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Abstract

Many vision tasks are posed as either graph partition-
ing (coloring) or graph matching (correspondence) prob-
lems. The former include segmentation and grouping, and
the latter include wide baseline stereo, large motion, ob-
ject tracking and recognition. In this paper, we present an
integrated solution for both graph matching and graph par-
tition using an effective sampling algorithm in a Bayesian
framework. Given two images for matching, we extract two
graphs using a primal sketch algorithm [4]. The graph
nodes are linelets and primitives (junctions). Both graphs
are automatically partitioned into an unknown number of
K + 1 layers of subgraphs so that K pairs of subgraphs
are matched and the remaining layer contains unmatched
backgrounds. Each matched pair represent a ”moving ob-
ject” with a TPS (Thin-Plate-Spline) transform to account
for its deformations and a set of graph operators to edit the
pair of subgraphs to achieve perfect structural match. The
matching energy between two subgraphs includes geomet-
ric deformations, appearance dissimilarities, and the cost
of graph editing operators. We demonstrate its application
on two tasks: (i) large motion with occlusion, and (ii) au-
tomatic detection and recognition of common objects in a
pair of images.

1. Introduction

With graph representations, many vision tasks are for-

mulated as either a graph partitioning (coloring) problem

[1, 23], such as segmentation, clustering, and grouping, or

a graph matching (correspondence) problem, such as wide

baseline stereo [8, 15, 6], large motion [14, 11], object

tracking and recognition [19, 2, 25]. This paper is aimed

at an integrated solution for simultaneous graph partition

and matching. Fig. 1 shows an experimental result using

our method. Given two input images, we compute two at-

tributed graphs by the primal sketch method [4] which may

input image pair
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layer 2

layer 3

layer 0

Figure 1. Simultaneous graph matching and partition. Two in-

put images I, I′ (top) are automatically transformed into attribute

graphs G, G′ by a primal sketch method[4]. Both G and G′ are

partitioned into 4 layers of subgraphs with layers 1-2-3 being the

common objects matched between I, I′, and layer 0 the unmatched

backgrounds. The dark line segments are edited portions.

be imperfect. Then both graphs are automatically parti-

tioned (colored) into K = 3 layers of matched subgraphs

for objects of similar structures (see person, cars, and me-

ters) and a remaining layer for the unmatched backgrounds

(layer 0).

There is a vast literature on graph matching algorithms
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based on a pair of images. These can be divided into three

categories.

Category 1: single layer and point based. These al-

gorithms match local independent features without explicit

graph structures, such as Harris corners, KLT features [10],

scale invariant features [5, 13], local edge structure features

[22] and geometric blur descriptors [19, 25]. These features

are often robust against certain geometric distortions and il-

lumination changes, but carry little information about larger

object structures. When a match is performed between two

sets of features, a single layer transformation model, e.g.

affine or TPS (thin plate spline), is used to account for ge-

ometric distortions. Current state of the art algorithms in-

clude the iterative closest point (ICP) algorithm [7] and the

soft-assignment algorithm [9].

Category 2: single layer graph based. These algorithms

match explicit graphs with editing, such as, medial axis

graphs [20] and shock graphs [12, 21]. They address struc-

tural or topological changes by introducing costs for graph

operators. The latter edit the graph for perfect structural

match (isomorphism). Most recent works include shape

matching for object recognition [25] and shape context [19]

for bottom-up initializations.

Category 3: multi-layer point based. These include lay-

ered motion by EM clustering [24, 18, 16] for small motion,

and RANSAC based methods [17, 6] for larger motion. An

example of the state of the art algorithm is the Wills and Be-

longie algorithm [11] for large motion segmentation using

RANSAC iteratively, based on texture point features.

Our method belongs to a fourth category – multi-layer

graph based matching with explicit graph editing. Gen-

erally speaking, point features are often good for texture

rich areas (high entropy), while graph (lines, curves, axes,

sketches) representations are good for textureless or cartoon

areas (low entropy). As real world images contain both tex-

ture and cartoon areas, in this paper, we adopt a mixed rep-

resentation which has both graphs and points. The latter

are treated as isolated vertices. Fig 8 shows a comparison

experiment for matching two images which have both tex-

ture and cartoon structures, in comparison to the results of

RANSAC and SIFT based matching in Fig. 9.

A key contribution of this paper is a stochastic algorithm

for simultaneous graph partitioning, matching, and editing,

based on an attributed sketch graph representation. A num-

ber of graph operators are developed to edit the subgraphs

to achieve perfect structural match. The algorithm samples

effectively a huge joint state space, and computes a nearly

optimal match and partition solution in a Bayesian frame-

work. The matching energy between each pair of subgraphs

includes geometric transformation, appearance dissimilari-

ties, and the cost of operators for editing the graphs.

The joint state space for partitioning and matching is so

large and complex that it cannot be searched exhaustively

and demands effective sampling techniques. For example,

consider a source graph of N nodes and a target graph of

M nodes, for K-layer partitioning. The solution space is

of order O((KM)N ). In this paper, we adopt two types of

Markov chain Monte Carlo (MCMC) dynamics to sample

the joint space. One key observation in both dynamics is to

make use of important proposals generated from bottom-up

computation to drive the MCMC search.

(I) For graph partitioning, we adopt the SW-cut algo-

rithm [1] for sampling the partition space. Unlike the sin-

gle site Gibbs sampler, the SW-cut algorithm groups adja-

cent nodes into connected components and flips the color

of a large subgraph in each step. The connected compo-

nents are drawn through probabilistic sampling by turning

on/off edges in the graph according to the local probabili-

ties. These local probabilities define how likely two adja-

cent nodes in a graph belong to the same color, based on

their similarity in appearance and goodness of alignment.

(II) For graph matching, each pair of subgraphs are

matched by a TPS (thin-plate spline) transform and graph

editing operators. This involves more parameters than the

rigid affine transformation where traditional sampling algo-

rithms, like RANSAC and MLESAC [17], are applied. To

narrow the combinatorial number of possible matches, we

start from some strong seed nodes (in source graph) that

have fewer possible matches (in target graph), for example,

a long curve or a cross is less ambiguous than a short line

segment. The seed nodes are then merged hierarchically to

form what we call ”seed graphs”. The nodes in a seed graph

are ”frozen” and must match. This is similar to the multi-

level SW-cut method. A seed graph in source graph and its

match in target graph propose a strong candidate for growth

into a pair of matched objects.

We demonstrate this algorithm on vision tasks such as

large motion with both opaque and transparent occlusions,

object detection and matching with similar structure and

different appearance, and wide baseline stereo.

The paper is organized in the following manner. Sec-

tion 2 presents the Bayesian formulation. Section 3 presents

the distance measures. Section 4 presents the algorithm.

Section 5 shows two experiments: (i) object detection and

matching, and (ii) large motion correspondence. Section 6

concludes the paper with a discussion.

2. Bayesian formulation
Given an image I, we compute an attribute graph G

by the primal sketch algorithm [4] together with the SIFT

point detection algorithm. G is denoted by a 3-tuple G =
(V, E, A) with V being a set of vertices (nodes) for the im-

age primitives (disconnected feature points and blobs, edges

and bars with intensity profiles, junctions), E a set of edges

for connectivity of the nodes (these represent adjacency re-

lations and do not correspond to image edges or any image



element), and A a set of attributes for position, orientation

and intensity profile crossing the primitive.

In practice we compute the two graphs G and G′ from I
and I′ respectively by a primal sketch approach.

G = arg max
G

p(I|G)p(G)

G′ = arg max
G′

p(I′|G′)p(G′).

G and G′ are imperfect due to inference uncertainties and

errors. Therefore we adopt graph operators to edit the

graphs in the matching and partitioning process, and thus to

correct some of the errors. The errors occur in both graphs,

such as missed detection of a node or edge in both graphs

G and G′, will not be restored. For clarity, we will focus

the discussion on inferring layered matching configuration

by assuming that G and G′ are given.

2.1. Graph partition and coloring

The goal of graph partitioning is to divide all nodes in

V into an unknown number of K + 1 subgraphs where

vertices in each subgraph receive an unique color (label)

l(v) ∈ {0, 1, ..., K). We denote a graph partition of G by

ΠG = {g0, g1, · · · , gk}

Each subgraph gi = (Vi, Ei, Ai) is a separate layer and is

itself an attribute graph.

We assume K should be small and each subgraph is

preferably contiguous. Thus we introduce a Potts model

as a prior for the partition ΠG plus an exponential term for

the number K.

p(K) ∝ exp{−αK}
p(ΠG|K, G) ∝ exp{−β

∑
(s,t)∈E

1(l(s) = l(t))}.

1(x) ∈ {−1, +1} is an indicator function for a Boolean

variable x.

2.2. Integrating partition with matching

Given a source graph G = (V, E, A) and a target graph

G′ = (V ′, E′, A′), we can denote the graph matching func-

tion by

Ψ : V �→ V ′ ∪ {ø}
For each node in v ∈ V , Ψ(v) ∈ V ′ or Ψ(v) = ø indicating

no match. In later formulation, the matches on the vertices

should not be independent but account for the graph con-

nectivity.

To couple with the graph partition formulation ΠG, we

break Ψ into K matching functions,

Ψi : Vi �→ V ′
i ∪ {ø}, i = 1, 2, ..., K.

As the result of matching, the target graph G′ is also parti-

tioned into K + 1 subgraphs {g′0, g′1, · · · , g′K}, where sub-

graph g′0 has no correspondence in the source graph. The

prior over Ψi is defined so that two adjacent nodes in a sub-

graph gi should either be both matched or both unmatched

to minimize the energy.

p(Ψi|gi) ∝ exp{−γ
∑

(s,t)∈Ei

1(Ψi(s) = ø)1(Ψi(t) = ø))}

1G

2G

Figure 2. Simultaneous graph coloring (partition) and matching.

Now we have K-pairs of matched attribute graphs,

(gi, g
′
i), i = 1, 2, ..., K.

gi is transformed into g′i by a set of geometric transforms,

photometric (appearance) transforms, and topological edit-

ing operators, denoted by

Φi = (Φgeo
i , Φpho

i , Φtop
i )

Later, the matching energy terms or distances between gi

and g′i are defined based on these three aspects. From

gi, Φi, Ψi, one can predict its match g′i in the target graph

by a prediction probability p(g′i|Φi, Ψi, gi). It will be de-

fined as a product of the probabilities for the photometric,

geometric, and topological transforms in the next section.

By combining graph partitioning and graph matching,

our objective is to compute the following representation W
from two graphs G, G′,

W =
(
K, ΠG, g0, {gi = (Vi, Ei, Ai), Φi, Ψi}K

i=1

)
,

3. Distance measures
As denoted earlier, Φi = (Φgeo

i , Φpho
i , Φtop

i ) are the ge-

ometric, photometric and topological transforms, we have

p(g′i|gi, Ψi, Φi)p(Φi|Ψi, gi)
= p(g′i|Φgeo

i , Ψi, gi)p(Φgeo
i |Ψi, gi) ·

p(g′i|Φpho
i , Φgeo

i , Ψi, gi)p(Φpho
i |Ψi, gi) ·

p(g′i|Φtop
i , Ψi, gi)p(Φtop

i |Ψi, gi)

We define these 3 types of distance in the following section.

3.1. Geometrical distance

The geometric transform Φgeo
i from gi to g′i includes an

global affine transformation Ai and a TPS warping for de-

formation Fi(x, y) in a 2D domain Λi covered by gi.

Φgeo
i = (Ai, Fi)



The affine transformation A is a matrix

A =
(

Six 0
0 Siy

)(
cos θi − sin θi

sin θi cos θi

)(
1 γi

0 1

)
(1)

where θ is the rotation angle, Sx and Sy denote scaling, and

k is shearing. The energy on A is defined as

Egeo
A (Ai) = Erot(θ) + Escl(Sx, Sy) + Eshear(γi).

The energy for the TPS deformation f is

Egeo
TPS(Fi) = λ

∫ ∫
Λi

(F 2
xx + 2F 2

xy + F 2
yy)dxdy.

Another matching cost is the residue between the mapped

position of each vertex v ∈ Vi in gi and the position of

v′ = Ψi(v) in g′i. Each unmatched vertex v ∈ Ui = {v :
Φi(v) = ø} receives a constant penalty α.

Egeo
res (V, V ′)=

∑
Ψi(v) �=ø

λgeo((xv−xv′)2+(yv−yv′)2)+αgeo|Ui|.

In summary, the probability for geometric transform is

p(g′i|Φgeo
i , Ψi, gi)p(Φgeo

i |Ψi, gi) ∝ e−Egeo(Φgeo
i ,V,V ′)

Egeo(Φgeo
i , V, V ′) = Egeo

res (V, V ′)+Egeo
A (Ai)+Egeo

TPS(Fi).

3.2. Photometric distance

Two matched nodes v, v′ = Φi(v) in gi, g
′
i correspond to

two image primitives (edgelets and bars) in the source and

target images I and I′i respectively. After geometric align-

ment, the photometric distance measures the dissimilarity

in two appearance vectors µv and µv′ . The latter are inten-

sity profiles perpendicular to the edges or bars. Again the

unmatched nodes receive constant penalty,

Epho(µ(gi), µ(g′i)) = λpho‖µv − µv′‖2 + αpho|Ui|.

The probability for photometric variance is

p(g′i|Φpho
i , Φgeo

i , Ψi, gi)p(Φpho
i |Ψi, gi) ∝ e−Epho(µ(gi),µ(g′

i)).

3.3. Topological distance

Preserving topological structures is an important issue

in graph matching. This is particularly important for re-

covering from occlusions, and it distinguishes our approach

from many previous works that match merely a set of points

[24, 5, 10].

For a node v ∈ Vi in gi = (Vi, Ei, Ai), we denote its

neighbors by

∂v = {u :< v, u >∈ Ei}

Figure 3. Topological operators for editing graphs.

Suppose v′ = Ψi(v) ∈ V ′ is a matched node with neighbor-

hood ∂v′. The match Ψi is said to be isomorphic between v
and v′, if

u ∈ ∂v ⇔ u′ ∈ ∂v′, u′ = Ψi(u), u = Ψ−1(u′).

If the match is not isomorphic, a number of operators have

to be applied, such as death, birth, split or merge of nodes

or edges. Previous graph editing work involved the medial

axis and shock graphs[12, 20]. Each operator δ is associ-

ated with certain cost cost(δ). We denote the whole set of

operators between gi, g
′
i to be

opi(gi, g
′
i) = {δij : j = 1, 2, ..., mi}.

Thus the topological probability of match g to g′ is:

p(g′i|Φtop
i , Ψi, gi)p(Φtop

i |Ψi, gi) ∝ e−
Pmi

j=1 cost(δij). (2)

Fig. 3 shows some typical examples.

4. Computing algorithm
We compute W in a Bayesian framework,

W ∗ = arg max
W

p(W |G, G′)

= arg max
W

p(G′|G, W )p(W |G).

As the K+1 subgraphs are matched independently, we have

p(G′|G, W ) as a product of the prediction probabilities.

p(G′|G, W ) = p(g′0)
K∏

i=1

p(g′i|Φi, Ψi, gi)

Note that the prior on W is given by

p(W |G) = p(K, ΠG, {Ψi}, {Φi}|G)

= p(K)p(ΠG|K, G)p(g0)
K∏

i=1

p(Ψi|gi)p(Φi|Ψi, gi)

The final Bayesian formulation is

W ∗ = arg max
W

[p(K)p(ΠG|K, G)p(g0)p(g′0)] ·[
K∏

i=1

p(g′i|Φi, Ψi, gi)p(Φi|Ψi, gi)p(Ψi|gi)

]



Figure 4. Computing seed subgraphs by hierarchical aggregation. Suppose we are searching for a bear head template in a cluttered cartoon

image. The first row shows some initial seeds as candidates. As the number of seed grows, the number of candidates drops to one final

candidate at the bottom.

p(K),p(ΠG|K, G) and p(Ψi|gi) have been defined pre-

viously. p(g0) and p(g′0) are prior probabilities for the back-

ground subgraphs and modeled as

p(g0) ∝ exp{−τ |V0|}
p(g′0) ∝ exp{−τ |V ′

0 |}.
Intuitively, each unmatched node receives a penalty τ .

The key variables in W are the partition ΠG, the match

Ψ = {Ψi}, and the transforms Φ = {Φi}. In practice, once

the partition ΠG and the correspondence {Ψi} are fixed,

computing {Φ∗
i } is relatively easy and can be done deter-

ministically.

Φ∗
i = arg max

Φi

p(g′i|gi, Ψi, Φi)p(Φi|Ψi, gi).

Thus we are only concerned with the partition ΠG and

the matching Ψ. From a computational view, each node v
in G has a set of label candidates denoted by

Lv = {lv} ⊂ {0, 1, · · · , K},
and a set of match candidates denoted by

Mv = {mv} ⊂ V ′ ∪ {ø}.
Fig. 5 shows the coloring and matching problem. Each node

v has two vertical lines indicating the two sets of candidates.

The red line is for match candidates Mv and the blue line

shows label candidates Lv .

The joint state solution space ΩΠ,Ψ is combinatorial.

Consider a source graph of N nodes and a target graph of

M nodes with K-coloring. The solution space would have

O((KM)N ) possible solutions. To sample this space effec-

tively, we need to narrow the possible combinations using

bottom-up information.

Figure 5. Sampling partition ΠG and match Ψ. Each node v and

a seed graph (composite node) has two 2 sets of candidates: the

dots on the red line are the match candidates Mv , and dots on the

blue line are the label candidates Lv . A solution is an assignment

of both the blue and red lines.

The general idea is similar in spirit to RANSAC and its

variations[17]. We first draw some points and calculate the

overall matches, then keep the strong set of points that have

the best match. In our graph matching the distance measure

includes TPS (thin-plate spline) transform and graph editing

operators. This is much more complex than the low dimen-

sional parameters spaces where RANSAC is often applied

to. Instead of drawing points randomly, we start with some

strong seed nodes and grow them into seed graphs. Each

seed graph is then a composite candidate for matching. In

the following we briefly discuss the seed graph.

4.1. Initializing the seed graphs

The seed graph computation is illustrated in Fig. 4. Sup-

pose we are searching for a target graph G′, such as the bear

head shown on the right, in a cluttered cartoon image trans-

ferred into a large source graph. We first identify a number

of nodes as seeds in the source graph. These seeds should



have less ambiguity, such as long curves, junctions, as seen

in the top row. In other words, the probability on the red

line of a seed node has low entropy and thus is more infor-

mative than others. We then grow a seed node into a small

seed graph. The number of candidates in Mv drops as the

seed graphs grow and merge. The last row in Fig. 4 shows

the best candidate found for the bear head template. The

merged seed growing and merging process greatly reduces

the computation complexity. Since the nodes inside a seed

graph are bonded and always receive the same color, they

share two common vertical lines (red and blue) in Fig. 5

with fewer candidates. These seed graphs provide context

and spatial constraints to matching other nearby nodes.

We adopt a branch-and-bound algorithm for growing and

merging the seed graph. This algorithm was used in match-

ing skeleton (medial axis) graphs for object recognition

[20]. Suppose g̃ = (Ṽ , Ẽ, Ã) is an initial seed graph (e.g.

a vertex or a curve fragment) identified in G. We define a

distance function here for g̃ and its corresponding subgraph

g̃′ (a matching candidate) in target graph G′ by

D(g̃, g̃′) = min
Φ̃

− log[p(g̃′|g̃, Φ̃)p(Φ̃|g̃)].

With this distance function, the branch-and-bound algo-

rithm can quickly prune bad branches and find good can-

didates in the target graph G′.
Identifying good seed graphs in G is a matter of deciding

the visiting/search order. A seed graph should be maximally

discriminative and robust. For example in textured parts the

sketch structures are less reliable and some affine invariant

key feature points will be helpful to narrow matching pro-

posals in the bottom-up process. In textureless parts, some

structural elements (curves) are more informative, for ex-

ample the long curves in Fig. 7 and junctions in Fig. 8.

4.2. Simultaneously partitioning and matching

The seed graphs serve to narrow the search space in

which our algorithm solves a double labeling problem as

illustrated in Fig. 5. It simulates a Markov chain which vis-

its a sequence of states in the joint space ΩΠ,ψ over time

t,
(Π(t), Ψ(t)) ∈ ΩΠ,Ψ , t = 1, 2, ....

The MC =< ν,K, p > consists of three elements. (1)

An initial probability ν(Π, Ψ). (2) Two transition kernels

K(Π, Π′) and K(Ψ, Ψ′) which are conditional probabilities

for moving from state Π(t) = Π to Π(t + 1) = Π′, and

from state Ψ(t) = Ψ to Ψ(t + 1) = Ψ′ given the other is

fixed. (3) An invariance probability p(Π, Ψ), which is the

Bayesian posterior probability mentioned at the beginning

of this section.

Our sampling process iterates between two types of

Markov chain Monte Carlo dynamics, which are designed

under the Metropolis-Hastings method.

Dynamics I. Fixing the match Ψ, we sample the parti-

tion ΠG from a conditional probability p(ΠG|Ψ) by the

Swendsen-Wang cut algorithm[1].

The SW-cut proceeds in two steps: (i) generating a con-

nected component (subgraph) through turning on/off the

edges probabilistically; and (ii) flipping the color of the se-

lected subgraph collectively with an acceptance probability

calculated by the Swendson-Wang cut. This step includes

splitting (adding a new color), merging (removing a color),

and flipping (changing a color).

Dynamics II. With fixed ΠG, sample Ψ from a conditional

probability p(Ψ|ΠG). For each node v which could be ei-

ther a single node or a seed graph, we have a set of candi-

date matches which have passed the bottom-up screening.

We then adopt a Gibbs sampler to sample a match from the

candidate set. To improve the efficiency, the algorithm visits

stronger seed graphs and propagates the matches to nearby

nodes.

5. Experiments
We present two types of experiments: (i) object detection

and recognition, and (ii) large motion and object matching,

on both artificial images and real testing images.

Figure 7. Examples of object detection: finding the bear head in

cartoon images. Each row shows (left): input image, (middle):

source graph G, and (right): the detected object (head at various

pose) with editing.

Example I: Object detection in cartoon images. The

object detection experiments are shown in Fig. 7 and Fig. 4.

The task is to find a given template G′ – the head of a



Figure 6. Three simple examples of matching a source graph (a) to a target graph (b). (c) are results of our proposed method which

automatically decomposes the graph into multi-layers (subgraphs) and matches each pair with a thin plate spline model. The occluded

parts are unmatched and thus edited. We compare with state-of-the-art methods in (d) results from (Rangarajan, 2003) and (e) results from

shape context (Belongie 2002)

bear in 5 cartoon images. The images are transferred into

a sketch graph G with color and intensity information dis-

carded. The matching is based on the graphs alone. The

results show successful matches with the unmatched part

being backgrounds. This method tolerates geometric defor-

mations and some structural differences.

Example II: Layered matching in artificial images.
Fig. 6 shows three pairs of artificial images for large mo-

tion (opaque and transparent) with occlusion. Note that no

photometric information is used here. The results of our

method are shown in the third column. For comparison,

Fig. 6).(d) shows the single layer matching results produced

by the state-of-the-art graph matching algorithm [9], and

Fig. 6).(e) displays the shape context match [19] results.

Example III: Layered matching in real images. Fig. 1

and Fig. 8 show two experiment results for simultaneous

matching and partitioning in real images. In Fig. 1, the cars

have different appearance and are in slightly different poses

occluded by a person. They are matched, and the occluded

segments are recovered. In Fig.8, the people inside the pic-

ture switched positions with large camera motion. No cam-

era information is given in the experiment. In the two exam-

ples, the car and the wall have little texture (low entropy),

and thus they are not matched by the feature point based

methods.

For comparison, we show the SIFT match results in

Fig. 9 (a). The algorithm extracts many interest points

on textured surface (picture frame in the background) and

matches them quite well. However, on the non-texture sur-

face, it gives very few matches. We show corner detection

with RANSAC match results in Fig. 9 (b). Most of the cor-

ners are matched correctly with motion estimation, but it

failed in matching the cartoon areas (background and per-

son).

Figure 9. For comparison. (a) Matching results by SIFT descriptor

for comparison. Dense matches are found around texture regions,

but very few matches can be found around texture-less areas.

(b) Harris corner detection and robust estimation with RANSAC.

Most of the corners are matched correctly with motion estimation,

but curves and lines in the textureless areas are not matched well.



Figure 8. An example of layered graph matching. There are three matched layers (g1,g2,g3) between the images, which are denoted by

three colors(blue,green and yellow) and unmatched sketches (g0) are highlighted in red. For clarity, only some of the matched contours

between images were labeled with different colors to show layered match.

6. Summary
In this paper, we present an algorithm for layered graph

matching. We compute graphs which include both tex-

tural (feature points) and textureless (cartoon) elements.

A global probability model incorporates geometric trans-

forms, photometric variations and topological editing costs.

The inference process iterates two types of MCMC dy-

namics in the joint partition and match space. This paper

presents a number of examples with large motion matching

where occlusions are recovered via graph editing, as well

as object detection and matching across two image frames.

We are applying this algorithm to object recognition and

automated learning object category from a set of images.
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