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Abstract

Previous pixel-level change detection methods either
contain a background updating step that is costly for mov-
ing cameras (background subtraction) or can not locate ob-
ject position and shape accurately (frame differencing). In
this paper we present a Belief Propagation approach for
moving object detection using a 3D Markov Random Field
(MRF) model. Each hidden state in the 3D MRF model rep-
resents a pixel’s motion likelihood and is estimated using
message passing in a 6-connected spatio-temporal neigh-
borhood. This approach deals effectively with difficult mov-
ing object detection problems like objects camouflaged by
similar appearance to the background, or objects with uni-
form color that frame difference methods can only par-
tially detect. Three examples are presented where moving
objects are detected and tracked successfully while han-
dling appearance change, shape change, varied moving
speed/direction, scale change and occlusion/clutter.

1. Introduction
Belief Propagation (BP) has emerged as a powerful tool

to solve early vision problems such as stereo, optical flow
and image restoration using MRF models [4] [6]. Some
popular inference algorithms to approximate the best esti-
mate of each node in the MRF model are developed and
compared in [13] [14]. In this paper we present a 3D MRF
model for detecting moving objects in video streams, and
a BP algorithm for approximate inference under this model
(Fig.1). This approach overcomes the deficiencies of some
common pixel-level change detection methods.

Previous pixel-level change detection methods such as
background subtraction, inter-frame differencing and three-
frame differencing are widely used [2] [8] [10]. Back-
ground subtraction relies on a background model for com-
parison, but adaptive background updating is costly for a
moving camera. With stationary cameras, inter-frame dif-
ferencing easily detects motion but does a poor job of lo-
calizing the object (usually only parts of the object are de-

Figure 1. We have developed an approach based on Belief Prop-
agation in a 3D spatio-temporal MRF for solving the problem of
moving object detection and tracking.

tected). Specifically, inter-frame differencing only detects
leading/trailing edges of translating objects with uniform
color. Three-frame differencing uses future, current and
previous frames to detect motion but can coarsely localize
the object only if a suitable frame lag is adopted. In con-
trast to the above methods, the motion history image (MHI)
representation provides more motion properties, such as di-
rection of motion [1]. Bobick and Davis [1] use MHI as
part of a temporal template to represent and recognize hu-
man movement. MHI is computed as a scalar-valued image
where intensity is a function of recency of motion. Wixson
[15] presented another integration approach operating on
frame-by-frame optical flow over time, using consistency of
direction as a filter. In the W4 system, Haritaoglu et al. [7]
used a change history map to update the background model.

Instead of using only forward temporal information,
forward/backward spatio-temporal analysis on video se-
quences is helpful to detect and track objects. Isard and
Blake [9] use past and future measurements to estimate the
state distribution while smoothing out peaks due to clutter.
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Luthon et al. [12] propose an energy minimization strat-
egy in the spatio-temporal domain for object detection and
build a data pyramid by 3D low-pass filtering and 3D sub-
sampling. To find the minimum of the energy function, a de-
terministic relaxation algorithm called ICM (Iterated Con-
ditional Modes) is used.

With the realization that each pixel influences neighbor-
ing pixels spatially and temporally in the video sequence,
we develop a 3D MRF model to represent the system. Each
pixel has a hidden state node and an observed data node
(e.g. inter-frame differencing result). Each state node has
6-connected neighboring nodes: four 4-connected spatial
ones and 2 temporal ones (past and future). We apply the
Belief Propagation algorithm to estimate the current state
by spatio-temporal message passing. Spatially we perform
loopy Belief Propagation [16] on each 2D frame grid. Tem-
porally we perform 1D forward/backward BP for each pixel
within a sliding temporal window. The intermediate results
of our approach bear a strong resemblance to MHI repre-
sentations, for example leaving a “trail” behind the mov-
ing object. However the best estimate by forward/backward
spatio-temporal BP is much smoother than MHI, because
our approach uses more (6-connected) neighbors for mes-
sage passing than forward MHI (only the past temporal
neighbor is used).

We first derive the 3D MRF model in Section 2. Belief
Propagation is discussed in Section 3. To illustrate the ef-
fectiveness of this approach, we test it on challenging mov-
ing object detection cases containing camouflaged objects
and objects with uniform color that are only partially de-
tected by frame differencing. In Section 4 several track-
ing examples are presented where moving object detection
is used to track vehicles. The tracking examples illustrate
the algorithm’s performance in the presence of appearance
change, shape change, varied moving speed/direction, scale
change and occlusion/clutter.

2. Markov Random Field Model
Markov chains defined in the time domain, e.g. Hidden

Markov Models (HMM), are often used to perform sequen-
tial analysis. We note that a moving object covers a volume
in the (x,y,t) space, and therefore use 3D Markov Random
Fields for analyzing image sequences in the spatio-temporal
domain to detect moving objects (Fig.2).

The problem of detecting moving objects in the current
image is equivalent to determining whether each pixel is or
is not a motion pixel based on the given video observations.
In other words, we need to estimate each pixel’s motion
likelihood state, given observed image data. Belief Prop-
agation is a powerful algorithm for making approximate in-
ferences over joint distributions defined by MRF models.

Using the 3D spatio-temporal MRF model, pixel (m,n)
at time instant k has a hidden state node s(m,n, k) (cen-

Figure 2. 3D lattice defining the neighbors of a pixel.

ter black node in Fig.2) and a corresponding data node
d(m,n, k). The network consists of nodes connected by
edges that indicate conditional dependency. The state
node s(m,n, k) has a 3D neighborhood involving six
spatio-temporal interactions. In the spatial domain, node
s(m,n, k) has four-connected spatial neighbors: s(m ±
1, n, k) and s(m,n ± 1, k). In the time domain, node
s(m,n, k) has two nearest temporal neighbors: s(m,n, k±
1), which correspond to the past time instant k−1 and future
time instant k + 1 separately. The design of these cliques
and nodes is described in Section 3.1. This spatio-temporal
MRF model satisfies the 1st-order Markov characteristics—
state node s(m,n, k) only interacts with its neighboring
nodes, i.e. the state of node s(m,n, k) is determined if
its corresponding data node, four spatial neighboring state
nodes and two temporal neighboring state nodes are known.
Since the neighborhood of a pixel in the current frame in-
cludes future frames, it is a bilateral MRF model and intro-
duces a fixed lag in the detection system.

3. Belief Propagation
The above model contains only pairwise cliques, and the

joint probability over the 3D volume is

P (s1, ..., sN , d1, ...dN ) =
∏
i 6=j

ψij(si, sj)
∏
k

φk(sk, dk)

(1)
where si and di represent state node and data node sepa-
rately. ψ is the state transition function between a pair of
different hidden state nodes and φ is the measurement func-
tion between the hidden state node and observed data node.
N represents the total number of state or data nodes in the
3D volume. Under the squared loss function, the best es-
timate for node sj is the mean of the posterior marginal
probability (minimum mean squared error estimate, MMSE
estimate):

ŝjMMSE =
∑
sj

sj

∑
si,i 6=j

P (s1, ..., sN , d1, ...dN ) (2)

where the inner sum gives the marginal distribution of sj .



Figure 3. (a) Computing belief; (b) Computing message.

Since the joint probability involves all the hidden state
nodes and data nodes in the 3D volume, it is hard to
compute the MMSE estimate based on the implicit multi-
variable probability distribution. However belief propaga-
tion messages are effective to compute the MMSE estimate
recursively. Each hidden state node has a belief, which is
a probability distribution defining the node’s motion likeli-
hood. Thus the MMSE estimate of one node is computed
as

ŝjMMSE =
∑
sj

sjb(sj) (3)

where
b(sj) = φj(sj , dj)

∏
k∈Neighbor(j)

Mk
j (4)

is the belief at node sj and k runs over all neighboring
hidden state nodes of node sj . The belief at node sj is
the product of all the incoming messages (Mk

j ) and the lo-
cal observed data message (φj(sj , dj)). The computation
is shown in Fig.3(a). The passed messages specify what
distribution each node thinks its neighbors should have.
Fig.3(b) shows how to compute the message from node sk

to sj :

Mk
j =

∑
sk

ψjk(sj , sk)b(sk) (5)

After substituting b(sk) by Eq.4, we have

Mk
j =

∑
sk

ψjk(sj , sk)φk(sk, dk)
∏

i∈Neighbor(k)\j

M i
k (6)

where i ∈ Neighbor(k)\j denotes all the neighboring nodes
of k other than j. After multiplying all the incoming mes-
sages (M i

k) from neighboring nodes (except from the node
sj) and the observed data message (φk(sk, dk)), the product
is evolved from the message-sender to the message-receiver
by transition function ψjk(sj , sk).

3.1. Compatibility Function Selection

The hidden state sj represents the likelihood that a pixel
contains object motion, and its corresponding observation
data dj represents the binary motion detection result com-
puted by inter-frame differencing at that time instant. We
coarsely quantize each node’s belief and incoming/outgoing
messages into C buckets (C ≥ 2) and describe them as a
discrete probability mass function over [1, C].
φj(sj , dj) describes the measurement relation (data

clique in Fig.2) between observation dj and hidden state
node sj . If dj equals zero, no motion is detected at this
pixel by inter-frame differencing, and a uniform distribu-
tion is used to represent “no-motion”. However, when dj

equals one, i.e. motion is definitely detected by inter-frame
differencing at this pixel, sj has an impulse distribution at
sj = C to show the confidence of existing motion regard-
less of what messages are passed to the node. Let sp

j denote
the pth state candidate at node sj (p ∈ [1, C]). The compat-
ibility function between observation and hidden state is

φj(s
p
j , dj) =

{
1
C if dj = 0
δ(sp

j = C) if dj = 1
(7)

Currently we make “hard” decisions on the data term. A
“soft” frame-differencing threshold for determining motion
could also be explored, i.e. the larger the intensity differ-
ence between pixels in two frames, the more likely that
pixel is moving.
ψij(si, sj) defines a state transition function (spa-

tial/temporal cliques in Fig.2) between two neighboring
nodes via the Potts model:

ψij(s
p
i , s

q
j) =

{
θ if p = q

ε otherwise
(8)

where 0 < θ < 1, ε = (1 − θ)/(C − 1) and θ � ε.
This compatibility function encourages neighboring nodes
to have the same state. It also acts as a decay function to re-
duce the motion likelihood in the absence of current inten-
sity differences. Note that a pixel is NOT exactly as likely
to move as its neighbors, since the Potts model introduces
the decay term θ. Spatial cliques and temporal cliques could
have different θ values, but in our testing, we use the same
compatibility function for both.

3.2. Message Computation

Fig.4 shows a 1D example to compute messages in terms
of matrix operations. The message from observed data node
d2 is a vector of C elements based on Eq.7:

φ2(s2, d2) =

{
[ 1
C . . . 1

C ]T if d2 = 0
[0 . . . 0 1]T if d2 = 1

(9)



Figure 5. Test on the synthesized video sequence.

Figure 6. MMSE estimates of random patch by different kinds of BP with θ = 0.7 and C = 10.

Figure 4. 1D message computation example with C = 2.

The state transition is a C-by-C compatibility matrix
based on the Potts model of Eq.8:

Ψ =


θ ε . . . ε
ε θ . . . ε
...

. . . . . .
...

ε . . . ε θ

 (10)

The belief at node s2 (C element vector) is computed by
Eq.4:

b(s2) = φ2(s2, d2)·M1
2 (11)

where ‘·’ represents the element-wise product of two vec-
tors. The message from node s2 to s3 is computed by Eq.6
(matrix multiplication does the marginal sum):

M2
3 = Ψ ∗ b(s2) = Ψ ∗ (φ2(s2, d2)·M1

2 ) (12)

3.3. Message Update Schedule

To illustrate the effects of different message passing
schedules, we use a synthesized image sequence as shown
in Fig.5(a): the background is a 100*100 random map
(each pixel has a uniform random intensity value within
[0, 255]) and the moving object is a 10*10 random patch.
It is hard for an appearance-based detector (e.g. histogram
based detector) to detect the camouflaged object, but our
forward/backward spatio-temporal BP algorithm easily de-
tects object motion as shown in Fig.5(g). Based on the ob-
served inter frame difference data (Fig.5(b)), a median filter
(Fig.5(c)) or Gaussian filter (Fig.5(d-f)) can not recover the
whole moving object well. The median filter removes many
isolated detected motion pixels resulting in an object mask
that is too small. Gaussian filters are rotationally symmet-
ric low pass filters. They blur the differenced image, and
different Gaussian window sizes and variance values cause
different blur effects (thus prior knowledge about the object
size is needed). Neither median filter nor Gaussian filters
localize the object position accurately in Fig.5(c-f).

Each state node in our 3D MRF model has 6-connected
neighbors (two temporal and four spatial ones). There are
numerous ways to update the node’s belief and schedule its
message passing (Fig.6). For each frame (2D spatial grid
graph), we perform asynchronous accelerated message up-
dating [14]. Four 1-dimensional BP sweeps (left to right,
up to down, right to left, and down to up) are performed
individually and in parallel as shown in Fig.7. Here 1D BP



Figure 7. 2D BP on spatial grid graph.

means that BP on the spatial grid is executed simultaneously
row by row, or column by column. The four 1D BP sweep
beliefs (distributions for each pixel) are then fused together
by pointwise multiplication. The MMSE estimates of the
“up-down-left-right” message passing (spatial domain only)
are shown in Fig.6(a).

In contrast, if we only perform BP in the temporal do-
main, in the forward direction (forward HMM), the result
is shown in Fig.6(b), which accumulates only past motion
information and is quite similar in appearance to a forward
motion history image. However if we simultaneously com-
bine BP in the forward temporal and spatial domain, we get
a better result than Fig.6(b), as shown in Fig.6(c). Simi-
larly, Fig.6(d) provides the BP results combining backward
temporal and spatial domain. The only difference between
forward and backward temporal BP is that we maintain a
sliding temporal window of length L for the latter. L future
frames (fixed lag) are needed for the backward temporal BP.
For example, L = 2 in Fig.4.

In our 3D MRF model, we use all the information
from 6-connected neighbors by forward/backward spatio-
temporal BP. For each frame, 2D spatial BP on a grid graph
is executed by asynchronous accelerated message updating
such that each pixel has a belief (motion likelihood distri-
bution) at that time instant. The belief is then evolved to its
temporal neighbor (forward or backward) by temporal BP
(a 1D BP sweep). Fig.6(e) gives the MMSE estimates by
forward/backward spatio-temporal BP, which can be thresh-
olded into the final detection mask as shown in Fig.5(g).

Fig.8 illustrates another challenging motion detection
problem: inter-frame differencing can only detect slivers of
a moving object that has uniform color as shown in Fig.8(b).
However the forward/backward spatio-temporal BP does a
good job at finding the whole moving object, because each
pixel propagates local frame differencing information spa-
tially and temporally to its neighbors in the 3D MRF model.
We get the above results after one iteration of BP. The al-
gorithm currently runs at 6fps for the synthesized videos
(P4 3.2GHZ, 3G RAM, Matlab). At the cost of longer run-
time, using multiple iterations or larger temporal window
(L) would work better, e.g. propagating the information
from the edges of the object (where intensity change and
motion are detected) to the center, thus filling in the hole in
Fig.8(h).

Figure 8. MMSE estimates of uniform rectangle by different kinds
of BP with θ = 0.7 and C = 10.

Figure 9. Belief at time instant k with C = 10 and θ = .7; ‘*’
denotes the MMSE estimate.

3.4. Discussion

BP in a 3D MRF vs. Motion History Image

MHI accumulates change detection results with a decay
term over a short period of time. For example, if a pixel
is detected as a motion pixel at time instant k, we assign
that pixel value 255 in the MHI representation. With a con-
stant decay term of h, the motion effect of this pixel will die
out after 255/h frames if no change is detected at this pixel
within the next 255/h frames. In our BP implementation, if
change is detected at a pixel, we assign its state node an im-
pulse distribution at the maximum belief state value. If no
motion is detected around this pixel in the following frames,
i.e. all neighboring nodes receive a uniform distribution be-
lief, the center node’s impulse distribution will gradually
decay into a uniform distribution by transition matrix Ψ as
shown in Fig.9. The resulting MMSE image has high be-
lief values on the object with a gradually decaying trail left
behind, which is quite similar in appearance to an MHI.

MMSE vs. MAP

The MMSE estimate is the mean of the posterior probabil-
ity, which is known to produce smoother image results than
the mode (maximum a posterior, MAP estimate) [14]. Fur-
thermore, Fox and Nicholls [5] show the MAP state is not
representative of the bulk of feasible reconstructions based
on the deviation of the MAP state from the mean, particu-
larly at larger smoothing parameters. In Fig.9, if using MAP
estimation, the mode of the distribution is still at sj = 10
at time instant k = 9, which implies this pixel is definitely
a motion pixel. The MAP estimate converges to the max-



Figure 10. MMSE estimate with different L and θ.

imum of posterior probability and gives no importance to
the tails of the distribution. However when no motion is
detected during 9 frames, the motion certainty should de-
crease, i.e. motion likelihood of this pixel should be de-
creasing. Using MMSE estimation, the mean decreases
from 10 (for an impulse distribution at k = 0) to 5.6 (mean
of a roughly uniform distribution at k = 9). This observa-
tion shows that the MMSE estimate (mean) summarizes the
desired motion likelihood distribution better than the MAP
estimate (mode) in our application.

Parameter Selection

The parameters to be chosen for our algorithm are C and
θ in Eqs.1-12, and sliding temporal window length L for
backward temporal message passing. As shown in Fig.10,
a larger window length L gives longer trails behind and
ahead of the object, and it also introduces a bigger lag, i.e.
more future frames are needed. While smaller L does not
provide enough future temporal neighbors to do the back-
ward temporal BP, it is wise to choose a moderate L, say
L = 10. In Fig.9, the node’s MMSE estimate (marked by
‘*’) actually has an exponential decay process rather than
the linear decay of MHI. The top row of Fig.11 shows the
pixel’s MMSE estimate over time with regards to differ-
ent choices of C and θ. Large θ yields slow decay and
gives a longer trail behind moving objects. Small θ decays
the MMSE estimate quickly to the mean of uniform[1, C].
For given C and L, we choose a θ such that at time L the
MMSE estimate decays to the mean of uniform[1, C]. The
bottom row of Fig.11 compares motion estimation results
for varying parameters. When we use two belief buckets
(C = 2) to represent the impulse or uniform distribution,
the MMSE estimate is not good enough to locate the ran-
dom patch (Fig.11(a)). Choosing a larger C gives better re-
sults (Fig.11(b-d)). In our experiments, we choose C = 10
without incurring much computational burden.

4. Experiments

To validate the effectiveness of MRF-based motion de-
tection, we apply it for object detection and tracking on
several airborne sequences. Since the videos are captured
by a moving camera, the image sequences are stabilized be-

fore frame differencing such that consecutive images have
a stationary background. The stabilization uses a feature-
based parametric alignment method via RANSAC. The first
aerial video (total 1180 frames) shows a convoy of vehicles.
The tracking results and corresponding state estimates are
shown in the upper part of Fig.12. Moving objects are de-
tected automatically in the 20th frame. Each object is given
a unique numeric label. Object number one appears in the
whole sequence. New objects just coming into the scene
are marked by dashed rectangles. For each frame, the cur-
rent state estimate (motion likelihood) is computed based
on the forward/backward spatio-temporal BP. Data associa-
tion between smoothed estimates and tracked objects is per-
formed by a nearest neighbor method. As shown in the ex-
ample, the object shape and appearance change a lot during
the first several hundred frames, since the objects are per-
forming a U-turn. Thus, simple template matching can not
successfully track the objects. The speed and moving di-
rection of the objects also change within the sequence, such
as slowing down to turn, and speeding up to pass vehicles
with similar appearance. Without any failure, the tracker
using 3D MRF-based motion detection copes with the ap-
pearance change and clutter successfully.

The second video (total 1115 frames) shows a motor-
cycle moving with varied speed and direction. The mo-
torcycle’s scale, shape and appearance changes often and
it is sometimes occluded by nearby objects. Again, the
smoothed estimator using 6-connected neighbors provides
good motion estimation for each pixel. We consider the
smoothed estimates as an explicit weight image for track-
ing, and use the mean-shift algorithm [3] to find the mode
representing the target. The scale of the object is automati-
cally updated by counting the area of the most likely mo-
tion pixels of the object. When the object is totally oc-
cluded around the 1860th frame, constant velocity predic-
tion (based on the object trail marked by green curves fol-
lowing the object) is applied and a search window is en-
larged suitably to avoid losing the target.

The last sequence in Fig.12 (300 frames) shows a low
resolution thermal video. Objects are blurred in images, or
camouflaged and occluded by nearby trees and poles. It
is challenging for an appearance-based tracker to track the
small objects, but our forward/backward spatio-temporal
BP provides a good motion likelihood image for the track-
ing task.

5. Conclusion
To detect moving objects within a sequence of video

frames, we construct a 3D MRF model such that each
pixel’s hidden state (motion likelihood) has a 6-connected
spatio-temporal neighborhood. Belief of motion or no-
motion at each pixel is maintain by a C-state discrete prob-
ability distribution. Each hidden state is influenced by ob-



Figure 11. Top row: MMSE estimates of one pixel over time with respect to different θ’s and C’s; Bottom row: Comparison of MMSE
estimates of all pixels and thresholded motion masks at one time instant with respect to chosen θ and C.

Figure 12. Experimental results on three video sequences.



served inter-frame difference data such that an observed in-
tensity difference at a pixel introduces an impulse spike at
state C of the motion likelihood, whereas no observed inten-
sity difference results in a uniform distribution across like-
lihood states. A compatibility function on spatio-temporal
cliques is defined via the Potts model, which in the absence
of observed intensity differences at a pixel serves to decay
motion belief towards a uniform distribution (representing
no-motion). Within the 2D spatial grid graph, asynchronous
accelerated message updating is performed on all pixels
for each frame, and along the temporal axis, 1D BP (for-
ward/backward) is applied on each pixel through time. Thus
each pixel’s hidden state node incorporates its six neigh-
bor’s messages to decide its state. The MMSE estimate of
the state at each node provides an accurate and smooth esti-
mate of the pixel’s motion likelihood.

In this paper, the 3D MRF-based detector deals well with
difficult motion detection and tracking problems such as ob-
jects with uniform color and objects camouflaged by similar
appearance to the background. The approach is validated on
several synthesized and real-world video sequences. So far,
only motion information is smoothed to estimate the current
state. In future work, other cues such as shape and appear-
ance can be fused into the 3D MRF network and processed
by Belief Propagation.
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