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Abstract

We boost the efficiency and robustness of distribution-
based matching by random subsampling which results in
the minimum number of samples required to achieve a spec-
ified probability that a candidate sampling distribution is
a good approximation to the model distribution. The im-
provement is demonstrated with applications to object de-
tection, Mean-Shift tracking using color distributions and
tracking with improved robustness for low-resolution video
sequences. The problem of minimizing the number of sam-
ples required for robust distribution matching is formulated
as a constrained optimization problem with the specified
probability as the objective function. We show that sur-
prisingly Mean-Shift tracking using our method requires
very few samples. Our experiments demonstrate that ro-
bust tracking can be achieved with even as few as 5 random
samples from the distribution of the target candidate. This
leads to a considerably reduced computational complexity
that is also independent of object size. We show that random
subsampling speeds up tracking by two orders of magnitude
for typical object sizes.

1. Introduction

Suppose that we have a model distribution and a search
space in which target candidates are compared with the
model distribution. The target candidate closest to the
model distribution is considered a match. This distribu-
tion matching problem appears in various forms such as
matching for Time Series, Object Detection, Registration
and Tracking. A recently proposed technique called Inte-
gral Histogram [1] can obtain histograms for all possible
target candidates efficiently in Cartesian Space by assum-
ing that an exhaustive search is required in the search space.
After constructing an initial histogram, the technique recur-
sively propagates the aggregated histogram and traverses
through the rest of the search space along a scan-line. Dur-

ing each iteration, only a single bin is updated using the In-
tegral Histogram at the previously visited neighboring data
points. The histogram of any target candidate can be ob-
tained efficiently with very few arithmetic operations given
the integral histogram evaluated for the previous iteration.
However, despite that this technique was designed for effi-
ciency gain, it only works well when an exhaustive search
is needed. Local optimization algorithms such as Mean
Shift tracking do not require exhaustive searches to find the
optimal solution. Thus, no or little efficiency gain can be
achieved with Integral Histogram when there is no need for
global optimization.

We propose a novel approach making use of the fact that
not all samples from a target candidate are needed to ob-
tain an sufficiently accurate approximation to the distribu-
tion of the target candidate. The distribution is randomly
subsampled to form the approximate sampling distribution
of the candidate. We estimate the minimum number of sam-
ples required for the sampling distribution as a good ap-
proximation to the original distribution according to a spec-
ified probability, which indicates the reliability of distri-
bution matching with random subsampling. The proposed
method leads to significant efficiency gain both for local and
global optimization and the estimated minimum number of
samples required specifies the resolution limit of the object
for robust tracking. We demonstrate these through our ex-
periments with applications to object detection (global op-
timization), Mean-Shift tracking using color distributions
(local optimization) and robust tracking in low-resolution
videos (local optimization). It is shown that the proposed
method reduces the processing time of Mean-Shift track-
ing by two orders of magnitude for tracking typical object
sizes. Thus, part of this work is devoted to the applica-
tion to Mean-Shift tracking. Efficient distribution match-
ing for Mean-Shift tracking provides a basis for robust real-
time multi-object tracking, object tracking in low-resolution
videos and real-time tracking on cheap mobile devices.

Much effort has been made in recent years to develop ef-
fective algorithms for real-time object tracking. Neverthe-
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less, most tracking algorithms still suffer from fundamental
problems including drifts away from targets [3] (partially
due to change of viewpoint), inability to adapt to changes
of object appearance, dependence on the first frame for tem-
plate matching [4], instability to track objects under defor-
mations (e.g. deformed contours), the inefficiency of Monte
Carlo simulations for temporal tracking [5], and reliance on
gradients by active contours [6], i.e. problems with similar
intensities on the background and the object, or high gra-
dient edges on the object itself. These problems are due
to the complexity of the object dynamics. We also have to
deal with difficult tracking conditions which include illumi-
nation changes, occlusions, changes of viewpoint, moving
cameras and non-translational object motions like zooming
and rotation. In particular, Mean-Shift tracking [2] has at-
tracted much attention because of its efficiency and robust-
ness to track nonrigid objects with partial occlusions, sig-
nificant clutter and variations of object scale. However, as
pointed out by Yang and Duraiswami [7], the computational
complexity of traditional Mean-Shift tracking is quadratic
in the number of samples, making real-time performance
difficult. Although the complexity can be made linear with
the application of Fast Gauss Transform [7], tracking in
real-time remains a problem when large or multiple objects
are involved. We propose to boost the efficiency of Mean-
Shift tracking using random subsampling. The computa-
tional complexity of Mean-Shift tracking with random sub-
sampling is independent of the object size. Therefore, it al-
lows large or multiple objects to be tracked in real time. We
also show that, instead of passing hundreds of samples to
a traditional Mean-Shift tracker, only 5 random samples are
required for the Mean-Shift object tracking with a relatively
simple distribution and 15 samples with a typical distribu-
tion. In our experiments, random subsampling significantly
reduces the processing time by two orders of magnitude for
typical object sizes.

2. Distribution Matching

Each bin of the histogram estimate of a sampling dis-
tribution follows the Poisson Distribution. Hence, the χ2

statistic can be used to compute the probability that a model
distribution and a sampling distribution are different. To
estimate the minimum numbers of samples required from
the target candidate and the target model, it is necessary to
calculate the χ2 statistic for the probability, Pr, that a can-
didate sampling distribution, p̂, is closer to the model dis-
tribution, q̂ than the background distribution r̂. 1 − Pr is
the probability for the condition that the similarity measure
fails. Specifically, let ρ[a, b] be a given similarity measure.
The probability that ρ[p̂, q̂] ≤ ρ[r̂, q̂] should be lower than a
specified value 1 − Pr (our requirement of the reliability),

i.e. the probability that

m∑
i=1

√
p̂iq̂i ≤

m∑
i=1

√
r̂iq̂i (1)

where the Bhattacharyya Coefficient is used as the simi-
larity measure with ρ[p̂, q̂] =

∑m
i=1

√
p̂iq̂i and m is the

number of bins for the histogram estimates. However, our
derivation of the minimum number of samples required for
distribution matching in this work is general enough for any
similarity measure to be used. When both of the candidate
and model distributions, p̂ and q̂, are randomly subsampled
and compared, we use the χ2 statistic [8]

χ2 =
∑

i

(
√

S/RRi −
√

R/SSi)2

Ri + Si
(2)

where Ri and Si are the numbers of events in bin i from
two separate distributions and

R =
∑

i

Ri, S =
∑

i

Si (3)

are the numbers of samples. With the normalized histogram
estimate of the candidate and model sampling distributions,
p̂ and q̂,

χ2 =
∑

i

(
√

S/RRq̂i −
√

R/SSp̂i)2

Rq̂i + Sp̂i

= RS
∑

i

(q̂i − p̂i)2

Rq̂i + Sp̂i
(4)

where R becomes the number of samples for the model
sampling distribution, q̂, and S becomes the number of sam-
ples for the candidate sampling distributions, p̂. Both of
the candidate and the model distributions, p̂ and q̂, can be
subsampled to achieve efficient gain. Notice that the dis-
tribution of the model never changes during tracking while
the candidate distribution has to be evaluated repeatedly in
order to find the subwindow closest to the model. As it is
not necessary to subsample the model distribution for effi-
ciency gain, instead of subsampling both distributions, only
the candidate distribution is subsampled and the model dis-
tribution is estimated once during initialization. If only the
target candidate is subsampled, the χ2 statistic becomes

χ2 =
∑

i

(Ni − ni)2

ni
(5)

χ2 =
∑

i

(N p̂i − Nq̂i)2

Nq̂i
= N

∑
i

(p̂i − q̂i)2

q̂i
(6)

where N is the number of samples for the candidate sam-
pling distribution, p̂, when only the candidate distribution,



p̂, is subsampled. The probability that two distributions are
not different can be obtained using the χ2 probability func-
tion Q(χ2|ν) = Q(ν

2 , χ2

2 ), where Q(ν
2 , χ2

2 ) is the incom-
plete Gamma function and ν is the number of degree of
freedom [8]:

Pr = Q(
1
2
ν,

1
2
χ2

N ) (7)

3. A Constrained Optimization Problem

Figure 1. Experiments 1, 2, 3 and 4: The four rows of images
represent four separate video sequences produced by four experi-
ments respectively. In the first experiment (first row), only 5 ran-
dom samples are picked from each of the candidate and model im-
ages, 10 samples in the second experiment (second row), 15 sam-
ples in the third (third row) and 150 samples in the fourth (fourth
row).

For all p̂ satisfying

m∑
i=1

√
p̂iq̂i ≤

m∑
i=1

√
r̂iq̂i, (8)

we find p̂ with the lowest probability that the sampling dis-
tribution, p̂, and the model distribution, q̂, are different.
In other words, we estimate, after random subsampling,
how likely would

∑m
i=1

√
p̂iq̂i be greater than

∑m
i=1

√
r̂iq̂i,

given the number of samples, N . The problem to find the
probability that a candidate sampling distribution is closer
to the model distribution than the background distribution is
a constrained optimization problem with the objective func-
tion as the probability. The χ2 probability function is a
monotonic function of χ2 given by Equation 7. Thus, to
minimize the probability, 1 − Pr, i.e.

min
p̂

(1 − PrN{p̂}),

Figure 2. Experiments 5, 6, 7 and 8: The four rows of images
represent four separate video sequences produced by four exper-
iments respectively. In Experiment 5 (first row), only 2 random
samples are picked from each of the candidate and model images,
3 samples in Experiment 6 (second row), 5 samples in Experiment
7 (third row) and all samples from the candidate and model images
(traditional Mean-Shift tracking) in Experiment 8 (fourth row).

we simply minimize the χ2:

min
p̂

χ2
N{p̂} = min

p̂
N

∑
i

(p̂i − q̂i)2

q̂i
= N min

p̂

∑
i

(p̂i − q̂i)2

q̂i

subject to
m∑

i=1

√
p̂iq̂i ≤

m∑
i=1

√
r̂iq̂i,

m∑
i=1

p̂i = 1, and 0 ≤ p̂i ≤ 1 ∀i (9)

3.1. Incomplete Gamma Function and Its Inverse

The incomplete Gamma function gives us the corre-
sponding probability for a given χ2 and ν, the degree of
freedom:

Q(a, x) =
1

Γ(a)

∫ ∞

x

e−tta−1dt (a > 0) (10)

where

Γ(z) =
∫ ∞

0

tz−1e−tdt. (11)

However, in our case, a specified probability, Pr, and the
degree of freedom, ν are given and we need to know χ2.
That is to say the inverse of the incomplete Gamma function
needs to be computed. There does not exist any analytic
solution to the inverse of the incomplete Gamma function.
We adopt a numerical method by DiDonato and Alfred [9]
that requires only a few iterations to obtain the χ2 for the
specified probability.



3.2. Lagrangian Multipliers

Lagrangian Multipliers are used to solve constrained
optimization problems with differentiable functions. The
method maximizes an associated function called the La-
grangian, L, with an additional control variable, λi for each
constraints. To deal with inequality constraints, Lagrangian
Multipliers can be used as if we are dealing with equal-
ity constraints before introducing the complementary slack-
ness condition to eliminate solutions for the inequality con-
straints. Hence, the inequality constraint in Equation 9

m∑
i=1

√
p̂iq̂i ≤

m∑
i=1

√
r̂iq̂i

can be transformed to the equality constraint
m∑

i=1

√
p̂iq̂i =

m∑
i=1

√
r̂iq̂i. (12)

We use Lagrangian Multipliers to solve the constrained op-
timization problem with the multipliers λ1 and λ2. The La-
grangian is

L =
∑

i

(p̂i − q̂i)2

q̂i
− (13)

λ1

(
m∑

i=1

√
p̂iq̂i −

m∑
i=1

√
r̂iq̂i

)
−

λ2

(
m∑

i=1

p̂i − 1

)

with constraints
m∑

i=1

√
p̂iq̂i =

m∑
i=1

√
r̂iq̂i, and

m∑
i=1

p̂i = 1. (14)

To find the minimum of L, we obtain the partial derivative
∂L/∂p̂i:

∂L

∂p̂i
= 2

( p̂i − q̂i

q̂i

)
− λ1

2

√
q̂i

p̂i
− λ2 (15)

and let
∂L

∂p̂i
= 0. (16)

We have the following set of nonlinear equations to be
solved:

4
q̂i

p̂
3
2
i + 2(λ2 − 2)p̂

1
2
i − λ1

√
q̂i = 0 ∀i (17)

m∑
i=1

√
p̂iq̂i −

m∑
i=1

√
r̂iq̂i = 0 (18)

m∑
i=1

p̂i − 1 = 0 (19)

3.3. Constraint Satisfaction

Instead of solving the m + 2 nonlinear equations using
numerical methods (m could be very large), we obtain an
analytic solution to the optimization problem on a case-by-
case basis.

When r̂ and q̂ do not overlap in the color space (Case 1),

m∑
i=1

√
r̂iq̂i = 0 (20)

which, to satisfy the constraint in Equation 9, requires

m∑
i=1

√
p̂iq̂i = 0. (21)

It is impossible to satisfy Equation 21 because p̂ is a sam-
pling distribution of q̂. p̂ and q̂ must overlap in the color
space. Therefore, the constraint cannot be satisfied when
r̂ and q̂ do not overlap and the candidate sampling distri-
bution must be closer to the model distribution than the
background distribution regardless of the number of sam-
ples used, N . In this case, theoretically, we can use any
number of samples larger than 0.

When r̂ and q̂ do not largely overlap (Case 2),∑m
i=1

√
r̂iq̂i is small. To check if there exists any p̂ sat-

isfying the constraint in Equation 9, we can compare the
minimum of

∑m
i=1

√
p̂iq̂i with

∑m
i=1

√
r̂iq̂i. If the condi-

tion

min
p̂

m∑
i=1

√
p̂iq̂i ≤

m∑
i=1

√
r̂iq̂i (22)

is not satisfied, there does not exist any p̂. We can obtain the
smallest

∑m
i=1

√
p̂iq̂i possible when p̂s = 1 where s is the

index for the bin of q̂ with the lowest value except 0. Thus,
we have

min
p̂

m∑
i=1

√
p̂iq̂i =

√
q̂s. (23)

And, we check if there exists any p̂ satisfying the constraint
in Equation 9 using

√
q̂s ≤

m∑
i=1

√
r̂iq̂i. (24)

The number of samples, N , can be again any number larger
than 0 if Equation 24 is not satisfied.

When r̂ is close to q̂ (Case 3), i.e. there exists any p̂ satis-
fying the constraint in Equation 9, we use an approximation
to the solution derived in the following section.

3.4. Analytic Solution

To minimize
∑

i(p̂i−q̂i)2/q̂i, p̂ has to be close to q̂ while
satisfying

∑m
i=1

√
p̂iq̂i ≤

∑m
i=1

√
r̂iq̂i. Hence, p̂ should be



very close to the hyperplane

m∑
i=1

√
p̂iq̂i =

m∑
i=1

√
r̂iq̂i (25)

when p̂ is closest to q̂. In addition, it can be observed that
although different similarity measures give different values
(quantitative differences) when the difference of two dis-
tributions is measured, they exhibit little qualitative differ-
ences. With the little qualitative differences,

∑
i

(p̂i − q̂i)2

q̂i
≈

∑
i

(r̂i − q̂i)2

q̂i
(26)

if
∑m

i=1

√
p̂iq̂i =

∑m
i=1

√
r̂iq̂i. Therefore, minp̂

∑
i(p̂i −

q̂i)2/q̂i with p̂ on the hyperplane (25) using Equation 26
equals

∑
i(r̂i− q̂i)2/q̂i. The final analytic solution to Equa-

tion 9 is approximately

min
p̂

χ2
N{p̂} ≈ N

∑
i∈T

(r̂i − q̂i)2

q̂i
(27)

where T = {i : q̂i �= 0}.

3.5. Numerical Solution by Monte Carlo methods

Figure 3. Image for the Calculation of the Number of Samples
Required for Reliable Distribution Matching

A numerical solution to the constrained optimization
problem can be obtained using the acceptance-rejection
method. In order to find the minimum of

∑
i(p̂i − q̂i)2/q̂i,

we consider p̂ as a random vector. Np samples of p̂ are gen-
erated by rejecting p̂ when the constraint

∑m
i=1

√
p̂iq̂i ≤∑m

i=1

√
r̂iq̂i in Equation 9 is not satisfied. Note that the

number of samples, Np, generated for p̂ does not include
the rejected samples. With p̂, the distribution of

∑
i(p̂i −

q̂i)2/q̂i can also be obtained. When Np is large enough, the
solution equals the smallest

∑
i(p̂i− q̂i)2/q̂i from the set of

samples p̂.
The image in Figure 3 is used to give us an idea how

many samples are required for reliable distribution match-
ing. In the image, the face is the target for the estimation of
the model distribution, q̂. One of the hands and the back-
ground with part of the face are the negative examples for

the background distributions, r̂. With the hand as the neg-
ative example used for the estimation of r̂, the numerical
solution is 2.01 while, with the background and part of the
face used for the estimation of r̂, the numerical solution is
4.25. Both of the solution values are obtained twice by re-
peating the Monte Carlo methods to see the effects of statis-
tical fluctuations. For the repeated run, the solution values
are respectively 2.06 and 4.17. We can compare the numer-
ical solution with our analytic solution shown in Table 1.
Although the analytic solution is not very accurate, it can
be used for real-time applications because of its simplicity.
A safer approach is to multiply the number of samples re-
quired by a factor such as 2 so as to compensate for the lack
of accuracy when the approximate analytic solution is used.
The time required to obtain the numerical solution on Mat-
lab depends on the number of rejected samples. It is 69.52
seconds with the hand as the negative example and 561.97
seconds with the background and part of the face in Fig-
ure 3. In addition, the solution for Case 1 and Case 2 (when
q̂ and r̂ do not largely overlap) is not an approximation so
the numerical solution is not necessary at all for Case 1 and
Case 2.

Background Hand
First Run 4.25 2.01
Second Run 4.17 2.06
Analytic Solution 2.62 2.31

Table 1. The Obtained Numerical Solution and Analytic Solution

With the solution in Table 1 which is minp̂

∑
i(p̂i −

q̂i)2/q̂i, we need p̂ the specified probability that Equation 8
is satisfied and the degree of freedom of the histogram for
the candidate sampling distribution, ν, to calculate the num-
ber of samples required using the inverse of the incom-
plete Gamma function. ν + 1 equals the number of bins
of the histogram for the model distribution with q̂i �= 0.
Let us set Pr = 1 − 10−4 (our requirement for the relia-
bility) and we have ν = 12. With the numerical method
mentioned in Section 3.1, we obtain χ2

N = 39.14. As
χ2

N = N minp̂

∑
i(p̂i − q̂i)2/q̂i, the number of samples

required, N = χ2
N/ minp̂

∑
i(p̂i − q̂i)2/q̂i, with the hand

as the negative example is 19.47. N , with the background
and part of the face as the negative example is equal to 9.21.

4. Improved Mean-Shift Tracking

The probabilities of color u in the target model and the
target candidate are given by

q̂i = C

n∑
i=1

k(||x∗
i ||2)δ[b(x∗

i ) − u], and (28)



p̂i(y) = Ch

nh∑
i=1

k(||y − xi

h
||2)δ[b(xi) − u] (29)

where C and Ch are normalization factors, x∗
i and xi are

the pixel locations of the target model and the target can-
didate, and k is a convex and monotonic decreasing kernel
profile. The distance between the two discrete distributions
is defined as [2]

d(y) =
√

1 − ρ[p̂(y), q̂] (30)

where

ρ̂(y) = ρ[p̂(y), q̂] =
m∑

i=1

√
p̂i(y)q̂i, (31)

the sample estimate of the Bhattacharyya coefficient be-
tween p and q.

Our derived minimum number of samples required, N ,
with the specified probability, 1 − Pr, that

m∑
i=1

√
p̂iq̂i ≤

m∑
i=1

√
r̂iq̂i (32)

can be applied to estimate the reliability of Mean-Shift
tracking with random subsampling. When random subsam-
pling is utilized, the reliability of tracking can be estimated
by our specified probability, 1−Pr, that the similarity mea-
sure for Mean-Shift tracking fails (the condition 32).

5. Experiments

For Mean-Shift tracking with random subsampling, we
evaluate the efficiency of the proposed method and obtained
the surprising result that Mean-Shift tracking requires only
very few samples. Robust tracking can be achieved with as
few as even 5 random samples from the image of the object.
With random subsampling, the computational complexity
of Mean-Shift tracking is independent of object size. Near
real-time performance is obtained even in our Matlab imple-
mentation because, instead of passing hundreds of samples
to a traditional Mean-Shift tracker, only 5 random samples
are required for the Mean-Shift tracker to track objects with
a relatively simple distribution and 15 samples for a typical
distribution. The speed of our tracker is 2.17 fps (frames
per second) to track the head of a person in a given video
sequence while the speed of a traditional implementation
used in [7] is 0.011 fps (197 times slower) with the same
tracking sub-window size of 24x25 (600 samples without
random subsampling).

Our first four experiments, as shown in Figure 1, evalu-
ate the number of random samples required to track a typi-
cal object which is a human face in the experiments. In the
first experiment, only 5 random samples are picked from
each of the candidate and model images, 10 samples in the

second experiment, 15 samples in the third and all samples
from the candidate and model images (traditional Mean-
Shift tracking) in the fourth. Tracking fails with too few
samples. The tracker fails with 5 samples from the image
of the object. With 10 samples, as shown in the second row
of Figure 1, the tracker tracks the object successfully but the
trajectory is not very stable when compared with the tracker
with 150 samples (fourth row). There is no difference be-
tween the tracking performance of the Mean-Shift tracker
with 15 samples (third row) and that of the tracker with 150
samples. A larger number of samples more than 15 does
not make any difference to the tracking performance of the
tracker. On Matlab, the time required for the tracking in
Experiments 1, 2, 3 and 4 are 2.95 fps (frames per second),
2.63 fps, 2.18 fps and 0.04 fps respectively. Experiments
5, 6, 7 and 8, as shown in Figure 2, evaluate the number
of random samples required to track an object with a rel-
atively simple distribution which is the head of a person.
In Experiment 5, only 2 random samples are picked from
each of the candidate and model images, 3 samples in Ex-
periment 6, 15 samples in Experiment 7 and all samples
from the candidate and model images (traditional Mean-
Shift tracking) in Experiment 8. The tracker fails with 2
samples from the image of the object. With 3 samples, as
shown in the second row of Figure 2, the tracker tracks the
object successfully but the trajectory is not very stable when
compared with the original Mean-Shift tracker (fourth row).
There is no difference between the tracking performance of
the Mean-Shift tracker with 5 samples (third row) and that
of traditional Mean-Shift tracking. Therefore, for an object
with a relatively simple color distribution, a larger number
of samples more than 5 does not make any difference to
the tracking performance of the tracker. Moreover, Figure 8
shows the Root-Mean-Square difference in the tracked po-
sitions against the number of samples used. Notice that we
compared the tracked positions with the positions from the
tracker using 100 samples. Both of the original Mean-Shift
tracker [2] and a variant using a new similarity measure by
Yang, Duraiswami and Davis [7] are evaluated with ran-
dom subsampling. Although the latter method uses a kernel
function instead of histograms to estimate the color distri-
butions of the target candidate and target model, the perfor-
mance is similar to that of the original tracker with any num-
ber of samples used for tracking. With our Matlab imple-
mentation, the time required for the tracking in Experiments
5, 6, 7 and 8 are 3.19 fps (frames per second), 3.12 fps, 2.17
fps and 0.011 fps respectively. Successful tracking with 5
random samples is 197 times faster than traditional Mean-
Shift tracking with the same tracking sub-window size of
24x25 (600 samples without random subsampling). The
computational complexity of traditional Mean-Shift track-
ing is quadratic in the number of samples. In our experi-
ments, random subsampling significantly reduces the pro-



Figure 4. A person dances in front of the camera.

Figure 5. A hockey player dribbles the hockey puck.

Figure 6. A hockey player crashes into the other and is pushed over.

cessing time by two orders of magnitude for typical object
sizes. The near real-time performance in our Matlab im-
plementation demonstrates that Mean-Shift tracking with
random subsampling runs much faster than 30 frames per
second as a Matlab implementation is typically at least two
orders of magnitude slower than an implementation with C.

We should note that the Mean-Shift vector from the orig-
inal Mean-Shift tracking algorithm [2] suffers from nu-
merical problems when the number of samples is too low

(usually when N ≤ 10 for Experiments 1-8). The prob-
lems are due to the denominator of the vector. When the
number of samples is low, the denominator can become 0.
Mean-Shift tracking with a new similarity measure by Yang,
Duraiswami and Davis [7] does not suffer from numerical
problems even when the number of samples is very low (the
algorithm works as long as the number of samples is larger
than 1).

Further experiments evaluate Mean-Shift tracking with



random subsampling (using the new similarity measure [7])
to track fast moving objects in three different videos in the
resolution of 320x240. The scenes in the videos include a
person dancing in front of the camera in Figure 4, a hockey
player dribbling the hockey puck in Figure 5 and a hockey
player crashing into the other and pushed over in Figure 6. It
is demonstrated that our tracker is able to track fast moving
objects with the number of samples N = 50.

5.1. Efficient Object Detection and Object Tracking
in Low-Resolution Videos

Significant efficiency gain with random subsampling for
object detection using exhaustive searches has also been
achieved as shown in Figure 7. Only 10 samples from the
target candidate are needed for successful object detection
instead of all 600 samples from each subwindow.

The estimated minimum number of samples also pro-
vides a basis to analysis the tracking performance of the
tracker for low-resolution video sequences. A video se-
quences is down-sampled to create low-resolution video se-
quences to test the validity of our estimate. Figure 9 shows
Mean-Shift tracking is able to track a subwindow with the
size of 5x5 pixels. There are only 25 samples available to
the tracker.

6. Conclusion

To conclude, we boost the efficiency and robustness of
distribution-based matching by random subsampling with
applications to object detection, Mean-Shift tracking using
color distributions and tracking with improved robustness
for low-resolution video sequences. The minimum num-
ber of samples required for distribution matching is derived
to achieve a specified probability that a candidate sampling
distribution is a good approximation to the model distribu-
tion. Random subsampling with the minimum of the sam-
ples required is shown to significantly speed up tracking by
two orders of magnitude for typical object sizes.

Figure 7. Object Detection using Color Distributions with the
Number of Samples 10
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