 1, 0, 0, 0) and

φy′
i
(xi, yi) = (0, 0, 0, xi, yi, 1). Thus, the problem of

the estimation means extracting two independent planes
in the data set. Next, w and b are estimated with the
Crisp-weighted SVR methodology as previously presented.
It should be noted that the values of the parameters c1
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Figure 7. The grey vectors correspond to the dominant motion ex-
tracted ( χi = 1) and black vectors correspond to outlier motions
( χi = 0).

(w(3)) and c2 (w(6)) must be updated with the value of
b (c1 = c1 + b, c2 = c2 + b). The application concerns
the estimation of the dominant motion in a color image
sequence and the tracking of the corresponding object.
The dominant motion corresponds to the displacement of
a target book in the foreground. During the sequence, a
residual motion of a second book appears. On the first
frame, we manually select a window surrounding the
target book. Feature correspondences are computed in the
whole image. Figure 6 displays 9 selected frames of the
sequence. In each frame, the black rectangle corresponds
to the tracking result of the C-SVR method whereas the
grey rectangle illustrates the tracking result of the MME
method. Figure 7 shows vector fields which illustrate
corner matches computed from the frames of figure 6. We
clearly distinguish a dominant vector field (target book)
corrupted by the presence of a residual motion (second
book) as well as outlier motions (false matches). As we
can see on this figure, the proposed approach accurately



separates the dominant motion (grey vectors corresponding
to χi = 1 for a stopping criterion ζ fixed to 1e − 3) from
the others (black vectors, χi = 0). At the beginning of the
sequence, the target book is successfully tracked by the
two approaches because the book behind the target book
is mainly occulted. Next, the second book appears more
and more and then its leverage influence becomes more
and more dominating. The MME rectangle (grey window
on Fig. 6) then quickly shrinks too much and the tracking
is lost. On the other hand, the target book is consistenly
tracked throughout the sequence with the C-SVR based
tracking (black rectangle ).

4.2. Optic flow estimation
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Figure 8. (a) One frame of the Yosemite sequence severely de-
graded by 6% noise added. (b) Correct velocity field.

Table 1. Comparative results from Yosemite sequence (AAE)

Noise(%) 0 2 4 6 8

FAR [7] 7.56 12.12 16.37 20.19 22.62
LS [12] 8.14 48.10 49.72 49.94 49.97

MM [24] 8.08 9.81 15.11 22.12 34.57
SVR [20] 8.20 27.98 39.72 43.79 46.83
C - SVR 7.58 8.25 8.99 9.99 12.75

FastLTS [23] 7.54 7.49 10.42 20.9 34.90
LMedS [15] 8.18 8.42 9.32 11.11 16.65

vbQMDPE [22] 8.15 8.48 9.71 11.52 16.32

In this section, we illustrate the performance of the pro-
posed approach in the optic flow computation problem.
Many differential methods for optic flow estimation are
based on the fundamental assumption of the image bright-
ness conservation. Then, under this assumption, the optic
flow constraint equation (OFCE) is approximated by a first
order linear equation[9]:

Ix.u + Iy.v + It = 0 (10)

where (u, v) is the optic flow vector and (Ix, Iy, It) is the
spatio-temporal image intensity gradient. Since there is

only one equation with two unknown variables, this equa-
tion cannot be solved for both horizontal and vertical com-
ponents of the optic flow without additional assumptions or
informations.This is the well-known aperture problem. To
make the problem well-posed, various alternative regular-
ization strategies have been suggested. The first one, in-
troducing by Horn and Schunck [9], is a global approach
and it is based on the definition of a functional derived from
the OFCE and a smoothness penalty term. The second one
is based on the assumption that motion is locally homoge-
neous [12]. It consists in forming a set of OFCEs in a small
neighborhood around each pixel in order to improve the op-
tic flow vector estimation. Thus, the optic flow problem is
formulated as a set of over-determinated simultaneous lin-
ear equations. In this work, we adopt this solution and con-
sider a constant motion.

Under SVR formalism, if we put w=(u,v), for each pixel
in the block, we obtain the following constraint set :{

rx′
i
= −It −

(
w, φIt

(Ix, Iy)
) − b ≤ ε + ξIt

,
−rx′

i
= It +

(
w, φIt

(Ix, Iy)
)

+ b ≤ ε + ξ∗
It

,

where φIt
(Ix, Iy) = (Ix, Iy). Next, w and b are esti-

mated with the Crisp-weighted SVR methodology as previ-
ously presented.

Our results have been compared with five local ap-
proaches : (1) the Lucas Kanade’s LS based method [12]
- (2) the Yohai’s MM based algorithm [24],[18] - (3) the
Ye’s LTS based algorithm [23]- (4) the Ong’s LMedS based
algorithm [15] - (5) the Wang’s MeanShift based approach
[22] - (6) the Farneback’s approach (FAR)[7]. In the follow-
ing tests, we fixed C = 10 and ε = 0.001 for the standard
SVR and our approach (β=0.7).

In order to provide better estimates for objects moving
with large displacements, all these estimators have been em-
bedded in a multiresolution scheme which uses a coarse to
fine strategy. In our tests, the image pyramid is sampled on
three levels of resolution and a 7 × 7 pixel block is used
to compute local optic flow. Derivatives were computed
with four point central differences with mask coefficients
1
12 (−1, 8, 0, −8, 1).

The comparative test is based on the well-known
Yosemite sequence which depicts a simulated flight through
to the Yosemite National Park (Fig. 8-a). This sequence
combines two divergent motions and a translational motion
of the sky (Fig. 8-b). To illustrate the robust behaviour of
the proposed approach, the original sequence has been de-
graded by randomly distributed outliers with an increasing
density in the range [0, 2, 4, 6, 8] (in percent). This im-
pulse noise locally simulates a high motion discontinuity.
Table 1 summarizes the comparative results of the different
approaches. The Average Angular Error measure (AAE)
used by Baron et al [2] is adopted as our performance mea-
sure and is a basis for comparison. As expected, we note
that our method clearly improves the results of the classical



SVR. The proposed algorithm also out-performs the most
traditional estimators.

5. Conclusion

A weighted version of Support Vector Regression has
been presented. The proposed weighting strategy effec-
tively reduces the effect of outliers and structured outliers.
Empirical results demonstrate that this approach can toler-
ate up to 80% uniformly distributed outliers and then out-
performs most traditional robust estimators. Several exper-
iments have also shown the effectiveness of the method to
isolate a dominant structure from outliers and residual struc-
tured outliers. The application of the method to video object
tracking and optic flow computation has given promising re-
sults.

Several issues are still under investigation. Firstly, the
proposed approach can be extended to multiple model es-
timation as in [4]. Secondly, if the proposed approach
is very resistant to vertical outliers (randomly distributed
and structured vertical outliers), its robustness decreases
more and more when the presence of bad leverage points
or horizontal outliers increases. It is the case of the step
as illustrated on Figure 4.a when the weight of the right
edge compared to the left edge increases. We are work-
ing on reliable leverage diagnostics for removing these hor-
izontal outliers. Thirdly, the object tracking experiment is
based on the use of a specialized quadratic programming
code to solve the dual formulation (Eq. 9) which is time
consumming. In order to solve the problem considerably
faster, we can use an active set strategy as proposed in
[13].
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