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Abstract

We present a new formulation to multi-view stereo that

treats the problem as probabilistic 3D segmentation. Pre-

vious work has used the stereo photo-consistency criterion

as a detector of the boundary between the 3D scene and

the surrounding empty space. Here we show how the same

criterion can also provide a foreground/background model

that can predict if a 3D location is inside or outside the

scene. This model replaces the commonly used naive fore-

ground model based on ballooning which is known to per-

form poorly in concavities. We demonstrate how the prob-

abilistic visibility is linked to previous work on depth-map

fusion and we present a multi-resolution graph-cut imple-

mentation using the new ballooning term that is very ef-

ficient both in terms of computation time and memory re-

quirements.

1. Introduction

Multi-view stereo [18] is an image-based 3D modeling

technique that is becoming increasingly popular for a wide

range of applications such as cultural heritage preserva-

tion, online shopping or computer games. It relies on the

photo-consistency constraint, which stipulates that a loca-

tion on the surface of an object should have similar ap-

pearance from different viewpoints. However, while photo-

consistency can help identify points on the surface of an

object, it does not directly distinguish between locations in-

side or outside the object. Many techniques reviewed in

[18], especially the ones that recover globally optimal so-

lutions, require some knowledge about which regions of

space are inside or outside the object. This has been typ-

ically provided from additional cues such as silhouettes or

in the form of an inflationary or deflationary bias, i.e., a

ballooning term [6]. The main contribution of this paper

is to show how to derive a form of inside/outside classi-

fier from photo-consistency itself. We observe that when a

location is identified as photo-consistent in a set of views,

the lines joining the viewpoints and that location should be

empty space. This information, when integrated across all

views and all locations, provides a very useful classification

of space into inside or outside the object, i.e., foreground

and background. It can then be used as an intelligent bal-

looning term with previous existing techniques, improving

their results.

The paper is organized as follows: In Section 2 we re-

view the literature and explain the main motivation of the

paper. In Section 3 we sketch the basics of the technique and

describe how to use the concept of probabilistic visibility as

an intelligent ballooning term in a multi-resolution graph-

cut implementation. Section 4 describes the new probabilis-

tic approach to visibility computation from a set of depth-

maps. Finally in Section 5 we validate the proposed ap-

proach by showing high quality reconstructions and com-

paring it to previous algorithms.

2. Motivation and related work

We consider a set of input photographs of an object and

their corresponding camera projection matrices. The object

is considered to be sufficiently textured so that dense cor-

respondence can be obtained between two different images.

The goal is to obtain a 3D surface representation of the ob-

ject, e.g., a triangular mesh.

As recently reviewed by Seitz et al. [18], a vast quan-

tity of literature exists on how to obtain such a 3D rep-

resentation from images only. Nearly all of them use a

photo-consistency measure to evaluate how consistent a re-

construction is with a set of images, e.g., normalized cross

correlation or sum of squared differences.

The inspiration of this paper is recent progress in multi-

view stereo reconstruction, and more specifically on vol-

umetric techniques. The overview of state-of-the-art al-

gorithms for multi-view stereo reconstruction reported by

Seitz et al. [18] shows a massive domination of volumetric

methods. Under this paradigm, a 3D cost volume is com-

puted, and then a 3D surface is extracted using tools pre-

viously developed for the 3D segmentation problem such
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as snakes [12], level-sets [17] or more recently graph-cuts

[4, 9, 13, 16, 19, 20, 21].

The way volumetric methods usually exploit photo-

consistency is by building a 3D map of photo-consistency

where each 3D location gives an estimate of how photo-

consistent the reconstructed surface at that location would

be. The only requirement to compute this photo-

consistency 3D map is that camera visibility is available.

Some methods use an initial approximation of the true sur-

face to estimate visibility, such as the visual hull [21]. It-

erative methods use instead the notion of “current surface”.

The visibility computed from the reconstructed surface at

iteration i− 1 is then used to compute photo-consistency at

iteration i, improving the reconstruction gradually [8]. Fi-

nally, some recent methods are able to compute a visibility-

independent photo-consistency where occlusion is treated

as an additional source of image noise [12].

Independent of how visibility is computed, all the volu-

metric methods suffer from a limitation that is specific to

the multi-view stereo technique, namely that there is no

straightforward way of defining a foreground/background

model for the 3D segmentation problem. This is because the

primary source of geometric information is the correspon-

dence cue which is based on the following observation: A

3D point located on the object surface projects to image re-

gions of similar appearance in all images where it is not oc-

cluded. Using this cue one can label 3D points as being on

or off the object surface but cannot directly distinguish be-

tween points inside or outside of it. This lack of distinction

has been usually addressed by using a data-independent bal-

looning term that produces a constant inflationary tendency.

The motivation for this type of term in the active contour

domain is given in [6], but intuitively, it can be thought of

as a shape prior that favors objects that fill the bounding vol-

ume in the absence of any other information. On one hand,

if the ballooning term is too large, then the solution tends

to over-inflate, filling the entire bounding volume. On the

other hand, if it is too small, then the solution collapses into

an empty surface.

When silhouettes of the object are available, an addi-

tional silhouette cue can be used [9, 20, 21], which pro-

vides the constraint that all points inside the object volume

must project inside the silhouettes of the object. Hence the

silhouette cue can provide some foreground/background in-

formation by giving a very high likelihood of being out-

side the object to 3D points that project outside the silhou-

ettes. However this ballooning term is not enough if thin

structures or big concavities are present, in which case the

method fails (see Fig. 4 middle row). Very recently, a data

driven, foreground/background model based on the concept

of photo-flux has been introduced [4]. However, the ap-

proach requires approximate knowledge of the object sur-

face orientation which in many cases is not readily avail-

able.

In this paper we propose a probabilistic framework

to construct a data-aware ballooning term from photo-

consistency only. This framework is related to the work

of [1, 5, 10] in that we aim to model geometric occlusion

in a probabilistic way. However we are the first to study

the problem in a volumetric framework adapted to the 3D

segmentation problem. Roughly speaking, instead of just

assigning a photo-consistency value to a 3D location, this

value is also propagated towards the camera centers that

were used to compute it. The key observation about photo-

consistency measures is that, besides providing a photo-

consistency score of a 3D particular location, they also give

additional information about the space between the location

and the cameras used to compute the consistency. In other

words, if a set of cameras gives a high photo-consistency

score to a 3D location, they give at the same time a “back-

ground” score of the same strength to the 3D segments link-

ing the 3D location with the camera centers. This follows

from the fact that, if the surface was really at that location,

then the cameras that gave it a high photo-consistency score

would indeed see the surface without occlusion, i.e., the

segments linking the camera centers with the 3D location

would all be background.

To our knowledge, this background score is not used in

any volumetric multi-view stereo algorithm, perhaps with

the exception of [11], where photo-consistency is used to

generate depth-maps which are then merged together us-

ing a volumetric depth-map fusion technique [7]. It turns

out that depth-map fusion techniques are very related to

our approach. In fact, we demonstrate how the probabilis-

tic visibility concept explains and generalizes the work of

Levoy and Curless [7] on using signed distance functions

for depth-map fusion. As we show in Section 4, the work

of [7] naturally arises as the probabilistic solution whenever

the sensor noise is modeled with a logistic distribution.

3. Multi-view stereo using graph-cuts

In [3] and subsequently in [2] it was shown how graph-

cuts can optimally partition 2D or 3D space into foreground

and background regions under any cost functional consist-

ing of the following two terms:

• Labeling cost: for every point in space there is a cost

for it being labeled foreground or background.

• Discontinuity cost: for every point in space, there is

a cost for it lying on the boundary between the two

partitions.

Mathematically, the cost functional described above can be

seen as the sum of a weighted surface area of the boundary

surface and a weighted volume of the foreground region as



follows:

E[S] =

∫

S

ρ(x)dA +

∫

V (S)

σ(x)dV (1)

where S is the boundary between foreground and back-

ground, V (S) denotes the foreground volume enclosed by

S and ρ and σ are two scalar density fields. The application

described in [3] was 2D/3D segmentation. In that domain

ρ(x) is defined as a function of the image intensity gradient

and σ(x) as a function of the image intensity itself or local

image statistics.

This model balances two competing terms: The first one

minimizes a surface integral of photo-consistency while the

second one maximizes the volume of regions with high ev-

idence of being foreground. While the photo-consistency

term is relatively easy to compute from a set of images,

very little work has been done to obtain an appropriate bal-

looning term. In most of the previous work on volumet-

ric multi-view stereo the ballooning term is a very simplis-

tic inflationary force that is constant in the entire volume,

i.e., σ(x) = −λ. This simple model tries to recover thin

structures by maximizing the volume inside the final sur-

face. However, as a side effect, it also fills in concavities

acting as a regularization force and smoothing fine details.

Ideally, the ballooning term should be linked to the no-

tion of visibility, where points that are not visible from any

camera are considered to be inside the object or foreground,

and points that are visible from at least one camera are con-

sidered to be outside the object or background. An intuition

of how to obtain such a ballooning term is found in a clas-

sic paper on depth sensor fusion by Curless and Levoy [7].

In that paper the authors fuse a set of depth sensors using

signed distance functions. This fusion relies on the basic

principle that the space between the sensor and the depth

map should be empty or background, and the space behind

the depth map should be considered as foreground. Here

we propose to generalize this visibility principle and com-

pute a probabilistic version of it by calculating the evidence

of visibility from a given set of depth-maps and use it as an

intelligent ballooning term.

The outline of the full system is as follows:

• create a set of depth-maps from the set of calibrated

input images,

• derive discontinuity cost ρ(x) from the set of depth-

maps, i.e., compute the photo-consistency term,

• derive labeling cost σ(x) from the set of depth-maps,

i.e., use a data-aware ballooning term computed from

the evidence of visibility and,

• extract the final surface as the global solution of the

min-cut problem given ρ(x) and σ(x).

It is worth noting that the algorithm just described can

also be used when the input is no longer a set of images but

a set of depth-maps obtained from other types of sensors,

e.g., laser scanner. In this case the first step can be skipped

and, since the depth-maps are already available, ρ and σ

can be directly computed from the set of depth-maps given

as input.

3.1. Depthmap computation from images

The goal of this section is to generate a set of depth-maps

D1, ..., DN from a sequence of images I1, ..., IN calibrated

for camera pose and intrinsic parameters. Each depth map is

similar to a 2D image but each pixel measures depth of the

scene from the sensor instead of a color value. In order to

create the depth-maps from the set of input images, we pro-

pose to use a robust photo-consistency metric similar to the

one described in [12] that does not need any visibility com-

putation. This choice is motivated by the excellent results

obtained by this type of photo-consistency metric in the re-

cent comparison of 3D modeling techniques carried out by

[18]. Basically, occlusion is considered as another type of

image noise and is handled robustly in the same way as the

lack of texture or the presence of highlights in the image.

For a given image Ii, the depth Di(x) along the optic ray

generated by a 3D location x is computed as follows:

• compute the corresponding optic ray

oi(d) = x + (ci − x)d (2)

that passes through the camera’s optic center ci and the

3D location x,

• as a function of the depth along the optic ray d, project

the 3D point oi(d) into the M closest cameras and

compute M correlation scores between each neighbor

image and the reference image using normalized cross

correlation,

• combine the M correlation scores into a single score

C(d) using a voting scheme as in [12], and find the

final depth Di as the global maximum of C. The confi-

dence of the depth Di is simply C(Di). As an optional

test, a minimum confidence value can be used to reject

depth estimations with very low confidence. The 3D

locations of depths are stored along with their corre-

sponding confidence.

3.2. Discontinuity cost from a set of depthmaps

Once we have computed a depth-map for every input im-

age, we can build the discontinuity map ρ(x) for every 3D

location x. We propose a very simple accumulation scheme

where for every 3D point x its total photo-consistency C(x)
is given by the sum of the confidences of all nearby points



in the computed depth-maps. Since the graph-cut algorithm

minimizes the discontinuity cost, and we want to maximize

the photo-consistency, ρ(x) is simply inverted using the ex-

ponential:

ρ(x) = e−µC(x), (3)

where µ is a very stable rate-of-decay parameter which in

all our experiments was set to 0.05.

As a way of reducing the large memory requirements

of graph-cut methods, we propose to store the values of

ρ(x) in an octree partition of the 3D volume. The size of

the octree voxel will depend on the photo-consistency value

C(x). Voxels with a non-zero photo-consistency value will

have the finest resolution while the remaining space where

C(x) = 0 will be partitioned using bigger voxels, the voxel

size being directly linked to the distance to the closest “non-

empty” voxel (see Fig. 3 for an example of such an octree

partition). As an implementation detail, the only modifi-

cation needed in the graph-cut algorithm to use a multi-

resolution grid is that now links between neighboring nodes

need to be weighted accordingly to the surface area shared

by both nodes.

3.3. Labeling cost from a set of depthmaps

In the same way as the computation of the discontinuity

cost, the labeling cost σ(x) can be computed exclusively

from a set of depth-maps. In this paper we propose to use

the probabilistic evidence for visibility introduced in Sec-

tion 4 as an intelligent ballooning term. To do so, all we

need is to choose a noise model for our sensor given a depth-

map D and its confidence C(D). We propose to use a simple

yet powerful model of a mixture of a Gaussian and a uni-

form distribution, i.e., an inlier model plus an outlier model

p(D|D∗) ∝ N (D∗,Σ) + O. (4)

The inlier model is assumed to be a Gaussian distribution

centered around the true depth D∗. The standard deviation

Σ is considered to be a constant value that only depends on

the image resolution and camera baseline. The outlier ratio

O varies according to the confidence of the depth estima-

tion C(D), and in our case is just proportional to it. The

labeling cost σ(x) at a given location is just the evidence of

visibility. The details of this calculation are laid out in the

next Section.

4. Probabilistic fusion of depth sensors

This section considers the problem of probabilistically

fusing depth maps obtained from N depth sensors. We will

be using the following notation: The sensor data is a set of

N depth maps D = D1, . . . , DN . A 3D point x can there-

fore be projected to a pixel of the depth map of the i-th sen-

sor and the corresponding depth measurement at that pixel

of sensor i
estimate

D (x)i
*

D (x)i

3D surface
x

sensor i

d (x)i

Figure 1. Sensor depth notation. Sensor i measures the depth of

the scene along the optic ray from the sensor to 3D point x. The

depth of point x from sensor i is di(x) while the correct depth of

the scene along that ray is D∗

i (x) and the sensor measurement is

Di(x).

is written as Di(x) while D∗
i (x) denotes the true depth of

the 3D scene. The measurement Di(x) contains some noise

which is modeled probabilistically by a pdf conditional on

the real surface depth

p (Di(x) | D∗
i (x)) . (5)

The depth of the point x away from the sensor is di(x)
(see figure 1). If x is located on the 3D scene surface then

∀i D∗
i (x) = di(x). If for a particular sensor i we have

D∗
i (x) > di(x) this means that the sensor can see beyond

x or in other words that x is visible from the sensor. We

denote this event by Vi(x). When the opposite event Vi(x)
is true, as in figure 1, then x is said to be occluded from

the sensor. To fuse these measurements we consider a pred-

icate V (x) which is read as: ‘x is visible from at least one

sensor’. More formally the predicate is defined as follows:

V (x) ≡ ∃i Vi(x). (6)

V (x) acts as a proxy for the predicate we should ide-

ally be examining which is ‘x is outside the volume of the

3D scene’. However our sensors cannot provide any ev-

idence beyond D∗
i (x) along the optic ray, the rest of the

points on that ray being occluded. If there are locations

that are occluded from all sensors, no algorithm can produce

any evidence for these locations being inside or outside the

volume. In that sense, V (x) is the strongest predicate one

could hope for an optical system. An intuitive assumption

made throughout this paper is that the probability of V (x)
depends only on the depth measurements of sensors along

optic rays that go through x. This means that most of our

inference equations will be referring to a single point x, in

which case the x argument can be safely removed from the

predicates. Our set of assumptions which we denote by J
consists of the following:



sensor 1

sensor 2

x

Figure 2. Visibility from sensors. In the example shown above the

point x is not visible from sensor 2 while it is visible from sensor

1, i.e. we have V1(x)V 2(x). In the absence of a surface prior that

does not favor geometries such as the one shown above, one can

safely assume that there is no probabilistic dependence between

visibility or invisibility from any two sensors.

• The probability distributions of the true depths of the

scene D∗
1(x) · · ·D∗

N (x) and also of the measurements

D1(x) · · ·DN (x) are independent given J (see figure

2 for justification).

• The probability distribution of a sensor measurement

given the scene depths and all other measurements

only depends on the surface depth it is measuring:

p (Di | D∗
1 · · ·D

∗
N Dj 6=i J ) = p (Di | D∗

i J ) (7)

We are interested in computing the evidence function under

this set of independence assumptions [14] for the visibility

of the point given all the sensor measurements:

e (V | D1 · · ·DNJ ) ≡ log
p (V | D1 · · ·DNJ )

p
(

V | D1 · · ·DNJ
) . (8)

From J and rules of probability one can derive:

p
(

V | D1 · · ·DNJ
)

=

N
∏

i=1

p
(

V i | DiJ
)

. (9)

and

p
(

V i | DiJ
)

=

∫ di

0
p (Di | D∗

i J ) p (D∗
i | J ) dD∗

i
∫ ∞

0
p (Di | D∗

i J ) p (D∗
i | J ) dD∗

i

(10)

As mentioned, the distributions p (Di | D∗
i J ) encode our

knowledge about the measurement model. Two reason-

able choices are a simple Gaussian distribution and a Gaus-

sian contaminated by an outlier process. Both of these

approaches are evaluated in section 5. Another interest-

ing option would be multi-modal distributions. The prior

p (D∗
i | J ) encodes some geometric knowledge about the

depths in the scene. In our examples a bounding volume

was given so we assumed a uniform distribution of D∗
i in-

side that volume.

If we write πi = p
(

V i | DiJ
)

then the evidence for

visibility using equation (8) is given by:

e (V | D1 · · ·DNJ ) = log
1 − π1 . . . πN

π1 . . . πN

. (11)

Before proceeding with the experimental evaluation of this

evidence measure we point out an interesting connection

between our approach and one of the classic methods in the

Computer Graphics literature for merging range data.

4.1. Signed distance functions

In [7], Curless and Levoy compute signed distance func-

tions from each depth-map (positive towards the camera and

negative inside the scene) whose weighted average is then

stored in a 3D scalar field. So if wi(x) represents the con-

fidence of depth measurement Di(x) in the i-th sensor, the

3D scalar field they compute is:

F (x) =

N
∑

i=1

wi(x) (di(x) − Di(x)) . (12)

The zero level of F (x) is then computed using march-

ing cubes. While this method provides quite accurate re-

sults it has a drawback: For a set of depth maps around a

closed object, distances from opposite sides interfere with

each other. To avoid this effect [7] actually clamps the dis-

tance on either side of a depth map. The distance must be

left un-clamped far enough behind the depth map so that

all distance functions contribute to the zero-level crossing,

but not too far so as to compromise the reconstruction of

thin structures. This limitation is due to the fact that the

method implicitly assumes that the surface has low relief

or that there are no self-occlusions. This can be expressed

in several ways but perhaps the most intuitive is that ev-

ery optic ray from every sensor intersects the surface only

once. This means that if a point x is visible from at least

one sensor then it must be visible from all sensors. Using

this assumption, an analysis similar to the one in the previ-

ous section leads to a surprising insight into the algorithm.

More precisely, if we set the prior probability for visibility

to p(V ) = 0.5 and assume a logistic distribution for sensor

noise, i.e.

p (Di, D
∗
i | I) ∝ sech

(

D∗
i − Di

2wi

)2

(13)

then the probabilistic evidence for V given all the data ex-

actly corresponds to the right hand side of (12). In other

words, the sum of signed distance functions of [7] can be

seen as an accumulation of probabilistic evidence for visi-

bility of points in space, given a set of noisy measurements

of the depth of the 3D scene. This further reinforces the

usefulness of probabilistic evidence for visibility. A more

detailed derivation of this relationship can be found in the

Appendix.



Figure 3. Different terms used in the graph-cut algorithm to reconstruct the Gormley sculpture. Left: multi-resolution grid used in

the graph-cut algorithm. Middle: Discontinuity cost ρ(x) (or photo-consistency). Right: labeling cost σ(x) (or intelligent ballooning).

5. Experiments

We present a sequence of 72 images of a crouching man

sculpture made of plaster by the modern sculptor Antony

Gormley (see Fig. 4 top). The image resolution is 5

megapixels and the camera motion was recovered by stan-

dard structure from motion techniques [22]. The object ex-

hibits significant self-occlusions, a large concavity in the

chest and two thin legs which make it a very challenging test

object to validate our new ballooning term. The first step

in the reconstruction process is to compute a set of depth-

maps from the input images. This process is by far the most

expensive of the whole pipeline in terms of computation

time. A single depth-map computation takes between 90

and 120 seconds, the overall computation time being close

to 2 hours. Once the depth-maps are computed, a 3D octree

grid is built (see Fig. 3 left) together with the discontinuity

cost and the labeling cost (see Fig. 3 middle and right re-

spectively). Because of the octree grid, we are able to use

up to 10 levels of resolution to compute the graph-cut, i.e.,

the equivalent of a regular grid of 10243 voxels. We show

in figure 4 some of the images used in the reconstruction

(top), the result using an implementation of [21] (middle)

and the reconstruction result of the proposed method (bot-

tom). We can appreciate how the constant ballooning term

introduced in [21] is unable to correctly reconstruct the feet

and the concavities at the same time. In order to recover

thin structures such as the feet, the ballooning term needs

to be stronger. But even before the feet are fully recovered,

the concavities start to “over inflate”.

Finally we show in figure 5 the effect of including an

outlier component in the noise model of the depth sensor

when computing the volume of evidence of visibility. The

absence of an outlier model that is able to cope with noisy

depth estimates appears in the volume of visibility as tun-

nels “drilled” by the outliers (see Fig. 5 center). Adding an

outlier term clearly reduces the tunneling effect while pre-

serving the concavities (see Fig. 5 right). Graph-cut meth-

ods are however very good in the presence of outlier noise

like in Fig. 5 center, so explictly modeling the outliers has a

small impact on the final reconstruction, merely providing

a slightly smoother surface.

6. Conclusions

We have presented a new formulation to multi-view

stereo that treats the problem as probabilistic 3D seg-

mentation. The primary result of this investigation

is that the photo-consistency criterion provides a fore-

ground/background model that can predict if a 3D loca-

tion is inside or outside the scene. This fact, which has

not received much attention in the multi-view stereo liter-

ature, lets us replace the commonly used naive inflationary

model with probabilistic evidence for the visibility of 3D lo-

cations. The proposed algorithm significantly outperforms

other ballooning based approaches, especially in concave

regions and thin protrusions. We also report on a surprising

connection between the proposed visibility criterion and a

classic computer graphics technique for depth-map fusion,

which further validates our approach. As future work we are

planning a detailed evaluation of our approach with state-of-

the-art depth-map fusion techniques such as [15].

Appendix. Probabilistic interpretation of

signed distance functions.

Using the predicates we have already defined, the as-

sumption of no self-occlusion can be expressed by

V ↔ ∀i Vi. (14)

From (6) and (14) we see that if a point x is visible (invis-

ible) from one sensor it is visible (invisible) from all sen-

sors, i.e. V1 ↔ · · · ↔ VN ↔ V . Let I stand for the prior

knowledge which includes the geometric description of the

problem and (14). Given (14) events D1 · · ·DN are inde-

pendent under the knowledge of V or V which means that



Figure 4. Comparison of our reconstruction results with previous methods. Plaster model of a crouching man by Antony Gormley,

2006. Top: some of the input images. Middle: views of reconstructed model using the technique of [21] with a constant ballooning term.

No constant ballooning factor is able to correctly reconstruct the feet and the concavities at the same time. Bottom: views of reconstructed

model using the intelligent ballooning proposed in this paper and shown in Fig.5 right.

Figure 5. Comparison of two different inlier/outlier ratios for the depth sensor noise model. Left: 3D location of one slice of the

volume of evidence of visibility. Middle: the sensor model is a pure Gaussian without any outlier model. Outliers “drill” tunnels into the

visibility volume. Right: the sensor model takes an outlier model into account. The visibility volume is more robust against outliers while

the concavities are still distinguishable.



using Bayes’ theorem we can write:

p (V | D1 · · ·DNI) =
p (V | I)

∏N
i=1 p (Di | V I)

p (D1 · · ·DN | I)
(15)

Obtaining the equivalent equation for V and dividing by

equation (15) and taking logs gives us:

e (V | D1 · · ·DNI) = e (V | I) +

N
∑

i=1

log
p (Di | V I)

p
(

Di | V I
) .

(16)

By several applications of Bayes’ theorem we get:

e (V | D1 · · ·DNI) =
N

∑

i=1

log
αi

βi

− (N − 1)e (V | I) .

(17)

where αi =
∫ ∞

di

p (Di, D
∗
i | I) dD∗

i and βi =
∫ di

0
p (Di, D

∗
i | I) dD∗

i . We now set e (V | I) = 0 and as-

sume the noise model is given by the logistic function

p (Di, D
∗
i | I) ∝ sech

(

D∗
i − Di

2wi

)2

. (18)

Using standard calculus one can obtain the following ex-

pression for the evidence

e (V | D1 · · ·DNI) =

N
∑

i=1

wi (di − Di) , (19)

equal to the average of the distance functions used in [7].�

Notation

N Number of images/sensors

x 3D location

I Prior

ǫ(A) Evidence of predicate A

p(A) Probability of predicate A

Di(x) Depth measured by sensor i for location x

D∗
i (x) True depth of the scene for sensor i

C(x) Confidence of depth estimation at location x

Vi(x) Predicate ‘x is visible from sensor i’

V (x) Predicate ‘x is visible from at least one sensor’
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