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Abstract

Applications in computer vision involve statisti-
cally analyzing an important class of constrained, non-
negative functions, including probability density func-
tions (in texture analysis), dynamic time-warping func-
tions (in activity analysis), and re-parametrization or
non-rigid registration functions (in shape analysis of
curves). For this one needs to impose a Riemannian
structure on the spaces formed by these functions. We
propose a “spherical” version of the Fisher-Rao met-
ric that provides closed-form expressions for geodesics
and distances, and allows fast computation of sample
statistics. To demonstrate this approach, we present an
application in planar shape classification.

1. Introduction

Several applications in computer vision, such as tex-
ture analysis, activity analysis and shape analysis, use
mathematical representations involving a certain class
of constrained, non-negative function. To study ob-
served variability within and across classes, one has to
develop statistical models on appropriately constrained
function spaces. Additionally, one needs to develop
metrics, estimators and evaluation tools for the desired
inferences. The main difficulty here comes in perform-
ing calculus while respecting the nonlinear constraints
imposed on these functions. A natural solution is to
work on the nonlinear manifolds formed by the allow-
able functions and to utilize the underlying differen-
tial geometries of these manifolds to perform statistics.
This general framework has previously been used by

several researchers. However, questions remain about
the choice of: (i) the representation and (ii) the Rie-
mannian metric. In this paper we focus on a specific
set of closely-related constrained functions – probabil-
ity density functions (pdfs), warping functions, non-
rigid registration functions, 1D diffeomorphisms, and
re-parametrization functions(some of them are actually
identical) and study the different choices of represen-
tations. Our goal is to choose a representation and a
metric that allow the efficient computation of statisti-
cal tools for applications in computer vision.

Before we present different representations and met-
rics, we specify the functions of interest and their mo-
tivating applications. Perhaps the most important ex-
ample is the use of pdfs in modeling frequencies of
pixel values in images. Very commonly images are fil-
tered using pertinent filters and the resulting images
are used to estimate probability densities of the filtered
pixel values. Applications of this tool include image
retrieval [14], and texture synthesis [16, 12]. The sec-
ond relevant problem is in activity analysis where one
studies times of occurrences of ordered events in or-
der to classify this activity as a whole. For instance,
consider the problem of a person arriving at the air-
port, checking in at an airline counter, and going to
the departure gate to catch a flight. Since these in-
dividual events can be performed with random time
delays, one has to introduce a time-warping function
in order to register and match observations [15, 13].
The time-warping functions are naturally constrained
to be non-decreasing and can be viewed as cumulative
distribution functions (cdfs). With an additional pos-
itivity constraint, the set of functions form the group

1
1-4244-1180-7/07/$25.00 ©2007 IEEE



of 1D diffeomorphisms, whose 2D counterpart has fa-
mously been used in the development of deformable
template models for images [8]. The third problem is
in analyzing the shapes of closed, planar curves that
are available as ordered sets of points. In order to
compare them in a manner that is invariant to their
parameterizations, one forms a quotient space, called
the shape space, that is defined as the space of closed
curves modulo all possible re-parameterizations [7]. A
related problem is to perform non-rigid registration of
points across curves [10, 11].

Although the above three applications are quite dif-
ferent, the sets of constrained non-negative functions
used are closely related. As described later, these func-
tions may be represented and studied in several dif-
ferent but equivalent representations (pdfs, cdfs, log-
densities, or square-root densities), each of which may
be better suited to certain specific tasks. An important
step in classifying observations using these functions is
to compute distances between functions. This task is
accomplished by imposing Riemannian structures on
appropriate manifolds formed by these functions. The
most natural Riemannian metric in this context is the
so-called Fisher-Rao metric, which has been used ex-
tensively in computer vision [6, 5, 10, 11]. Čencov [2]
showed that this is the only metric that is invariant to
re-parametrizations of those functions. This metric has
also played an important role in information geometry
due to the pioneering efforts of Amari [1].

The remaining question is: What choice of represen-
tation of functions (and hence the Fisher-Rao metric)
is most efficient for our applications? We will demon-
strate that the square-root form, defined to be the
square-root of a pdf, results in the desired manifold be-
ing the unit sphere inside a larger Hilbert space with
the usual L

2 metric. In view of the spherical nature
of the underlying space, many of the desired quanti-
ties (geodesics, exponential maps, inverse of exponen-
tial maps) are available in analytic forms. This is in
contrast to past usage of the Fisher-Rao metric where
metrics and geodesics had to be approximated using
numerical methods. In this paper, we will demonstrate
the computational advantages of using the square-root
form, and its associated Fisher-Rao metric, in vision
applications.

The rest of this paper is organized as follows. Sec-
tion 2 presents three of several applications in com-
puter vision that motivate this work and introduces
four different mathematical representations of the func-
tions of interest. Section 3 summarizes the differential
geometry of the chosen representation and Section 4
demonstrates the computation of sample means using
geometric tools. The paper ends with a demonstration

of the proposed representation in a problem of binary
shape classification in Section 5 and a brief summary
in Section 6.

2. Motivations & Representations

In this section we present some motivating applica-
tions for studying the constrained, non-negative func-
tions that we focus on. Additionally, we present sev-
eral choices for representing these functions and dis-
cuss the structures of the resulting Riemannian man-
ifolds equipped with the Fisher-Rao metric expressed
in these representations.

2.1. Motivating Problems

We start by presenting some applications that in-
volve the functions of interest.

1. Spectral PDFs of Images: As the first example,
we highlight the use of pdfs in spectral analysis of
textured, natural, or man-made images. Shown in
Figure 1 is an example: the top left panel shows
an image I that is then filtered using Gabor filters
[3] at different orientations. For each resulting im-
age, one computes a pdf of the gray scale pixel
values. The remaining three panels shows exam-
ples of such pdfs. In the spectral analysis, each
image is represented by a collection of pdfs, gener-
ated for a pre-determined bank of Gabor, Lapla-
cian and other derivative filters. Two images are
compared by comparing their respective pdfs un-
der the same filters. “Image templates”, denoting
the central tendency of images in a class, can be
defined as “averages” of the corresponding pdfs.
Rescaling the image pixels to take values in the
range [0, 1], one is interested in tools for comput-
ing distances and averages on the set of pdfs on
[0, 1].

2. Time Warping in Activity Analysis: Con-
sider the problem of activity analysis and classi-
fication, where one is interested in studying a pre-
determined sequence of events that are performed
with random time-separations. To compare dif-
ferent instances of the same activity, we need to
use time-warping functions that allow registration
of such instances. An observation of an activity
is denoted by T ≡ {t1, t2, . . . }, where ti ∈ [0, 1]
are the times of occurrences of these events. For a
time-warping function (made precise later) γ, the
set γ(T ) = {γ(ti)} becomes another occurrence of
that activity with events occurring at γ(ti). Since
the sequence of events is maintained, one consid-
ers γ(T ) from the same class as T and would like



Figure 1. A natural image I (top left) and some pdfs of
I ∗ F (θ), where F is a Gabor filter with orientation θ, for
different θs.

to cluster and classify it appropriately. To quan-
tify differences between any two activities from the
same class, γ1(T ) and γ2(T ), or to develop em-
pirical statistics from observed activities, one will
need to define and compute distances and statis-
tics on the space of allowable γs.

3. Re-parameterizations in Shape Analysis:
Consider a simple, closed parameterized curve α
in the plane. For studying its shape, we resize α
to be of unit length. If α is sampled differently, i.e.
the sampled points are spaced differently, then the
change in its representation is given by α(γ(s)),
where γ is a re-sampling function. Shown in Fig-
ure 2 is an example of three different parameteriza-
tions of the same shape. The first one is the arc-
length parametrization, i.e. γ(s) = s, while the
other are non-uniform speed parameterizations.
Given two arbitrarily sampled closed curves α1

and α2, we want to compare their shapes, tak-
ing different re-samplings into account. This prob-
lem is closely related to the non-rigid registration
of points across shapes. In practical cases where
shapes are observed in presence of noise, one needs
to include probability models on space of γs to per-
form robust inferences.

2.2. Riemannian Representations

In the applications mentioned above, the functions
of interest are, mathematically speaking, closely inter-
related and can be represented in many ways. The ul-
timate choice of representation should be dependent on
the ease of implementation in the ensuing application.
A common issue in all these representations is that the
underlying spaces are not vector spaces but are nonlin-
ear (differentiable) manifolds; this creates a need to use
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Figure 2. Same curve with three different parameteriza-
tions. The left one is sampled at uniform speed, or arc-
length parametrization, while the other two have φs that
are different from the identity.

tools from differential geometry – Riemannian metrics,
geodesics, exponential maps, etc – on these manifolds
for defining and computing statistics. As stated ear-
lier, the choice of metric is fixed to be the Fisher-Rao
metric because it is the only metric that is invariant to
re-parameterization.

Let D be the set of all 1D diffeomorphisms from the
interval [0, 1] to itself. Next we enumerate different
choices of representations and the associated forms of
the Fisher-Rao metric:

1. Probability density function p: Each of the
constrained, non-negative function of interest can
be written as a pdf. The reason is that the deriva-
tive of a function transforms as a pdf under re-
parametrization. To simplify discussion, we re-
strict to the space of pdfs on the interval [0, 1],
forming the set:

P = {p : [0, 1] → R|∀s, p(s) ≥ 0 and
∫ 1

0

p(s)ds = 1} .

P is not a vector space. D provides a group ac-
tion on P according to: D × P → P: (γ, p) =
p(γ)γ̇, p ∈ P, γ ∈ D.

The Fisher-Rao metric on P can be stated as fol-
lows: for any point p ∈ P and the tangent vectors
v1, v2 ∈ Tp(P), the inner-product is given by

〈v1, v2〉 =
∫ 1

0

v1(s)v2(s)
1

p(s)
ds . (1)

Here, Tp(P) is the set of functions tangent to P
at p. Amongst all possible representations, the pdf
turns out to be one of the most difficult representa-
tions to work with. The main difficulty comes from
the need for ensuring p(s) ≥ 0 for all s. For ex-
ample, in case one is trying to compute a geodesic



between any two elements of P, it is quite difficult
to ensure that p remains non-negative along the
whole path. As an aside, we remark that the path
tp1+(1−t)p2, for 0 ≤ t ≤ 1 and p1, p2 ∈ P, is not a
geodesic between p1 and p2 under the Fisher-Rao
metric.

2. Cumulative distribution function φ. Asso-
ciated with each element of P is a unique cdf
φ(s) =

∫ s

0
p(t)dt. φ is a differentiable mapping

from [0, 1] to itself. Additionally, if p > 0 then φ
is also an invertible map. Define the set of all cdfs:

Φ = {φ : [0, 1] → [0, 1]|∀s, φ̇(s) > 0, φ(0) = 0, φ(1) = 1} .

Φ forms a group with the group operation given
by composition, i.e. φ1, φ2 ∈ Φ, the group oper-
ation is given by φ2(φ1(s)). The identity element
of Φ is the function id(s) = s. D is identical to
Φ and, thus, acts on Φ using the group operation:
(γ, φ) → φ(γ). The Fisher-Rao metric for this rep-
resentation is given by: for any v1, v2 ∈ Tφ(Φ), we
have

〈v1, v2〉 =
∫ 1

0

v̇1(s)v̇2(s)
1

φ̇(s)
ds . (2)

Φ is somewhat easier than P to analyze in view
of its group structure. Also, note that the time-
warping functions in activity analysis and the re-
parametrization functions (or non-rigid registra-
tion functions) in shape analysis can be directly
written as elements of Φ or D.

3. Log density function: Several past papers have
used the logarithm of p to represent and analyze
probability densities. Of course, this representa-
tion requires the function p to be strictly positive.
The corresponding representation space is:

L = {ν : [0, 1] → R|
∫ 1

0

exp(ν(s))ds = 1} .

The group D acts on L according to: (γ, ν) →
ν(γ) + log(γ̇). The Fisher-Rao metric in this rep-
resentation is given by: for v1, v2 ∈ Tν(L):

〈v1, v2〉 =
∫ 1

0

v1(s)v2(s) exp(ν(s))ds . (3)

Although this representation has shown some suc-
cess in texture analysis [9], there are a few ma-
jor limitations here. Firstly, the pdf p should be
strictly positive to have a logarithmic representa-
tion. Secondly, the Riemannian structure on the
space is complicated and one has to use numerical

techniques to compute geodesics on this space. For
example, Mio et al. [9] use a shooting method to
find geodesics between any two log-density func-
tions. As demonstrated through an example later,
this approach often results in paths that may not
reach the target function and thus leads to large
errors.

4. Square-root density function: The final choice
of representation is the square root function: ψ =√

p. Due to the nature of the square root,
this function is not a unique representation of p;
uniqueness can be imposed by assuming ψ to be
non-negative. Note that there is no requirement
for p > 0 for this representation to work. Here
one considers the space:

Ψ = {ψ : [0, 1] → R|ψ ≥ 0,

∫ 1

0

ψ2(s)ds = 1} .

The group action of D on Ψ is given by the map-
ping: (γ, ψ) = ψ(γ)

√
γ̇. For any two tangent vec-

tors v1, v2 ∈ Tψ(Ψ), the Fisher-Rao metric is given
by:

〈v1, v2〉 =
∫ 1

0

v1(s)v2(s)ds . (4)

The space of sqaure-root densities can be viewed
as the non-negative orthant of the unit sphere in a
Hilbert space. In this larger space, not only are the
inner products of tangent vectors defined, but also
the inner products of the elements of the Hilbert
space itself (and hence of elements of Ψ). The
distance in the larger space between two elements
is simply the norm of their difference. Note that
this is not the same as the distance in Ψ, which is
the unit sphere.

Eqns. 1-4 are different ways of writing the same met-
ric; they have simply been expressed in different co-
ordinate systems. Additionally, they are invariant to
re-parametrization.

Theorem 1 The Fisher-Rao metric is invariant to the
action of D.

Proof: We prove this using the square-root represen-
tation but the proof is similar for all other representa-
tions. Let v1, v2 ∈ Tψ(Ψ) for some ψ ∈ Ψ and γ ∈ D be
a re-parametrization function. The re-parametrization
action takes ψ to ψ(γ)

√
γ̇ and vi to ṽi ≡ vi(γ)

√
γ̇. The

inner product after re-parametrization is given by:
∫ 1

0

ṽ1(s)ṽ2(s)ds =
∫ 1

0

v1(γ(s))
√

γ̇(s)v2(γ(s))
√

γ̇(s)ds

=
∫ 1

0

v1(t)v2(t)dt, t = γ(s) .



which is the same as before the action by γ and, hence,
invariant. �

Which of these different representations should one
choose for texture, activity, and shape analysis? In
this paper, we propose the use of the square-root form
for Riemannian analysis of constrained functions. The
biggest advantage of this choice is that the resulting
space Ψ is simply a unit sphere inside a larger Hilbert
space with the L

2 metric. The differential geometry of
a sphere is well understood. There are closed form ex-
pressions for geodesics, exponential maps, inverse expo-
nential maps and, consequently, sample statistics on a
sphere. The condition that ψ ≥ 0 is not too constrain-
ing; this amounts to restricting to a positive orthant
of the unit sphere and does not impose any additional
computational burden.

3. Differential Geometry of Ψ

In this section we specify the formulae for computing
geodesics and other geometric quantities needed in vi-
sion applications. As stated above, the main advantage
of selecting Ψ for analysis is that it is a convex subset
of thea unit sphere in L

2 and many of the geometric
expressions are already known.

• Geodesic Distance: Given any two functions ψ1

and ψ2 in Ψ, the length of the geodesic connecting
them in Ψ is given by:

d(ψ1, ψ2) = cos−1〈ψ1, ψ2〉 (5)

where the inner product is as defined in Eqn. 4,
but now applied to the elements of Ψ rather than
the tangent vectors.

• Geodesic: The geodesic between two points is
easily derived by noting that the radial projection
to unit norm of the straight line joining the two
points is the geodesic between the two points. The
straight line is given by ψ̃(t) = (1−t)ψ0+tψ1. The
projection to Ψ is then

ψ(t) =
(1 − t)ψ1 + tψ2

t2 + (1 − t)2 + 2t(1 − t)〈ψ1, ψ2〉
,

where it should be noted that t is not the arc-
length parametrization.

Conversion to the distance parametrization leads
to the following expression for the geodesic:

ψ(t) =
1

sin(s12)
[
sin(s12 − t)ψ1 + sin(t)ψ2

]
, (6)

where cos(s12) = 〈ψ1, ψ2〉 is the cosine of the
geodesic distance between the two points.

• Exponential Map: The geodesic can be written
in terms of a direction v in Tψ1(Ψ):

Gt(v) = cos(t)ψ1 + sin(t)
v

|v| , (7)

where v ∈ Tψ1(Ψ) and 〈v, ψ1〉 = 0. As a result,
the exponential map, ε : Tψ1(Ψ) → Ψ, has a very
simple expression:

expψ1
(v) = cos(|v|)ψ1 + sin(|v|) v

|v| . (8)

The exponential map is a bijection if we restrict
|v| so that |v| ∈ [0, π).

• Inverse Exponential Map: For any ψ1, ψ2 ∈ Ψ,
we define v ∈ Tψ1(Ψ) to be the inverse exponential
of ψ2 if expψ1

(v) = ψ2; we will use the notation
exp−1

ψ1
(ψ2) = v. This is computed using the fol-

lowing steps:

u = ψ2 − 〈ψ2, ψ1〉ψ1

v = u cos−1(〈ψ1, ψ2〉)/
√

〈u, u〉 . (9)

Since we have simple analytical expressions for comput-
ing these quantities, the resulting statistical analysis
of elements of Ψ is much simpler than in other rep-
resentations. For instance, the geometry of L (using
log-density coordinates) is too complicated to derive
analytical expression for geodesics. Instead, one uses
a numerical approach. Mio et al. [9] use a shooting
approach for constructing geodesics on L. The main
idea is, given two log-densities ν1 and ν2 in L, to find
a tangent direction v ∈ Tν1(L) such that a geodesic
along v (constructed numerically) reaches ν2 in unit
time. This optimal direction v is found by minimizing
a miss error, defined as the Euclidean distance between
the function reached (for the current v) and ν2. There
are several disadvantages associated with this numer-
ical approach. Firstly, one may not always be able to
solve this minimization problem globally using numer-
ical techniques. Secondly, the resulting geodesic may
get close to ν2 but not quite reach it.

Figure 3 highlights the problem in using the shoot-
ing method in forming a geodesic under the log-density
representation. The left picture shows a path that has
been computed using the shooting method in the space
L of the log-density functions, while the right path is
computed using analytical expressions in the space Ψ
of the square-root functions. (All the functions are dis-
played in terms of their pdfs for comparisons.) In each
panel, the top and the bottom curves are the given
densities p1 and p2, while the intermediate curves de-
note equally spaced points on the geodesics. In the left



Figure 4. Geodesic paths in Ψ between some interesting square-root densities. All functions are displayed using their
corresponding values in P for convenience.

Figure 3. Limitations of shooting method. Computation of
a geodesic using the shooting method may not reach the
target pdf (left picture) while no such problem exists for
the analytical form (right picture) available for the square-
root density representation. Geodesics are displayed using
the corresponding elements in P for convenience.

picture, the geodesic starting from ν1 = log(p1) never
quite reaches the point ν2 = log(p2). In comparison,
the geodesic computed using the analytical expression
available for the square-root coordinates (right picture)
has no such problem. Figure 4 shows some additional
examples of geodesic paths between elements of Ψ (dis-
played using the corresponding elements in P).

4. Sample Statistics on Ψ

An important ingredient in the statistical analysis
of constrained functions is the computation of sample
statistics such as means and covariances. For example,
given a few observations of an activity, each resulting
from a different time-warping function, one is inter-
ested in computing a template of that activity that
involves taking an average of all the observed time-
warping functions. Similarly, given a collection of pdfs
from a set of images (under the same filter), we may
use an “average” pdf to characterize the typical statis-
tics of this set. To define and compute means, we use
the notion of Karcher mean [4] as follows: For a num-
ber of observations ψ1, ψ2, . . . , ψn, define their Karcher
mean as: ψ̄ = argminψ∈Ψ

∑n
i=1 d(ψ,ψi)2, where d is

taken to be the geodesic distance on Ψ. The search
for ψ̄ is performed using a gradient approach where an

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6. Tow row: Four observations of a shape (shown
in bottom left) at randomly sampled points, i.e. with ar-
bitrary speed functions φs shown in bottom right. Bottom
row: the middle panel shows this shape sampled at the
mean φ; the mean φ is shown on the right in broken line.

estimate is iteratively updated according to:

µ → expµ(εv), v =
1
n

n∑
i=1

exp−1
µ (ψi)

where exp and exp−1 are given in Eqns. 8 and 9, re-
spectively. The scalar ε > 0 is a step size for iteration
and is generally taken to be smaller than 1

2 .

Shown in Figure 5 are some examples of ψs and
their Karcher means. As earlier, all the displays are
in the form of pdfs p = ψ2. In this particular example,
the original pdfs are made of Gaussians with different
means and variances, although that parametric form
has not been utilized in computing the Karcher means.

Another example for computing averages, in con-
text of shape analysis, is shown in Figure 6. The top
row shows four randomly sampled versions of the shape
shows in the bottom left. The bottom middle panel
shows this shape sampled using a γ that is average of
the four individual γis. These re-parametrization func-
tions are shown in the bottom right panel.
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Figure 5. Examples of Karcher means of elements of Ψ. Each panel shows some Gaussian densities pi = ψ2
i with different

means and variances in solid lines. Superimposed on them in broken line is their Karcher mean p̄ = ψ̄2.

5. An Experiment on Shape Classifica-
tion

To demonstrate the strength of this framework, we
consider a simple problem in binary shape classifica-
tion. We observe a shape from one of two classes, sam-
pled randomly, and in the presence of additive noise,
and the goal is to decide which class it came from.

The setup is as follows. Assume that a curve is
to be sampled at n points, and let τ0 denote the uni-
form sampling on [0, 1], i.e. τ0(i) = i/n in arc-length
parametrization. Then, the set T = {γ(τ0)|γ ∈ D} is
the set of all possible n-point samplings of a unit-length
curve. Any two elements of D are defined to be equiv-
alent if they result in the same sampling, i.e. γ1 ∼ γ2

if γ1(τ0) = γ2(τ0). This equivalence relation partitions
D into the set of equivalence classes D/ ∼. Elements
of D/ ∼ are sets of type:

[γ] = {γ̃ ∈ D|γ̃(τ0) = γ(τ0)} ⊂ D .

An observation of a curve αt, sampled at τ ∈ T , can
be modeled as:

αd(i) = αt(τ(i)) + w(i) , t = 1, 2, (10)

where αt is the true underlying curve and w is white
Gaussian noise. Shown in Figure 7 is a pictorial exam-
ple of this setup. The top row shows the two templates,
α1 and α2, associated with the two classes and the mid-
dle row shows four examples of αd (α1 is the underlying
curve) with increasing variance of w from left to right.

For a given observation, the posterior probabil-
ity that it belongs to the jth class is: P (j|αd) =
P (j)

∫
τ∈T P (αd|τ, j)P (τ |j)dτ . Using the action of D

on T , we can rewrite this as an integral on D/ ∼:

P (j)
∫

γ∈D/∼
P (αd|[γ], j)P ([γ]|j)d[γ] , (11)

Under certain conditions, the integral in Eqn. 11 can
be approximated by evaluating the integrand at the
maximum likelihood estimate of [γ]. Let ˆ[γ]j be the

optimal sampling of the template αj according to:

[γ̂j ] = argmax
D/∼

P (αd|[γ], j) .

This optimization is performed using a dynamic pro-
gramming algorithm, which automatically selects a
representative element from [γ̂j ]: the piecewise lin-
ear curve obtained by linearly connecting the points
{(τ0(i), γ̂j(τ0(i))), i = 1, 2, . . . , n}.

So the posterior probability can be approximated
by:

P (j|αd) ≈ P (j)P (αd|[γ̂j ], j)P ([γ̂j ]|j) .

For our experiment, the terms on the right were chosen
as follows:

• For Gaussian noise w, the likelihood function be-
comes P (αd|[γ], j) ∝ exp(−Ej([γ])), where

Ej([γ]) =
n∑

i=1

(
|αd(i) − αj(γ(τ0(i)))|2

)
. (12)

• The prior on γ is defined as follows. Using the
techniques presented in Section 4, we can compute
the average re-parametrization function γ̄j associ-
ated with prior observations in each class and form
a prior P ([γ]|j) ∝ e−d(γ,γ̄j)

2
on D. One can also

use the term e−d(γ,id)2 , which uses the squared dis-
tance from the identity in Φ as the prior energy.
Here γ stands for the piecewise-linear representa-
tive of the class [γ]. These distances are computed
using the square-root representations of γ and id
(or γ̄) in Ψ and then using the geodesic distance
between them in Ψ (Eqn. 5).

The bottom row of Figure 7 shows the results of
this binary classification performance in two cases: one
when only the likelihood term in Eqn. 12 is used (bro-
ken line) and when the full posterior is used (solid line).
For the left plot, the underlying sampling τ = γ(τ0) was
closer to τ0 than for the plot on the right. The classi-
fication performance was computed using 1000 Monte



0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Classification Performance

Noise Std Dev

C
la

ss
ifi

ca
tio

n 
P

er
fo

rm
an

ce

0 0.5 1 1.5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Classification Performance

Noise Std Dev

C
la

ss
ifi

ca
tio

n 
P

er
fo

rm
an

ce

Figure 7. Top row: Templates for the two object classes.
Middle row: Observations of class 1 template at random γ0s
and increasing noise from left to right. Bottom row: Plot
of classification performance versus the observation noise.
Left panel shows the case when γ0 is much closer to id and
the right panel shows the opposite case. The broken line
denotes the maximum-likelihood solution and the solid line
denotes the maximum a-posterior solution.

Carlo trials at each noise level. This experiment clearly
shows the utility of the prior term P ([γ]|j) in Eqn. 12
in the classification process. Furthermore, our frame-
work computes this distance very efficiently as a dis-
tance on a unit sphere.

6. Summary

We have proposed a “spherical” version of the
Fisher-Rao metric for imposing a Riemannian struc-
ture on a collection of related spaces: the space of pdfs,
time-warping functions, re-parametrization functions,
etc. The proposed metric is both computationally and
analytically simpler, and allows efficient computation
of statistics on a larger class of functions than previ-
ously used metrics. We have demonstrated this idea
using an application in planar shape classification.
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