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Abstract

We present a new approach to reconstruct the shape
of a 3D object or scene from a set of calibrated images.
The central idea of our method is to combine the topologi-
cal flexibility of a point-based geometry representation with
the robust reconstruction properties of scene-aligned pla-
nar primitives. This can be achieved by approximating the
shape with a set of surface elements (surfels) in the form of
planar disks which are independently fitted such that their
footprint in the input images matches. Instead of using an
artificial energy functional to promote the smoothness of the
recovered surface during fitting, we use the smoothness as-
sumption only to initialize planar primitives and to check
the feasibility of the fitting result. After an initial disk has
been found, the recovered region is iteratively expanded by
growing further disks in tangent direction. The expansion
stops when a disk rotates by more than a given threshold
during the fitting step. A global sampling strategy guaran-
tees that eventually the whole surface is covered. Our tech-
nique does not depend on a shape prior or silhouette infor-
mation for the initialization and it can automatically and si-
multaneously recover the geometry, topology, and visibility
information which makes it superior to other state-of-the-
art techniques. We demonstrate with several high-quality
reconstruction examples that our algorithm performs highly
robustly and is tolerant to a wide range of image capture
modalities.

1. Introduction
In recent years the reconstruction of 3D geometry from

images has been a highly active research field and several
sophisticated techniques have been proposed. The main
drawback of many existing techniques is, however, that they
have rather strict requirements regarding the input data: Of-
ten a shape prior or exact image silhouettes are required, and
the quality of the reconstructions quickly degrades when the
scene is not sufficiently textured. We present a new recon-
struction method based on several new ideas combined with
a set of existing, well established techniques with the goal

to loosen these restrictions. We demonstrate with multiple
real-world reconstruction results – including an evaluation
using the Middlebury datasets [18] – that our algorithm pro-
duces reconstructions of comparable quality to the current
state-of-the-art techniques while being more versatile and
requiring no input other than a set of calibrated images.

Our method utilizes a geometry representation based on
oriented particles (c.f . [11, 21]). Specifically, we use a set of
surface elements in the form of planar disks in object space
each of which is defined by a center point, a normal vector,
and a radius to approximate the unknown surface of a scene
seen in a set of calibrated images. The proposed reconstruc-
tion algorithm consists of two alternating phases. In the first
phase it computes seed disks by purely image-based ho-
mography matching (i.e. without the integration of camera
calibration information) in an automatically selected pair of
images. The seed disks are then corrected by a plane fitting
algorithm that is able to take an arbitrary number of input
images into account, this time utilizing the camera calibra-
tion. The second phase expands the information from the
already recovered surface region employing a greedy grow-
ing strategy. New disks are spawned at the boundary of the
known region until it cannot be smoothly expanded any fur-
ther. The algorithm stops when all visible parts of the scene
are covered by disks, resulting in a dense set of point sam-
ples with accurate normal information. For applications like
rendering or new view synthesis, the disks are already suf-
ficient. For cases where closed, manifold triangle meshes
are required we can apply off-the-shelf triangulation tech-
niques. Due to the point and normal information, the pub-
licly available tools of Kazhdan [9, 10] are especially well
suited in our case. We can hence concentrate on generating
point and normal samples for the visible parts of the scene
only and let the mesh generation tools care for a smooth and
consistent interpolation for the invisible parts.

The disk-based surface representation leverages several
important advantages, which in this combination cannot be
found in any existing reconstruction method:

• The sampling density in object space and size of the
disks’ footprint can be varied arbitrarily and indepen-
dently which cannot easily be achieved for classical
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surface representations like polygon meshes or voxel
grids. We vary both parameters automatically driven
by the texturedness and resolution of the input images.

• Our algorithm does not need initialization information
of any form. All geometry, topology and visibility in-
formation is completely derived from the calibrated but
otherwise unmodified input images. This in particular
means that no visual hull has to be computed. How-
ever, if image silhouettes are available, this additional
information can easily be taken into account.

• We exploit the topological flexibility of point-sampled
surfaces. This topology-free surface representation al-
lows for a simple incremental procedure: All disks are
fitted with visibility information derived from the al-
ready recovered surface. In case new information in-
validates existing disks, these disks are erased and the
affected part of the surface is treated as not yet recov-
ered.

1.1. Comparison to Previous Work

In what follows we discuss several existing reconstruc-
tion techniques, many of which have been shown to pro-
duce results of extremely high quality, with an emphasis on
the differences compared to our method. A more complete
overview of related techniques can be found in the survey
of Seitz et al. [18].

Existing reconstruction methods can, quite roughly, be
classified into either surface oriented or volume oriented
methods. Examples for surface-based methods are [6, 8, 24]
that use polygon meshes to represent the surface of a scene
and [16, 20] that use level-sets. The mesh-based approach
has to deal with several difficulties: artifacts like self in-
tersections or folded-over polygons either have to be pre-
vented explicitly or have to be taken care of by artificial
energy terms that are minimized simultaneously with the
evolution of the mesh. Furthermore, the resolution of the
polygon mesh has to be adjusted by tedious decimation,
subdivision, and remeshing algorithms that again keep the
mesh consistent. In contrast, our disk-based surface repre-
sentation does not require any consistency constraints since
it only keeps track of loose neighborhood relations instead
of strict element connectivity. For the mesh-based meth-
ods the topology of the final mesh has to be either known
a-priori ([6, 24]) or topology changes have to be detected
and taken care of during the mesh evolution ([8]) which can
be an error prone process. Level-set surface representations
([16, 20]) naturally support topology changes but control-
ling the correct topology is still a difficult issue. Due to the
topology-free surface representation with planar disks we
neither require initial knowledge of the topology nor need
to take care of topology changes.

Many of the above methods require a good initial surface
proxy obtained, e.g., from the visual hull. Since this can in

general be quite far away from the true surface, most often
extremely small image regions have to be used for corre-
spondence computation (c.f . [6]). In the presence of im-
age noise again artificial smoothness energies are required
to prevent noisy surfaces. Furthermore, large distances be-
tween the initial and the true surface (e.g. in deep concavi-
ties) often lead to slow convergence of the deformation pro-
cess. In our approach, the disks are always tangential to the
true surface of the scene and are fitted in a perspectively cor-
rect way. We can hence allow for relatively large footprints
in the images resulting in stable fitting. Smooth surfaces are
achieved in a natural way by increasing the footprint of the
disks. Since new disks are created close to the true surface,
in most cases they have to be only slightly corrected by the
fitting process. Hence our method is very efficient in terms
of convergence speed.

The mesh-based reconstruction method of Furukawa and
Ponce [4] uses affine matching of image regions between
pairs of images to obtain approximate point positions in ob-
ject space. Their approach also contains the idea of expand-
ing the already recovered information. However, due to the
affine matching, the expansion is limited to a grid of rect-
angular regions in image space. A similar approach is fol-
lowed by Lhuillier and Quan in [13]. The information pro-
vided by sparse point matches in image pairs is expanded
in image space to obtain a regular grid of quasi-dense cor-
respondences. In our approach, we use perspectively cor-
rect matching of object space disks which, instead of being
limited to a pair of images, gains robustness from taking
an arbitrary number of images into account. Furthermore
our technique performs a natural expansion of the recov-
ered surface in object space. The method in [13] employs a
level-set evolution approach to compute a surface based on
the triangulated quasi-dense point correspondences, image
silhouettes, and photo-consistency measures. In [4] the vi-
sual hull is deformed to fit the reconstructed points and in a
second step the mesh is further deformed by a texture-driven
force based on tangential surface patches. This is similar to
our idea of fitting planar disks to the surface, but is strictly
bound to the resolution of the mesh and generally suffers
from the mesh consistency problems mentioned above.

Early work in the field of volumetric reconstruction in-
clude [19] and [12]. The main problem here is that for
high resolutions of the voxel grid, the image footprints used
for consistency determination become very small. This of-
ten results in noisy reconstructions in textureless regions
or under the influence of images noise. To overcome this
problem, more recent volumetric methods (e.g. [7, 22, 23])
extract a smooth surface from the noisy consistency vol-
ume using a global optimization technique like graph cuts.
While this works very well for sufficiently textured objects,
it generally does not solve the problem for objects without
texture. For small voxel footprints large parts of the vol-



ume are tagged as consistent with the images such that even
global optimization methods are often unable to extract the
correct surface. Enlarging voxel footprints is difficult since
it is unknown in general where exactly the true surface lies.
In our method the sampling density in object space and es-
pecially the footprint size of the disks is not restricted by
a volumetric grid: Due to the surface-aligned disks we are
free to enlarge the footprints in textureless areas until a ro-
bust fitting is possible. Tran and Davis in [22] extend the
work of Vogiatzis et al. [23] by adding silhouette constraints
to avoid the surface shrinkage that volumetric graph cuts
are affected with. This, however, again requires exact im-
age segmentation and does not work in concave parts of the
surface. In contrast, our method does, due to the localized
disk fitting, not need to cope with global shrinkage issues
and hence does not require any constraints based on, e.g.,
object silhouettes.

Among the work explicitly using planes for the recon-
struction of a scene is [2] by Baker et al. They use a
Levenberg-Marquardt approach to fit planes to a set of im-
ages. In [5] Habbecke and Kobbelt present a framework
that exploits the specific properties of the plane fitting prob-
lem and hence is more efficient than a standard optimization
approach. However, both systems are not fully automated
but require manual plane initialization. Furthermore, the
approach in [2] uses very few large planes with individual
per pixel displacements and hence is more geared towards a
classical stereo setup while we use many planes to densely
sample the scene with arbitrarily distributed cameras. Roth-
ganger et al. [17] use planes to approximate a scene with the
goal of partial reconstruction and object recognition. Their
system is based on affine matching and an affine camera
model, while our method supports more realistic projective
matching and projective cameras. Carceroni and Kutulakos
[3] use planar elements as well to represent the surface of
a scene. Their work is based on the space carving method
[12] and places a planar element in each surface voxel. The
correct plane parameters are computed by an algorithm that
first exhaustively tests many different positions and orienta-
tions and then performs a non-linear optimization for a set
of best candidates. Hence their method is again bound to
a volumetric grid in terms of sampling density and element
size, and furthermore is quite computationally expensive.
Unfortunately, none of the above plane-based methods take
part in the Middlebury evaluation [14], so a comparison to
the current state-of-the-art is difficult.

2. Plane Fitting
Our reconstruction algorithm is based on the ability to

fit planar disks to the surface of a scene. For this task we
build on the method described in [5]. A brief summary of
the key points of the plane fitting algorithm is given in the
following for the sake of completeness.

The fitting of a scene plane NT = (n0, n1, n2, d) =
(nT , d) is based on the plane-induced homography that,
for two images I1 and I2 with projection matrices P1 =
(M1|m1) and P2 = (M2|m2), is given by

H2(N) =
(
dM2 −m2nT

) (
dM1 −m1nT

)−1
. (1)

It maps image points from the image I1 to the plane N and
then further to the image I2. The key to simplified matching
equations is the global coordinate transformation

B =
(

M−1
1 −M−1

1 m1

0 0 0 1

)
∈ R4×4 (2)

that transforms the projection matrix P1 to P′
1 = P1B =

(Id3|0). After the transformation the plane-induced ho-
mography (1) simplifies to

H2(N′) = H2(n′) = M′
2 −m′

2n
′T , (3)

where (M′
2|m′

2) is the transformed projection matrix of I2

and N′T = (n′T , 1) is the transformed plane.
The method in [5] requires the specification of a refer-

ence image I1, an arbitrary number of comparison images
I2, . . . , In, an initial estimate of the plane parameters Ñ and
a set of pixels Ω in the reference image. It then computes
the correct plane parameters N by iteratively minimizing
the SSD objective function

E =
n∑

c=2

∑
p∈Ω

(
I1(p)− Ic(H(N)p)

)2
. (4)

Applied to our context of fitting disks, we find the re-
quired information as follows. For a given disk, we com-
pute a reference and a set of comparison images using the
procedure detailed in Section 3.4. The image region Ω is de-
termined by projecting the disk into the reference image and
rasterizing its footprint. How the actual size of the footprint
is determined is discussed in Section 3.3. Finally, the initial
plane parameters of a disk are computed in two different
ways: In the case of a seed disk the plane parameters are
initialized from a homography matched between a pair of
images (c.f . Section 3.1), in the case of a disk that expands
the already recovered surface the parameters are inherited
from an existing disk (c.f . Section 3.2).

3. Surface Growing
The surface growing approach to multi-view stereo re-

construction we are proposing works by alternating two
phases. These two phases, the generation of seed disks and
the expansion of surface regions, will be discussed in the
following two sections. After that we go into detail about
how the sampling density in object space and the size of the
disks’ footprint is determined and how visibility informa-
tion is computed.



3.1. Seed Disks

Seed disks are used to initiate the surface reconstruction
process on not yet recovered parts of the scene. To find such
a part we traverse the input images in a regular way and stop
at the first image I1 with a free pixel p (i.e. a pixel that is not
covered when the currently recovered surface is projected
into the image). More elaborate strategies to, e.g., find the
largest not yet recovered image region are possible but we
found that the above method is completely sufficient. To
generate a seed disk our algorithm then matches an uncon-
strained homography H with 8 degrees of freedom using the
technique in [1]. This requires an image region Ω in I1 and
a second image I2. As region Ω we use all pixels contained
in a circle centered at the pixel p. The radius of the circle
is determined in the same way as the size of the disk foot-
prints, c.f . Section 3.3. To be able to initialize the matching
homography with the identity matrix, we choose the second
image I2 nearby to the first in terms of viewing direction
and rotation orientation. Note that, although our algorithm
does not require a segmentation of the input images in prin-
ciple, the computation time necessary to reconstruct a de-
sired object can be reduced greatly if a coarse separation of
the object and the background is available. Then seed disks
are constructed only for surface parts that the user is really
interested in.

Once the 8 parameters of the homography have been
computed, we need to generate the corresponding disk in
object space by initializing the parameters n and d. We ap-
ply the transformation (2) with I1 as reference to the projec-
tion matrices of I1 and I2 and then compute the transformed
plane parameters n′ such that the plane-induced homogra-
phy (3) performs the same transformation on image points
x as the matched homography H:

y := Hx != (M−mn′T )x, (5)

with (M|m) being the transformed projection matrix of I2.
After explicitly writing out the de-homogenization

yi =
(MT

i −min′
T )x

(MT
3 −m3n′T )x

, i = 1, 2 (6)

where MT
i is the ith row of M and mi the ith component

of m, we apply the often-used transformation

yi · (MT
3 −m3n′

T )x = (MT
i −min′

T )x. (7)

Now that the equation is linear in the elements of n′ we con-
struct a linear system for all correspondences x ↔ y,x ∈ Ω
and compute the least squares solution. After applying the
inverse transformation B−1 to obtain the true plane param-
eters (nT , d), the disk center is computed as the intersection
of the plane with a ray from the camera center of I1 through
the pixel p.

Figure 1. Surface growing on the head of a Chinese statue. The re-
covered region is expanded at active disks (red). A disk becomes
inactive (grey) when its neighborhood is complete or it is not pos-
sible to smoothly expand the recovered region in this particular
area. (The cutout of the image shown on the left has 2562 pixels
and that the size of the disks has been reduced for rendering.)

Clearly there is no guarantee that the homography
matching does not get stuck in a local minimum and the
seed disk hence does not lie on the scene surface. We em-
ploy two simple but effective mechanisms to detect such
cases. Firstly, the Euclidean distance

||Hx− (M−mn′T )x|| (8)

between points projected by the originally matched homog-
raphy H and the homography induced by the recovered
plane parameters has to be smaller than a threshold. This
way homographies not representable as plane-induced ho-
mographies are easily detected. As second check we apply
the projective plane fitting of Section 2 to the newly con-
structed seed disk with more than two images taken into ac-
count and compare the original to the fitted disk. If the disk
moves or rotates by more than a threshold it is treated as
outlier. As we will demonstrate in the result section, we can
choose these thresholds once for all experiments and do not
have to adapt them to each individual data set. In case ob-
ject silhouettes are available, they can be used as additional
check for outlying seed disks. If either of these checks fails
the sampling procedure starts over with finding a new free
image position.

3.2. Surface Expansion

The disks that are used to approximate the unknown sur-
face of a scene can be classified as being either active or in-
active, see Figure 1. Active disks usually lie on the bound-
ary of the recovered surface region and are candidates for
its further expansion. A disk becomes inactive either if its
geodesic neighborhood on the surface is completely cov-
ered with disks or if it is not possible to smoothly expand
the recovered region at this particular position. The recov-
ered region is expanded as long as active disks are present.
When all disks have become inactive a new region is initial-
ized with a seed disk as single active disk (c.f . Section 3.1).

The main idea of the surface growing approach is to add
new disks to complete the neighborhood of active disks,
thus expanding the conquered region in tangential direction.



“Gaps” in the neighborhood of an active (parent) disk are
detected using a simple criterion. The centers of all neigh-
boring disks are projected into the supporting plane of the
disk in question. Then the angles between the vectors from
the disk center to the projections are computed and sorted.
Each gap larger than 60 degrees is filled by adding a new
disk at the corresponding position in the tangent plane of
the parent disk. The initial plane parameters are inherited
from the parent. After correcting the plane parameters with
the fitting algorithm of Section 2 the final disk position is
again computed as a ray-plane intersection with a ray from
the reference camera center through the old disk center.

This strategy guarantees a dense coverage of the whole
surface when the process finishes (notice that the thresh-
old of 60 degrees corresponds to a dense circle packing).
Moreover it satisfies the requirement of the plane matching
algorithm for an initial estimate of the plane parameters: By
initializing the normal of a newly added disk with the nor-
mal of its already fitted parent and by moving its center to
a new position in the parent’s tangent plane, the parameters
are sufficiently close to allow for stable convergence of the
plane matching algorithm.

There are, however, two cases in which the above ap-
proach is not able to smoothly expand the recovered region.
Firstly, the initialization with the plane parameters of the
parent disk might not be correct at corners or sharp edges,
for example. Secondly, the visibility information might not
be correct. As will be discussed in Section 3.4, the set of
images used for the fitting of a disk is determined by the
recovered surface information only. In early stages of the
algorithm occluding geometry simply might not have been
recovered yet, leading to a wrong choice of comparison im-
ages and consequently to badly fitted disks. Both cases are
handled by limiting the movement and rotation a disk is
allowed to undergo during fitting: If the assumption of a
smooth surface is violated the corresponding disk is imme-
diately discarded. If object silhouettes are available they can
again be used as additional means to detect outlying disks.

3.3. Sampling Density and Footprint Size

The image region used to fit a particular disk is its foot-
print in its reference image. The position of the footprint is
determined by the position of the disk in object space which,
in turn, is determined by the expansion strategy. The only
remaining degree of freedom is the size of the footprint con-
trolled by the radius of the disk. We adjust the size of the
footprint based on the following idea: For textured parts of
an object the fitting process is generally stable. Hence the
size of the disks can be relatively small to allow for geomet-
ric detail. However, in textureless parts the fitting needs to
be stabilized by using larger image regions. Accordingly,
the size of a disk is determined by the intensity variance of
the footprint in the reference image. That is, starting from a

minimal footprint size fmin the radius of a disk is increased
until the variance of the footprint reaches a target thresh-
old σ2 (see Section 4 for details about parameter settings).

Figure 2. Variance-driven deter-
mination of disk size. Red col-
ored parts of the surface are ap-
proximated by large disks due
to little image texture, while
green color depicts small disks.

Choosing the target vari-
ance above the image noise
level allows us to effectively
adapt the disks’ size to the
quality of the underlying im-
ages. This disk sizing strat-
egy also integrates nicely
with the fact that, under the
assumption of Lambertian
illumination, an image re-
gion with very similar inten-
sities corresponds to a quasi-
planar part of the scene that
can extremely well be ap-
proximated by a large planar
disk. Figure 2 shows a visu-
alization of the distribution
of disk sizes for the com-
pletely textureless Dino model from the Middlebury multi-
view stereo evaluation [18]. Red color depicts surface areas
with large disks due to little texture while green colored sur-
face parts are covered with small disks.

The determination of the sampling density in space, i.e.
the distribution of disk centers on the scene’s surface, is part
of the surface expansion. Specifically, the sampling density
is controlled by the distance a new disk is moved away from
the center of its parent disk. The most natural way of adjust-
ing the sampling density would be based on the curvature of
the surface. Unfortunately this is not feasible since the sur-
face is unknown. We hence decided for a flexible solution
that does not require knowledge about the absolute scene
scale: New disks are moved by a user-specified fraction of
the parent disk’s minimal radius (corresponding to the foot-
print size fmin). This way the sampling density is automat-
ically adjusted to the resolution of the images. For images
with large camera-to-object distance the disks are enlarged
to project to a footprint of sufficiently many pixels. As a
result, the sampling in object space becomes coarser which
is a meaningful reaction to this situation. On the other hand,
for close-up images of an object this approach increases the
sampling density allowing for the reconstruction of fine ge-
ometric detail. Note that the sampling density depends on
the minimal but not on the actual, variance adjusted disk ra-
dius. We do not use the latter solution since the variance in
many cases does not change sufficiently smooth as it would
be required for a regular sampling.

3.4. Visibility Determination

To perform reliable and correct disk fitting we need to be
able to determine a set of images in which a particular disk



is visible. As stated earlier, the visibility information is de-
rived from the recovered geometry only and hence no shape
initialization is necessary. We apply an approach similar
to the z-buffers of graphics systems: For each pixel of each
input image we store the ID of a disk and a depth value. Ini-
tially all IDs are set to an invalid value and all depth values
are set to infinity.

Whenever a new disk is created (either as seed disk or
during the surface expansion) its footprint is determined in
all images. In case the depth of the new disk is less than
the depth stored in a particular image, the disk is classified
as being visible in that image and the existing depth and ID
are overwritten with the new information. From all images
seeing a disk we choose the one with the most perpendicular
view as reference. The comparison images are chosen from
the remaining images that see the disk with a viewing angle
of less than 45 degrees. To prevent a set of only small-
baseline comparison cameras, images with a viewing angle
of 30 degrees are preferred most.

The main point of our depth buffer approach is its incre-
mental nature. Since the visibility of a disk is derived from
the recovered surface only, it might not be completely cor-
rect (i.e., one or more images might wrongly be classified as
seeing a particular disk). Such a case is easily detected once
the occluding surface part is conquered: When a new disk
has a depth less than the stored depth value, it is checked if
the disk corresponding to the stored ID has used the current
image for fitting. If this is the case, this disk is erased. Fur-
thermore, its neighbors are classified as active again such
that the surface expansion algorithm is able to fill the hole
in the surface eventually – this time with improved visibility
information.

During the expansion of the recovered surface the algo-
rithm requires access to the geodesic neighborhood of the
active disks (a) to determine the uncovered surface areas,
(b) to check the feasibility of a new disk and (c) to re-
activate neighbors of erased disks. This information is also
derived from the IDs stored in the reference image of the
disk in question by looking up all IDs in an area with twice
the diameter of the disk’s footprint.

4. Implementation Details
The reconstruction system we are proposing has several

parameters that need to be set. It turns out, however, that all
of them have a natural interpretation and an easy to under-
stand influence on the behavior of the algorithm. Hence no
tedious parameter tuning is necessary.

To let the algorithm automatically adjust the size of the
disks the user needs to specify a range fmin, fmax defin-
ing the allowed footprint sizes in the reference image, mea-
sured in pixels. Furthermore, a target intensity variance σ2

needs to be specified that guides the determination of the
actual footprint size. Clearly, the size of the footprints on

Figure 3. Reconstruction from the Middlebury Temple dataset. Al-
though we fit planar disks to the surface of the temple, we are still
able to reconstruct a lot of its structural detail. Middlebury evalua-
tion result: 90% of our reconstruction is contained within 0.66mm
of the ground truth, and 98% is contained within 1.25mm.

the one hand influences the smoothness of the result (larger
footprints induce more smoothness) and on the other hand
influences the running time (larger footprints mean longer
fitting time). In our experiments we set fmin = 100 (with
a single exception for the Monkey model, see next section),
fmax = 2000 and σ2 = 36 (for image intensities in [0, 255])
which lies sufficiently above the image noise level.

The sampling density δ is, as mentioned above, defined
as a fraction of the disk radius corresponding to the mini-
mal footprint size fmin. The sampling density directly influ-
ences the level of detail the algorithm is able to reconstruct.
It also influences the running time since denser sampling
requires more computational effort. In the experiments we
set δ to 20%.

The next two parameters regard the number of compari-
son images used during the disk fitting. Again we specify a
range cmin, cmax. When enough images are available then
the cmax best are used for fitting (c.f . Section 3.4). In case
less then cmin cameras see a disk, the surface expansion
is stopped at that particular position. These two parame-
ters also directly influence the stability (more comparison
images stabilize the fitting process) and the running time
(more images require more time). In all the experiments we
set the parameters to cmin = 4 and cmax = 10.

Finally, the algorithm requires the specification of a
threshold regarding the admissible movement of child disks
during the surface expansion. Given a parent disk, we com-
pute the mean plane parameters over all disks in its two-ring
neighborhood. Then the normal of a child disk is allowed to
maximally deviate by an angle tα from the mean normal and
its center has to lie within a distance td to the mean plane.
In our experiments an angle tα of 15 degrees and a distance
td of 1/4 of the parent disk’s radius have proven to work
well. The same values are used to check the correctness of
a seed disk.



Figure 4. Reconstruction from the Middlebury Dino dataset. Due
to the fitting of large disks our algorithm is able to compute a
smooth reconstruction even in the absence of object texture. Mid-
dlebury evaluation result: 90% of our reconstruction is contained
within only 0.43mm of the ground truth, and 99.7% is contained
within 1.25mm.

Model Images Resolution Regions Disks Time
Dino 363 640×480 91 105k 130 min
Temple 312 640×480 594 111k 91 min
Leo 86 1024×768 8 94k 29 min
Warrior 42 1024×768 51 264k 75 min
Monkey 46 720×576 117 51k 35 min

Table 1. Results of our surface-growing algorithm applied to sev-
eral image sequences.

5. Results
In the following, several reconstructions from different

image sets are shown. All experiments have been carried
out on an Athlon64 system running at 2.2GHz with 4GB of
RAM. Table 1 lists the number and resolution of the input
images, the number of reconstructed surface regions, the to-
tal number of reconstructed disks, and the total computation
time.

The first two reconstructions result from the Middle-
bury [18] Temple and Dino images. In both cases the full
datasets with well over 300 images each were used. Fig-
ures 3 and 4 show the triangle meshes generated from the
reconstructed points and normals using the method of [10].

The main difficulty of the Dino model is its textureless
surface that results in almost constant intensity values in
large image areas. Hence, many of the existing methods
using small image regions for correspondence computation
have trouble reconstructing the Dino (c.f . the Middlebury
evaluation results [14]). Due to the adaptively sized disks,
our approach computes a faithful reconstruction that ranks
among the best methods at the time of writing.

The Temple model shows that our method is able to

Figure 5. High-quality reconstruction of a toy leopard. Triangle
mesh generated from the 94k reconstructed disks (left) and close-
up of the leopard’s head (right).

reconstruct objects of non-trivial topology without any a-
priori knowledge about the shape and without the need to
compute a visual hull that prescribes the topology. Because
the resolution of the input images is only 640× 480 pixels,
fine geometric detail, e.g. on the columns, appears only a
few pixels wide and hence cannot be captured correctly by
the planar disks. On the other hand our result for the Temple
can still compete with the state of the art (again c.f . [14]).

The reconstruction of the Leopard and Warrior shown in
Figures 5 and 6 are examples of the high quality our al-
gorithm is able to achieve. The images have been acquired
with a turn-table setup and calibrated using a standard struc-
ture from motion approach. Particularly in the case of the
Warrior our algorithm has been able to reproduce the geo-
metric detail quite well due to the higher image resolution
compared to the Middlebury data.

The last result in Figure 7 demonstrates the behavior of
our algorithm for low-quality input data. Several images are
affected by motion blur and limited depth of field and hence
the calibration obtained via structure from motion is far
from optimal. To improve the robustness of our algorithm,
we increased the minimal footprint size to fmin = 300.
Moreover, since all viewpoints for this image sequence lie
within a narrow cone, this example shows that our algo-
rithm is even able to reconstruct relief-like structures where
a shape initialization from object silhouettes is not possible.

6. Conclusion and Discussion

We have presented a new reconstruction method that is
based on a robust plane fitting algorithm and exploits the
flexibility of point-based surface representations. The main
advantages of the presented approach are the ability to cope
with textureless objects due to the surface-aligned, automat-
ically sized disks and the fact that it does not depend on any
a-priori shape, topology or visibility information. It is fur-
thermore fully automatic and has been shown to be able to
do high quality reconstructions in diverse image capture se-
tups and competitive runtime.



Figure 6. Chinese warrior statue reconstructed from 43 images.
Notice that in this case more geometric detail is recovered than for
the Temple due to the higher image resolution.

Due to the specific form of seed disk generation by ho-
mography matching, the current implementation is targeted
at small baseline image sequences to work well. Future
work includes the integration of a wide-baseline matching
scheme (like, e.g., [15] by Mikolajczyk and Schmid). In
theory, due to the more efficient convergence properties of
our surface expansion strategy, our method should be much
faster than existing mesh-based approaches. In practice we
lose some of the advantages due to the incremental visibility
determination that requires the deletion and re-computation
of already recovered surface regions. However, since the
disks are fitted independently, it is possible to parallelize
important parts of the algorithm in a shared memory envi-
ronment to exploit modern multi-core CPUs. The examina-
tion of this issue is an interesting topic for future work.
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