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Abstract

We propose a novel representation of continuous, closed
curves in R

n that is quite efficient for analyzing their
shapes. We combine the strengths of two important ideas
- elastic shape metric and path-straightening methods -
in shape analysis and present a fast algorithm for finding
geodesics in shape spaces. The elastic metric allows for
optimal matching of features while path-straightening pro-
vides geodesics between curves. Efficiency results from the
fact that the elastic metric becomes the simple L

2 metric
in the proposed representation. We present step-by-step al-
gorithms for computing geodesics in this framework, and
demonstrate them with 2-D as well as 3-D examples.

1. Introduction

Over the last few years, a number of mathematical rep-
resentations and metrics have been proposed to analyze
shapes of planar, closed curves. Despite the multitudes
of metrics proposed, there is an emerging consensus on
the suitability of the elastic metric for curve-shape analy-
sis. This metric uses a combination of bending and stretch-
ing/compression to find optimal deformations from one
shape to another. These deformations are studied as the
shortest paths, or geodesics, under this chosen metric on
a certain shape space. This metric was first suggested by
Younes [10] and subsequently utilized by Mio et al. [6],
who developed an algorithm to compute geodesic paths be-
tween arbitrary shapes. Several other authors, including Mi-
chor and Mumford [5], and Shah [9] have highlighted the
advantages of the elastic metric.

In view of the past ideas on representations and met-
rics, is there really a need or scope for yet another repre-

sentation, or a new shape analysis method in this area? It
is widely known that the elastic metric is better suited for
shape analysis of curves, as it is the only metric that remains
invariant under re-parameterizations. It is closely related to
the Fisher-Rao metric used in information geometry. Pa-
rameterized curves can be represented in a variety of ways:
normal vector fields, coordinate functions, angle functions,
curvature functions, speed functions, etc, and the form of
elastic metric depends on the representation. However we
argue that the computational evaluations of different ap-
proaches are yet to be performed. More importantly, we
consider the question: Under what representation of curves
is the analysis using this metric most efficient? For a pa-
rameterized curve β in R

2, the velocity vector β̇(s) can be
identified with a complex scalar r(s)eiθ(s). Here r(s) is
the instantaneous speed and θ(s) is the angle made by β̇(s)
with the positive X axis. Mio et al. used the pair (φ, θ),
with φ = log(r), to represent and analyze shape of β. In
this case, the Riemannian metric that translates into elastic
deformations of shapes is:

〈(h1, g1), (h2, g2)〉(φ,θ) = a

∫
h1(s)h2(s)eφ(s)ds

+ b

∫
g1(s)g2(s)eφ(s)ds .(1)

Here a and b are the positive weights assigned to the bend-
ing and the stretching energies, respectively, in search for
optimal deformation. Some other researchers have used
r directly, or its integral form

∫
r(s)ds as representatives

of speeds of curves. This gives rise to various difficulties.
Firstly, the elastic metrics under these representations, ow-
ing to speed-invariance, assume complicated forms. Sec-
ondly, they may not be computationally efficient. As an
example, the elastic metric under the log-speed (φ, θ) rep-
resentation (Eqn. 1) varies from point to point on the shape
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manifold, and is thereby complicated to implement.
We propose a new representation using the square-root

velocity function,
√

r(s)eiθ(s). This choice has the follow-
ing advantages:

• It uses a single function, instead of a pair, to represent
the curve.

• It is the only representation in which the elastic metric
reduces to a simple L

2 metric. Not only is the met-
ric same at all points, but also much simpler to imple-
ment and analyze. With this representation, the pre-
shape space is actually a subset of a unit sphere inside
a Hilbert space. The use of geometry of the sphere
helps simplify computations to a large extent.

• There are convenient, isometric mappings from this
representation to other forms used previously.

• In this representation, the re-parameterization of
curves by diffeomorphisms is an action by isometries.

Another contribution of this paper is that it combines the
strengths of the elastic metric and the path straightening
method for finding geodesics. Path straightening is an ap-
proach for finding geodesics between points on a Rieman-
nian manifold. The basic idea is to connect the points with
arbitrary paths and to iteratively straighten the paths, using
the gradient of an energy function, until the path becomes
a geodesic. This framework of elastic shape analysis and
path-straightening is general enough to be applied to closed
curves in R

n.
This paper is organized as follows. Section 2 introduces

the proposed representation of curves for shape analysis.
Section 3 defines the pre-shape space of open as well as
closed curves in R

n. A Riemannian structure is imposed on
this pre-shape space in Sec. 4 followed by the computation
of geodesics in Sec. 5. We also provide step-by-step pro-
cedures for implementations of the ideas presented in the
paper.

2. Curve Representation

For an unit interval I ≡ [0, 2π], let β : I → R
n be an

L
2
1(I) curve. Any function f is said to be an L

2
1(I) function,

if both f and its derivative f
′

are L
2(I) functions. In order

for the curve to stretch, shrink and bend freely, we represent
the shape of the elastic curve β by the function q : I → R

n

as follows,

q(s) =
β̇(s)√
||β̇(s)||

∈ R
n . (2)

Here, s ∈ I , || · || ≡ √
(·, ·)Rn , and (·, ·)Rn is taken to

be the standard Euclidean inner product in R
n. The quan-

tity ||q(s)|| is the square-root of the instantaneous speed,

and the ratio q(s)
||q(s)|| is the instantaneous direction along the

curve. Thus, the curve β can be recovered within a transla-
tion, using β(s) =

∫ s

0 ||q(t)|| q(t) dt.

3. Pre-Shape Space of Curves

Let Q ≡ {q = (q1, q2, . . . , qn)|q(s) : I → R
n} be the

space of all vector valued functions representing all elas-
tic curves described above. This is an infinite-dimensional
vector space of all functions in L

2(Rn). Each element of
this set represents an elastic curve (not necessarily closed)
on R

n. Similar to Kendall’s shape analysis [2], we would
eventually like to study shapes of curves as equivalences
under rigid motions, uniform scaling and other such “shape-
preserving” transformations. However, in this paper we re-
strict only to the removal of translations and scaling. We
refer to such spaces as pre-shape spaces of elastic curves in
R

n.

3.1. Open curves

We denote B ≡ {q : I → R
n| ∫ 2π

0 (q(s), q(s))Rnds =
1} as the space of all unit-length, elastic curves. The space
B is in fact an infinite-dimensional unit-sphere and rep-
resents the pre-shape space of all open elastic curves in-
variant to translation and uniform scaling. The tangent
space of B is easy to define and is given as Tq(B) =
{w = (w1, w2, . . . , wn)|w(s) : I → R

n ∀s ∈
[0, 2π) | ∫ 2π

0 (w(s), q(s))Rn ds = 0}.
Geodesics on a sphere are great circles and can be speci-

fied analytically. The geodesic on B between the two points
x1, x2 ∈ B along a unit direction f ∈ Tx1(B) towards x2

for time t is given as,

χt(x1; f) = cos
(

t cos−1

∫ 2π

0

(x1, x2)Rn ds

)
x1

+ sin
(

t cos−1

∫ 2π

0

(x1, x2)Rn ds

)
f (3)

Any tangent vector transported along this geodesic pre-
serves its length as well as its angle w.r.t the geodesic.
For any two points x1 and x2 on this unit sphere, the map
π : Tx1(B) → Tx2(B) parallel-transports a tangent vector a
from x1 to x2 and is given by,

π(a; x1, x2) = a − 2
(x1 + x2)

∫ 2π

0 (a, x2)Rn ds∫ 2π

0
(x1 + x2, x1 + x2)Rnds

(4)

3.2. Closed curves (C)

Although, matching of open curves has important ap-
plications involving 2-D or 3-D anatomical or biological
curves, it is a relatively easier problem than comparing
closed curves. The closure condition imposes a nonlinear



constraint on the elements of Q. Furthermore, handling the
variability in placement of origin also becomes an impor-
tant issue. The closure condition for a curve β requires that∫ 2π

0
β̇(t)dt = 0. For our shape representation scheme, this

translates to
∫ 2π

0
||q(s)||q(s) ds = 0. We define a mapping

G ≡ (G1,G2, . . . ,Gn) as G1 =
∫ 2π

0 q1(s) ||q(s)||ds, G2 =∫ 2π

0
q2(s) ||q(s)||ds, . . . , Gn =

∫ 2π

0
qn(s) ||q(s)||ds. The

space obtained by the inverse image A = G−1(0, 0, . . . 0︸ ︷︷ ︸
n

)

is the space of all closed, elastic (arbitrary speed parame-
terizations) curves. Then the subset C = A ∩ B ⊂ Q is
the space of all unit-length, closed, elastic curves, invariant
to translation and scaling. B is the set of unit-length curves
and A is the set of closed curves.

For the remainder of this paper, we shall concentrate on
the pre-shape space of closed curves (C) and study its struc-
ture under the elastic metric.

4. Riemannian Geometry of C
The length of a geodesic or the “shortest path” between

two points on a manifold depends on the Riemannian met-
ric, or the inner product defined on the tangent spaces of
that manifold. Note that the tangent space of Q at any
point is Q itself. Any tangent vector w of Q, where w =
(w1, w2, . . . , wn)| w(s) : I → R

n ∀s ∈ [0, 2π) of Q has
the property that ||w(s)|| ∈ L

2, ∀s.

Definition 1. Given a curve q ∈ Q, and the first order per-
turbations of q given by u, v ∈ Tq(Q), respectively, the
inner product between the tangent vectors u, v to Q at q is
defined as,

〈u, v〉 =
∫ 2π

0

(u(s), v(s))Rnds. (5)

In the following section, we will see that the inner prod-
uct given by Def. 1 imposes a symmetric, bilinear positive-
definite form on Tq(C) and results in C being a Rieman-
nian manifold. We proceed by specifying the tangent space
Tq(C) for a q ∈ C.

4.1. Tangent Space of C

In order to specify Tq(C), we derive the normal space of
C at q at first. The directional derivative of the map G at a

point q in the direction of w ∈ Tq(Q) is given by

dG1(w(s)) =
∫ 2π

0

(
w(s),

q1(s)
||q(s)||q(s) + ||q(s)||e1

)
Rn

ds,

...

dGn(w(s)) =
∫ 2π

0

(
w(s),

qn(s)
||q(s)||q(s) + ||q(s)||en

)
Rn

ds

∴ dG1(w(s)) =
〈

w,
q1(s)
||q(s)||q(s) + ||q(s)||e1

〉
,

...

dGn(w(s)) =
〈

w,
qn(s)
||q(s)||q(s) + ||q(s)||en

〉

where ei is the ith column of In, an identity matrix. The
normal space of A is now the span of the gradient vectors
of G as follows,

Nq(A) = span {∇G1(s) =
q1(s)
||q(s)||q(s) + ||q(s)||e1,

. . . ,∇Gn(s) =
qn(s)
||q(s)||q(s) + ||q(s)||en}, ∀s ∈ [0, 2π)

(6)

Remark 1. Given a curve q ∈ Q, and the tangent vector w
to Q at q, the tangent space of C at q is defined as Tq(C) =
{w : I → R

n|w ∈ Tq(B), w ⊥ Nq(A)}.

A useful tool in constructing geodesics under this Rie-
mannian metric is the projection of a curve q ∈ Q in the
space of closed curves C. This is achieved by project-
ing the curve q to A by an iterative method and further
projecting it to C. The idea is to define a residual vector
l(q) = −G(q), l ∈ R

n and evolve q in the direction normal
to the level set of G so as to move the residual l quickly to
the origin 0. Algorithm 1 provides a procedure for project-
ing an open curve q ∈ Q onto the nearest point in C.

Figure 1 shows examples of projecting 2-D and 3-D open
curves q ∈ Q onto C using Algorithm 1.
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Figure 1. Algorithm 1 applied to project open curves (top row) into
the set C (bottom row).



Algorithm 1 Projection of q ∈ Q to C
1: Initialize l(q)i = 1n. Let ε > 0.
2: while ||l(q)|| > ε do
3: Compute l(q)i = −Gi(q), i = 1, . . . , n.
4: Calculate the Jacobian matrix, Ji,j =

〈∇Gi(q),∇Gj(q)〉 as follows,

Jij = 3
∫ 2π

0

qi(s)qj(s)ds, i = 1, . . . , n

.
5: Solve the equation J(q)xT = lT (q) for x.
6: Update q = q +

∑n
i=1 xi∇Gi(q)δ, δ > 0.

7: q = q√〈q,q〉q

8: end while

Another important tool in constructing geodesic paths is
the projection of a tangent vector w ∈ Tq(Q) into Tq(C).
Algorithm 2 outlines a procedure for doing that.

Algorithm 2 Projection of w ∈ Tq(Q) into Tq(C)
1: Start by projecting w into Tq(B) by

w̃ ≡ w − 〈w, q〉 q (7)

2: Compute an orthonormal basis
{
ei
G(q)

}
for

{∇Gi(s)} , i = 1, . . . , n. w.r.t. the inner prod-
uct given in Eqn. 5.

3: Then the projection of w̃ into Tq(C) is given as,

wproj ≡ w̃ −
n∑

i=1

〈
w̃, ei

G(q)

〉
ei
G(q). (8)

5. Geodesics using Path straightening Flows

There have been two prominent approaches for comput-
ing geodesic paths between shapes of closed curves. One
approach uses the shooting method [4, 6], where, given a
pair of shapes, one finds a tangent direction at the first shape
such that a geodesic along that direction reaches the second
shape in unit time. The search for this tangent direction
uses a gradient update that iteratively refines the tangent
direction. We will use another, more stable approach that
uses path-straightening flows to find a geodesic between
two shapes. This approach, introduced by Klassen et al.
[3] iteratively straightens a path between shapes until it be-
comes a geodesic. Similar variational methods have also
been proposed by other researchers [8].

Given two curves q0 and q1, our goal is to find a geodesic
between them. Let α : [0, 1] → C be any path connecting

q0, q1 ∈ C. Then, the critical points of the energy

E[α] =
1
2

∫ 1

0

〈α̇(t), α̇(t)〉 dt (9)

are geodesics in C. In order to minimize the integral in Eqn.
9, we need to find the gradient of the energy E[α] in the
space of all paths on C. For this purpose, we define F as the
collection of all paths in C, and F0 ⊂ F as the collection
of all paths going from q0 to q1. Since each element along
the path α is actually an element of C, the tangent space
Tα(F) is written as Tα(F) = {w|w(t) ∈ Tα(t)(C) ∀t ∈
[0, 1]}. We adopt the Palais metric [7] on Tα(F) to impose
a Riemannian structure on the space of all paths F . For
u1, u2 ∈ Tα(F), the Palais metric is given by the inner
product,

〈〈u1, u2〉〉 = 〈u1(0), u2(0)〉 +
∫ 1

0

〈
Du1

dt
(t),

Du2

dt
(t)

〉
dt

(10)
The gradient of E[α] is a vector field in the tangent space
of F0, where Tα(F0) = {w ∈ Tα(F)|w(0) = w(1) = 0}.
Here w(t) is a tangent vector field on the curve α(t) ∈ C.
Before deriving the energy minimization framework in the
space F , we review some definitions below.

Definition 2. Covariant derivative [1]: For a path α ∈ C,
the covariant derivative of a vector field w ∈ Tα(F) is de-
fined as the orthogonal projection of the derivative dw

dt on
the tangent space Tα(t)(C) for all t and is denoted as Dw

dt .

Similarly the covariant integral of w along α is given by
the vector field u ∈ TαF such that Du

dt = w. Algorithm
3 describes the procedure for computing the covariant inte-
gration of the velocity vector field dα

dt along α. To derive

Algorithm 3 Covariant integration of dα
dt

1: Let w(0) = 0.
2: for τ = 1 to k do
3: w( τ

k ) = Π
(
w( τ−1

k ); α( τ−1
k ), α( τ

k )
)

+ 1
k

dα
dt ( τ

k )
4: Project w( τ

k ) into Tα( τ
k )(C) using Algorithm 2.

5: end for

the gradient vector field of E[α] on Tα(F), we state the
following theorem without proof.

Theorem 1. The gradient vector field of E in Tα(F) is
given by v such that Dv

dt = α̇, and v(0) = 0.

Theorem 1 implies that the gradient of E in Tα(F) is
given by covariant integration of the velocity vector field
along the curve α. For this purpose, we need to compute
the path velocity dα

dt . Since we are dealing with discretized
curves in computer implementations, we will compute an
approximation to the velocity vector field for discrete inter-
vals along the path by computing the derivative of α(τ) on
the sphere B, and projecting it on C.



Algorithm 4 Velocity vector field dα
dt for a path α

1: Let dα
dt (0) = 0.

2: for τ = 1 to k do
3: θ = cos−1

〈
α

(
τ−1

k

)
, α

(
τ
k

)〉
4: f = −α

(
τ−1

k

)
+ α

(
τ
k

)
cos(θ)

5: dα
dτ

(
τ
k

)
= kfθ√

〈f,f〉
6: Project dα

dτ

(
τ
k

)
into Tα( τ

k )(C) using Algorithm 2
7: end for

Definition 3. Parallel Transport: Let w0 ∈ Tα(0)(C) be a
vector field along a curve α : [0, 1] → C. Then there exists
a unique parallel vector field w(t) such that Dw(t)

dt = 0 and
w(0) = w0. Furthermore w(t1) (w̃(t1) = w(1 − t1)) is the
forward (backward) parallel transport of w0 along α at t1.

Algorithm 5 outlines the procedure for the parallel trans-
port of a tangent vector field w ∈ Tα(τ)F to w‖ ∈
Tα(τ+1)F . It is noted that the same algorithm can perform
forward as well as a backward parallel transport.

Algorithm 5 Parallel transport of tangent vec-
tor field w from α( τ

k ) to α( τ+1
k ) denoted as

w‖ = Π(w; α( τ
k ), α( τ+1

k ))

1: Let lw = 〈w, w〉.
2: w‖ = π(w; α( τ−1

k ), α( τ
k ))

3: Project w‖ into T(α( τ
k )(C) using Algorithm 2 and call it

w
‖
proj .

4: Rescale the length as w
‖
proj =

lww
‖
proj

〈w‖
proj ,w

‖
proj〉

Definition 4. Geodesic: A path α : [0, 1] → F is a geodesic
if the covariant derivative of it’s velocity vector field is iden-
tically zero at all t ∈ [0, 1], i.e. D

dt (
dα
dt ) = 0, ∀t ∈ [0, 1].

Lemma 1. The orthogonal complement of the tan-
gent space Tα(F0) is given by T⊥

α (F0) ≡ {w ∈
Tα(F) | D

dt

(
Dw
dt

)
= 0}.

Proof. Let w ∈ Tα(F) be a vector field such that
D
dt

(
Dw
dt

)
= 0. In this case w(t) is a covariantly linear vector

field. Let u ∈ Tα(F0) be an arbitrary vector field. Then

〈〈u, w〉〉α =
∫ 1

0

〈
Du

dt
,
Dw

dt

〉
dt

=
〈

u(t),
Dw

dt

〉
|10 −

∫ 1

0

〈
u(t),

D

dt

(
Dw

dt

)〉
= 0

Using Lemma 1, a tangent vector field v ∈ Tα(F) can
be projected onto Tα(F) by subtracting a covariantly lin-
ear vector field given by tṽ(t), where ṽ(t) is a backward

parallel transport of the vector field v(1) along α. Algo-
rithm 6 describes the procedure for backward parallel trans-
port of the gradient vector field w(1) along α̃ = α(1 − τ).
The verification that tṽ(t) is a covariantly linear vector field

Algorithm 6 Backward parallel transport of w(1) along
α̃ = α(1 − τ)

1: Let w̃(1) = w(1)
2: for τ = k − 1 to 0 do
3: w̃( τ

k ) = Π
(
w̃( τ+1

k ); α( τ+1
k ), α( τ

k )
)

4: end for

is straightforward. Algorithm 7 describes the procedure
for projecting the gradient vector field w ∈ Tα(F) to v ∈
Tα(F0). After obtaining the gradient of the energy E[α] in

Algorithm 7 Project the gradient vector field w ∈
Tα(F) to v ∈ Tα(F0)

1: for τ = 0 to k do
2: v( τ

k ) = w( τ
k ) − τ

k w̃( τ
k )

3: end for

F0, we can update the path α in the direction of the gradi-
ent field v. Algorithm 8 describes the simple procedure for
updating the path α.

Algorithm 8 Gradient update for α in the direction v

1: for τ = 0 to k do
2: α( τ

k ) = χ1

(
α( τ

k );−v( τ
k )

)
3: Project α( τ

k ) into C using Algorithm 1
4: end for

5.1. Computing geodesics between q0 and q1 on C
In this subsection, we combine all the algorithms de-

scribed above and use them to compute geodesics in the
pre-shape space C. In practice, we deal with discretized ver-
sions of the curves and tangent spaces. The first step is the
initialization of a path α on C and is described in Algorithm
9.

Algorithm 9 Initialization of a path α on C between q0, q1 ∈
C.

1: Let α(0) = q0. Let k be the number of steps along the
discretized path.

2: f = q1 − 〈q1, q0〉q0, f = f
〈f,f〉

3: for all τ = 1 to k do
4: α( τ

k ) = χ τ
k
(q0, f)

5: Project α( τ
k ) into C using Algorithm 1.

6: end for

Using the initialized path α, Algorithm 10 summarizes
various steps using the path-straightening approach in com-



puting the geodesic. The geodesic distance between the two

Algorithm 10 Given q0, q1 ∈ C, compute a geodesic be-
tween them

1: Initialize a path α between q0 and q1 using Algorithm
9.

2: repeat
3: Compute the path velocity αt ≡ dα

dt along α using
Algorithm 4.

4: Calculate the covariant integral (w) of αt using Al-
gorithm 3.

5: Parallel translate (backward) w(1) along α as w̃ us-
ing Algorithm 6.

6: Compute the gradient of the energy E and project it
to F0 as v using Algorithm 7.

7: Update the path α in the direction v using Algorithm
8.

8: Compute path energy E = 1
2k

∑k
0〈αt(τ), αt(τ)〉.

9: until ||∇E|| > ε

curves is then given by
∫ 1

0

√〈
˙̂α(t), ˙̂α(t)

〉
dt, where α̂ is the

resulting geodesic path.

6. Experimental Results and Future Directions

Here we present some experimental results for comput-
ing elastic geodesics by implementing the above algorithms
in MATLAB R©. Figure 2 shows pairwise geodesics between
some 2-D curves in the set C. Intermediate shapes along
the geodesics have tick-marks placed around the curve, that
help identify parts of the curve traversed by non-uniform
speed. Figure 3 shows two different views of a geodesic
path computed between a pair of 3-D curves. It is empha-
sized that the intermediate curves along the geodesic do not
cross each other.

In the previous sections, we have constructed geodesics
in the pre-shape space of translation and scale invariant
curves. In fact, the shape of a curve is also invariant
to rigid rotations. Furthermore, if we are dealing with a
closed curve, the shape is also invariant to change of start-
ing points along that curve. Since we allow the curves to
stretch, shrink and bend freely, its shape also remains in-
variant to the speed of traversal along the curve. Then we
can define the elastic shape space as the quotient space
S = C/(S1 × SO(n) × D). The problem of finding
geodesics between two shapes in S can now be modified as
finding the shortest path among all possible paths between
the equivalence classes of the given pair of shapes. This is
a consideration for future work.

7. Summary

We have presented a differential geometric approach for
studying shapes of elastic curves in R

n. The novelty in our
approach is the representation of elastic curves by a sin-
gle vector valued function that incorporates both stretching
and bending along the curve. The Riemannian metric is
a simple L

2 metric that remains same at all points in the
space. Geodesics between curves are obtained using a path-
straightening approach. We have also provided detailed al-
gorithms for computing these geodesics, along with exam-
ples.
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Figure 2. Row-wise geodesic paths in C between the pair of curves shown to the left.

Figure 3. Examples of geodesics between a pair of 3-D curves shown to the left. Two different views of the geodesic are shown to the right.


