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Abstract

This paper introduces a new method for shape registra-
tion by matching vector distance functions. The vector dis-
tance function representation is more flexible than the con-
ventional signed distance map since it enables us to better
control the shapes registration process by using more gen-
eral transformations. Based on this model, a variational
frame work is proposed for the global and local registration
of shapes which does not need any point correspondences.
The optimization criterion can handle efficiently the estima-
tion of the global registration parameters. A closed form so-
lution is provided to handle an incremental free form defor-
mation model for covering the local deformations. This is
an advantage over the gradient descent optimization which
is biased towards the initialization and is more time con-
suming. Results of real shapes registration will be demon-
strated to show the efficiency of the proposed approach with
small and large global/local deformations.

1. Introduction

The shape registration aims to build a point correspon-
dence between a given shape (source) boundary and a tem-
plate (target) [1, 2]. It is a very important process in com-
puter vision and medical imaging. The registration depends
on the : 1) method how to represent shapes, 2) nature of the
transformation to move the points from the source towards
the target, and 3) dissimilarity measure. The latter can be
defined according to either the shape boundary or its entire
region.

The iterative closest point algorithm was proposed in [3].
The approach is based on finding the correspondence based
on the minimum distance criterion. Different shape regis-
tration approaches based on this technique are provided in
the literature (e.g. [4]).

Shape registration is handled in [5] by matching signed
distance functions. The dissimilarity measure allowed only
the use of homogeneous scales which limits the efficiency
of the process. Practically inhomogeneous scaling is nec-
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essary since data is gathered from different sources or sub-
jects. The more general the transformation is, the better the
results are.

A variational approach to top-down image segmentation
was proposed in [6]. A projective transformation is used
with a single prior image is embedded into the image to be
segmented without using any point correspondences. The
prior shape contour is represented by a cone. Perspective
distortion and scaling of the visible contour are allowed us-
ing unlevel sections.

Cremers et.al. investigated the dissimilarity measures for
shapes represented by the signed distance function [7]. A
symmetric pseudo distance, which is not biased to small ar-
eas, was constituted as a dissimilarity measure. A shape-
based segmentation technique was proposed which is pose
invariant. Tracking of 2D and 3D objects’ examples were
demonstrated in [8] as well.

Different shapes registration approaches were proposed
in the literature for example [9, 10, 11]. These approaches
suffer from various problems, including scale variations and
dependence on initialization. Also local deformations are
not addressed efficiently.

Vector distance functions (VDF’s) are used in [12] to
evolve smooth manifolds. This representation defines a vec-
tor that connects any point in space to the nearest point
on the curve or surface. This representation can deal with
shapes of different dimensions.

We proposed shape representation by vector compo-
nents in a different manner in our shape-based segmentation
framework [13]. The vector components represent the vec-
tor projections from any point in space to the nearest point
on the shape boundary. We give a positive sign to the points
inside the shape and negative to those outside the shape to
mark these regions. We used a simple dissimilarity measure
to handle the problem of inhomogeneous scaling. Also the
vector map was designed to handle the segmentation prob-
lem with the adaptive region model.

In this paper, we use the VDF shape representation as a
similarity measure in the shape registration process. More
general transformations with different scaling (s, sy, 5:),



rotation (6,,6,,6.),and translation (¢,,%,,t.) parameters
will be used within a coordinate system of z, y, and z.
The use of such vector functions results in a more adequate
energy function which is optimized to achieve the transfor-
mation parameters both in the global and local registration
schemes.

A variational framework for the registration process of
shapes is formulated. The gradient descent optimization
criterion is used to handle the global registration similar to
that in [2]. The local deformations are covered using the
incremental free form deformations. We do not use the gra-
dient descent to estimate the control points positions. A
closed form solution is developed for this purpose based on
approximating the vector distance representation using the
Taylor series expansion, leading to a linear system of equa-
tions. Promising results for synthetic and real shapes will
be demonstrated.

The rest of the paper is organized as follows. Section 2
presents the shape representation formalism using the VDF.
Global registration and alignment technique will be pre-
sented in Sec. 3. Sections 4 and 5 are dedicated to the local
registration and control points positions calculation. The
paper ends with a discussion and future research aspects in
Sec. 6.

2. Shape Representation and the Vector Dis-
tance Function [14]

Given a smooth curve/surface V that represents bound-
aries of a given shape, the following implicit vector function
is defined ® : R® — R3 where

3(X) =X, -X,VX € Q, (1)

where X is the point on V' with the minimum Euclidean
distance to X. A 2D example is given in Fig.1 for illustra-
tion. The surface points always satisfy the relation |®| = 0.

If a global transformation is applied to the given shape
represented by the designed vector map, one can predict the
map of the new shape. We define a shape ( that is obtained
by applying a transformation A to a given shape a. Let us
assume that the transformation has a scale matrix S, rotation
matrix R, and translation vector T. The transformation can
be written for any point X in the space as A = SRX + T.

Consider X, Xy € 2, where the second point is the one
with the minimum Euclidean distance on the surface to X.
Applying the transformation to the given points results in
the pair of points X, X, € Qg. It is straightforward to
show that:

25(A) = Xo — X = SR(X, — X) ©)

and then the following relation holds:

B5(A) = SRP(X) 3)

showing that the proposed representation can give a vec-
tor similarity measure that includes inhomogeneous scales
and rotations. Also it is invariant to the translation parame-
ters. However the effect of scales and rotations can be pre-
dicted. This kind of measure overcomes the problem of us-
ing the conventional signed distance maps that leads to the
use of homogeneous scales only.

Another issue is that the conventional level set function
is not differentiable at the center line. Using this function
to represent an open shape without sign as proposed in
[15] will add another problem. By that definition, the
function will not be differentiable at the boundary of the
object. Then the registration formulation by minimizing an
energy function of level sets differences using the gradient
descent, is meaningless. In our case, the VDF has the
desired characteristics around the object boundaries [12].
It is smooth and differentiable at the boundaries.

3. Global Registration of Shapes

Finding point-wise correspondences (between the two
given shapes « and f3) is the objective of the registration
problem. An energy function is built based on the vector
dissimilarity measure.

The VDF shape representation, changes the problem
from the shape boundary domain to the higher dimensional
vector representation. A transformation A that gives pixel-
wise vector correspondences between the two shapes repre-
sentations ®,, and ®g, is required to be estimated.

The problem now can be considered as a global opti-
mization that includes all points in the image domain. Some
of squared differences will be considered with an energy op-
timized by the gradient descent approach.

3.1. Energy Formulation

According to the properties of the implicit vector repre-
sentation shown above, the following dissimilarity measure
is used:

r =SR®,(X) — ®3(A) 4)

and the optimization energy function is formulated by
the sum of squared differences as follows:

E(S,R,T) = / r’rd() )
Q
The complexity of the problem is reduced by considering
only points around the zero level of the vector function since
far away points mapping can be neglected. The matching
space is limited to a small band around the surface that can
be selected by introducing the following energy function:

E(S,R,T) = / 5e(®u, @p)rl rdQ (6)
Q



(a) (b)

(© (d

Figure 1. Shape representation (gray level map):(a) A real tooth contour, (b) Conventional level set function, (c) The first projection of the
proposed vector function (¢1), (d) The second projection of the proposed vector function (¢2).

where §. is an indicator function defined as follows:

_f 0 if min(|®],|®s]) > €

Oc(®ar 5) = { 1t min(@o) [@s)<e 7

The optimization of the given criterion is handled using
the gradient descent method:

s =2 [, 0xT[V SR, (X) — VO (A)V,AldQ
90 =2 [, 06T [SVyRP,(X) — VO (A)V,Ald
str =2 [ 0xT[VOL (A)V,, AldQ ©
where s € S,0 € R,andtr € T.

3.2. Quantitative Validation

An experiment is carried out for 100 registration
cases. Each case considers a source and a target
shapes. The source is fixed and the target is generated
by applying a transformation on the source. Parameters
(S4,Sy,0,1,Ty) are created and selected randomly from the
ranges [0.8,1.2], [0.8,1.2], [-60°,60°],[—60, 60],[—60, 60]
respectively. These generated patterns are kept as a ground
truth for each case. The gradient descent optimization is
done to get a steady state estimate for each parameter asso-
ciated with each registration case. The experiment was done
for two sets of shapes (corpus callosum and hippocampus as
shown in Fig 2). The algorithm shows successful results for
the two hundred cases and the energy goes down smoothly
with the increase of the iteration number until perfect align-
ment is achieved. The measurements show that the errors
means and standard deviations (Table 1) are very appropri-
ate and satisfactory small. The final registration emphasizes
that for each experiment where the boundaries of the source
and target shapes become very close to each other. The
gradient descent successfully estimates the scales, rotations,
and translations.

Another test is carried out on 29 MRI data sets by ex-
tracting their corpus callosum shapes from the mid sagittal
section (see Fig. 3 left image). The image shows that the

shapes initially have large global differences which is re-
duced dramatically after carrying out the registration (see
the middle picture). We notice from the relation between
S and S, that they are almost different all the time. This
justifies the use of the implicit vector representation for cov-
ering the inhomogeneous scales problem.

4. Local Registration of Shapes

The above registration works well for global registration
of objects and can not handle local deformations. Following
the work in [2], a local deformation vector U = [u, uy u,]”
is applied to the globally transformed shape represented by
&. The following dissimilarity measure is considered:

r, — ‘I)&(X) — (I)B(X + U) (9)

and hence the non rigid energy function will be defined as:
E,(U) = / rlr,dQ (10)
Q

The local deformations are smoothed by adding another
term that includes their derivatives as follows:

E,(U) = [oriradQ+ X [ (Vi + V2uy + V2u,)d
(11
As an interpretation, the energy contains a term for cov-
ering the local deformations and another for penalizing
large derivatives. To make the addition homogeneous, we
weight the second term by A € R*.
The gradient descent of the parameters based on the
above formulation is accomblished as follows:

Ju=-22Au+2 [ xTVes(A)TV,UdQd  (12)

where u € {ug, uy,u;}.

Unfortunately, the use of this form of local deformations
does not guarantee proper handling of the registered shape
because it can not preserve topology. Also, it results in scat-
tered front points leading to an open surface which is not
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Figure 2. Corpus callosum and hippocampus shapes registration: (a) and (c) represent the initial position while (b) and (d) illustrate the
final results. At the bottom, the energy function is plotted versus the iteration number for each case of the two shapes.

Table 1. Mean(p) error and its standard deviation(d) for the transformation parameters of the corpus callosum (CC) and hippocampus (HC)
cases (u %+ 0).

S, S, 60 T, T,
CC  —0.0054£0.009 0.003+0.007 0.02+018 —05+£04 —03£0.5
HC  0.009+0.007 0.005+0.004 0.01+0.09 00+0.2 —0.0+0.2

the case. Another issue is that the gradient descent does not number of deformation vectors. The next section will solve
guarantee the desired solution especially when using a large this problem.
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Figure 3. Different corpus callosum shapes registration (29 real shapes): Illustration before alignment is given in the left image while
alignment results are shown in the middle. The relation between the horizontal and vertical estimated scales is plotted to the right.

5. Incremental Free Form Deformation (IFFD)

We use the incremental free form deformations to rep-
resent the local deformations [15]. The gradient descent is
used to estimate the control points deformed positions based
on the above formulation (to make it clear, we will formu-
late the 2D problem):

au d (8°U
dtp =2 [or( V‘I’B)T df) — 2/\f9 axZ Tap( 92 )
(YT 2 (F9))de
(13)
where p € P, which represents the lattice control points
deformations vectors defined as follows:

PC:[Pﬁl,...,Prfm’ny,Plyvl,...,P;{mny]T (14)

The control lattice size is 1, X n, and the cubic splines
representation of the deformation vector is defined by:

U=UX)=%],%0_ Bz<u>Bm<v>Pz~+l,j+m( 5
Typical definition of 4, j, u, v, By, B, is found in [15].
For each level of the control lattice resolution, we assume
that the amount of pixel deformation is relatively small such
that its vector representation can be approximated using
Taylor series expansion as follows:

P5(X +U) ~ 3(X) + (Ves(X))TU (16)

The control points are required to move and minimize
the above objective function and hence satisfy the following
condition:

o En =0 (17)

By setting ®(X) = ®4(X) — ®3(X), the above formu-

lation will lead to:

Jo <I>T<v<1> )T dQ = [o y% o)’ <V¢5)T%§;dﬂ
A fo (5.5 T&(%}H(%y )T 2 (5.8))de
(18)

The above equation is linear in terms of control points
deformations. We can formulate the following linear sys-
tem to give a closed form solution for the unknown defor-
mations:

QP. =K (19)

The elements of the above matrix equation are estimated
over the domain (p = Prow):

Qrow col 2_ fQ (VQE)TUI)TEVQB)T%SEQ
_/\fQ 6695 Taap(%acg) + (6(9; )Taap(%yg))dﬂ
(20)
Krow = fQ (PT(VQﬁ)T%SdQ (21)

where U’ is the cubic spline coefficient associated with the
control point of the typical row and column of the equation.

Different elastic shape registration experiments are
demonstrated in Fig. 4. In all the experiments, an initial
lattice resolution of 7 X 7 is used, then the level is increased
until a satisfactory deformation is achieved. Large local de-
formations are covered for the low resolution levels while
fine details need higher resolution and so on. Another de-
formation example of open contour (teeth crowns or tags)
is shown in Fig. 5. Investigating the point correspondence
in each case, we find that: our algorithm gives exact phys-
ical dense correspondences, and the grid deformations do
not have over-folding or crossovers which shows the neces-
sity of the coarse to fine strategy and the added smoothing
term weighted by A. The step by step deformation is very
important since it justifies that the change of the implicit
representation due to the small movement can be approxi-
mated by the first order Taylor series expansion.

Compared to the approach proposed in [15], ours is
more complicated but the proposed closed form solution
for the control points positions is a great advantage. Un-
less we use the closed form solution, the total execution
time will be doubled. Assume that the registration prob-
lem needs N incremental levels of free form deformations,
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Figure 4. Different elastic registration examples of corpus callosum shapes (source contour is given in red, target contour is drawn in green,
and deformed contour is shown in blue): (a) Initial position, (b) Final correspondences, and (c) Final grid deformation.

each level has Ncp = n, X mny control points, and hence
2 X N¢p unknown variables (z and y components) for
the gradient descent. If the average number of iterations
of the gradient descent needed for each variable to reach
the steady state is Ny, with average time per iteration
of At (with the method in [15]), the total time will be
Time, = Zf\;@ X Nép * Nyter X At). For the same
IFFD setup with the gradient descent of Eq. 13 which does
not use the closed form solution, the total time will be dou-

bled Times = YV (2 X Nip X Niter X (2 x At)) be-
cause we use an implicit vector representation which has
two components. The gradient descent execution time for
an iteration will be roughly twice that of At. In case of ap-
plying the proposed closed form solution, the gradient de-
scent iterations will be omitted. The new execution time can
be estimated as QurTime = Zf;l(2 X Nip % (2 x At)).
The time to construct the linear system of the closed form
(Eq. 19) is equal to the time of one gradient descent it-



eration for all the variables. Our time holds the relation
OurTime = 2 % Time; /Nyter. A good steady state so-
lution for the gradient descent needs a number of iterations
greater than 2 which guarantees that our execution time is
less than that of the approach in [15].

6. Conclusion and Future Research

An efficient approach has been proposed for the shape
registration problem. The technique depends on represent-
ing the shape implicitly in a higher dimensional vector func-
tion. It controls the registration process by using differ-
ent scales in different coordinates directions. The VDF is
used within an energy formulation that measures the dis-
similarity between the source and target shapes represen-
tations. A variational scheme is proposed to calculate the
registration parameters for both the global and local cases.
Compared to the other conventional approaches:(1) Our re-
sults are promising and does not need any point correspon-
dences, (2) Our approach can work for large and different
scales without any problems, (3) The local deformations
are handled by a closed form solution for the positions of
the control points for each level of the IFFD. Regarding fu-
ture work, applications like shape-driven segmentation and
tracking will be involved to use the vector distance function.
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Figure 5. Different elastic registration examples of open shapes (source contour is given in red, target contour is drawn in green, and

deformed contour is shown in blue): (a) Initial position, (b) Final correspondences, and (c) Final grid deformation.



