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Abstract
Tracking object in low frame rate video or with abrupt

motion poses two main difficulties which conventional
tracking methods can barely handle: 1) poor motion conti-
nuity and increased search space; 2) fast appearance varia-
tion of target and more background clutter due to increased
search space. In this paper, we address the problem from a
view which integrates conventional tracking and detection,
and present a temporal probabilistic combination of dis-
criminative observers of different lifespans. Each observer
is learned from different ranges of samples, with different
subsets of features, to achieve varying level of discrimina-
tive power at varying cost. An efficient fusion and tempo-
ral inference is then done by a cascade particle filter which
consists of multiple stages of importance sampling. Experi-
ments show significantly improved accuracy of the proposed
approach in comparison with existing tracking methods, un-
der the condition of low frame rate data and abrupt motion
of both target and camera.

1. Introduction
Tracking in low frame rate (LFR) video is a practical re-

quirement of many of today’s real-time applications such as
in micro embedded systems and visual surveillance. The
reason is various: hardware costs, LFR data source, online
processing speed which upper-bounds the frame rate, etc.
Moreover, for a tracking system, LFR condition is equiva-
lent to abrupt motion, which is often encountered but hard
to cope with.

Although the body of literature regarding tracking is
huge, most existing approaches (except a few categories)
cannot be readily applied to LFR tracking problems, either
because of the slow speed or the vulnerability to motion and
appearance discontinuity caused by LFR data.

The key notion of our solution is that detection and track-
ing can be integrated to overcome this difficulty. As two
extremes, conventional tracking facilitates itself with every
possible assumption of temporal continuity, while detection
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(a) CONDENSATION.

(b) Multi-scale Kanade-Lucas-Tomasi feature tracker (implemented by [3]).

(c) Our approach (yellow rectangle denotes target in the previous frame).

Figure 1. Tracking 4 consecutive frames in a 5pfs video.

aims at the universal description or discrimination of the tar-
get from the others. In LFR tracking, the continuity of tar-
get is often too weak for conventional tracking (Figure 1);
meanwhile, applying reliable detection over a large search
space is often unaffordable, neither is it capable of identify-
ing target through frames due to neglect of context.

Therefore it is desirable to have the two complement-
ing each other – achieving strong discriminative power yet
maintaining the grasp of weak spatial-temporal continuity.
We approach this by adopting a series of observation mod-
els (observers) with different “lifespan”s. By “lifespan” we
mean the learning period and service period of an observer.
E.g., a two-frame template matching tracker can be viewed
as an observer with learning period and service period both
of one frame; and an offline trained detector can be view as
one with a very long lifespan, in the sense that it is trained
by as many exemplars as possible and is expected to apply
to most sorts of appearance that belong to the target cate-
gory (e.g., face). The advantage lies in that observers with
shorter lifespan can grab target appearance more specifi-
cally and rule out non-target candidates faster, the training
cost is also lower since there is not much knowledge to mas-
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ter; while those with longer lifespan can produce more ac-
curate result and prevent the “drift” problem which is typi-
cal of an online learning system.

Further in organizing these observers, rather than adopt-
ing a cascade (which is a common approach in detection
literature, however problematic in our approach as will be
shown) and a standard particle filter (which is also one of
the most celebrated tracking frameworks), we instead pro-
pose a “cascade particle filter” in the hope of combining
the two successful ideas in both fields to satisfy the special
needs of our particular problem.

In the next section, related work is briefly summarized.
Section 3 is devoted to the learning of different observers.
Section 4 first introduces the common approach of particle
filter and reveals its deficiency in the view of LFR issue,
and then describes the cascade particle filter and compares
it with existing methods. After that are the experiment and
conclusion sections.

2. Related work
LFR is in most cases equivalent to abrupt motion. How-

ever, a large part of traditional tracking approaches heav-
ily depend on motion continuity. Particle filters [10] uses
a dynamic model to guide the particle propagation within a
limited sub-space of target state. Other methods based on
iterative optimization such as mean shift [4] and Kanade-
Lucas-Tomasi feature tracker [17] generally require the ker-
nels or feature patches in consecutive frames to overlap with
or be in a very close vicinity of each other. These, however,
are presumptions too expensive under conditions of LFR or
abrupt motion.

Several existing publications have been aware of this pit-
fall, may the motive be LFR tracking or not, the remedy has
been quite unanimous: detection. Okuma et al. [14] uses
a boosted detector to amend the trial distribution of parti-
cle filter. Such mixture trial distribution can also be found
in many other works such as [12], although not aimed at
LFR videos. Porilkli and Tuzel [15] extend the standard
mean shift technique by optimizing around multiple kernels
at motion areas detected by background modeling, to track
in 1-fps camera-fixed surveillance video. These ideas can
be concluded as using an independent detector to guide the
search of an existing tracker when target motion becomes
unpredictable.

Another extreme is to “detect and connect” [7][11]. Such
approaches are of potential to deal with LFR tracking, be-
cause they first detect the objects of interest (sometimes
track them through short sequences), and then construct tra-
jectories (or connect trajectory fragments) by analysis of
motion continuity, appearance similarity, etc. Real-time al-
gorithms of this category are mostly limited in background-
fixed scenes where a fast change detector is readily at hand.

The two categories above has a common drawback that
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Figure 2. Life-spans of observation models (observers).

they need a detector fast enough to be applied to large search
areas (in most cases, the whole frame), partly because the
detector is only loosely coupled with the tracker.

The seemingly most similar work to ours may be the
multi-scale approaches for abrupt motion [8][3] and layered
sampling of multi-scale likelihoods [16]. However, multi-
scale approaches adopt essentially the same observation
model on several down-scaled images, while our approach
applies a pipeline of complementary observation models on
the same image space. The latter’s advantage lies in that dis-
criminative power is increased and no risk of losing image
information in down-scaling is induced.

Recently there has been a trend of introducing learning
techniques into tracking problems, and tracking is viewed as
a classification problem in the sense of distinguishing track-
ing target from the background. Representative publications
include [2] [19], which have shown increased discriminative
power of the tracker. Although none of them have targeted
at LFR tracking, we will also incorporate online learning
in our approach, only that online classifiers will be unified
with offline ones to achieve enhanced robustness.

3. Learning discriminative observers
3.1. Representation

Following the convention of sequential Bayesian estima-
tion, denote the state of the target object and the observation
at time t by xt and zt respectively (in this section we sup-
press the subscript t when there is no ambiguity). In the
case of face tracking, we define x = (x, y, s), namely the
position and size. An observer outputs p(z|x) for each input
candidate x. Since we adopt m observers, it is convenient
to define z = (z1, . . . , zm), and denote the output of the
k-th observer as p(zk|x).

Further, each observer here is represented by its learner
L, training sample set S, feature pool F for learning, as
well as the time complexities: offline training complexity
τoff , online training complexity τon and testing complexity
τtest (defined as the time to calculate p(z|x) for each x).
Therefore we formalize the k-th observer as

Ok = (Lk, Fk, Sk, τk,on , τk,off , τk,test). (1)

Denote the features selected by Lk as F̂k (⊂ Fk), and
Ŝk as the test samples input to the k-th observer (the output
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Figure 3. Feature set of each observation model.

k 1 2 3

Lk A 5-dimension
LDA classifier

Discrete Ad-
aBoost on a
pool of P LDA
classifiers

Real AdaBoost
on histogram
weak classifiers

Fk 5 pre-selected
Haar-like features

50 pre-selected
Haar-like features

10,000s of
Haar-like
features

|F̂k| 5 ≤ 50 ≈ 500 per view
Sk Samples of the

previous frame
Samples of the
previous 5 frames

10,000s of of-
fline samples

τk,on O(|F1|2|S1|) O(|F2|2|S2| +

|S2|P 2)

0

τk,off Negligible Negligible Several days
τk,test O(|F̂1|) O(|F̂2|) O(|F̂3|)

Table 1. Our setting of observation models.

should be p(zk|x) for each x ∈ Ŝk). The training time
(τk,off + τk,on) usually increases with |Fk| and |Sk|, and
the testing time τk,test increases with |F̂k|. And the total
offline and online time complexities are

τoffline =
m∑

k=1

τk,off , (2)

τonline =
m∑

k=1

(τk,on + |Ŝk| · τk,test). (3)

For tracking, τonline is of first concern. Notice that both
training time (τk,on + τk,off ) and testing time τk,test in-
crease with an observer’s lifespan, since training sample
number |Sk| accumulates and a larger Fk (also a more so-
phisticated Lk) is required to learn the knowledge provided
by Sk, and the resulting F̂k is also larger.

Therefore, to minimize the testing part in (3) it is desir-
able to arrange the observers in a lifespan-ascending order
so that |Ŝ1| < |Ŝ2| < · · · < |Ŝm| (Section 3 is devoted to
how to achieve this). Meanwhile, to minimize the online
training part in (3), Fk must be carefully selected and as
much of training as possible should be done offline.

3.2. Configuration and learning

Based on the above analysis, different settings for each
observation model is carefully chosen to balance effec-
tiveness and efficiency – in other words, each learner Lk

and feature pool Fk should be competent yet not “over-

qualified” for the learning task on sample set Sk. Table 1
gives a summary.

Feature Sharing (Figure 3) is a distinct feature to be
introduced before each observer. We use a Haar-like fea-
ture set extended from that of [18]. Calculation of such fea-
tures is extremely efficient, on the premise that a pyramid
of first- and second-order integral images has been built,
which is relatively time-consuming in a real-time system.
This makes feature sharing a reasonable choice. Feature
pool for each observer is selected by offline learning. All
observers work on grayscale data.

Observer 1 is an LDA classifier learned on all samples
from the previous frame, using only 5 Haar-like features for
fast elimination of non-target. Denote the LDA projection
vector as w, the 5d feature vector as f(x) and the classifi-
cation threshold as η, the observation likelihood is modeled
as a sigmoid function based on the classifier’s output:

p(z1|x) ∝ 1
1 + exp (−(wT f(x)− η))

. (4)

Observer 2 is a strong classifier boosted from a pool
of LDA classifiers. At each frame t, with the samples
S2 = (S2,pos, S2,neg) gathered from the past 5 frames, the
learning process is

1. Select samples for adding new weak classifiers: all
positive samples S2,pos and only the negative samples
S′

2,neg = {x|x ∈ S2,neg ∧ p(zt−1,2|x) > ξ}, where
p(zt−1,2|x) is the old observation likelihood and ξ is
a threshold. The reason is that new weak classifiers
should focus on samples which are not well handled
by the old model.

2. Add new weak classifiers by bootstrap. Each is learned
by LDA with 10 features selected from F2.

3. Weight weak classifiers by Discrete AdaBoost [6].

4. Discard weak classifiers which are not selected for a
certain number of frames.

Denote the p-th weak classifier as (αp,wp, fp, ηp), where
αp is the boosted weight, fp and wp are the features and
corresponding projection vector learned by LDA, and ηp is
the threshold. The final observation likelihood is modeled
by a Sigmoid function of the boosted output:

p(z2|x) ∝ 1

1 + exp
(
−

P
p αpsign(wT

p fp(x)−ηp)P
p αp

) . (5)

Observer 3 is a tree-structured detector similar to [9].
Each tree node is a strong classifier boosted from histogram
weak classifiers. Since it consists of multiple layers, for an
input x, the output is the number of layers h that x passes
and the confidence c given by the last strong classifier it
passed. The observation likelihood is defined as

p(z3|x) ∝ 1/ (1 + φh exp(−c)) , (6)



where φh is the a priori ratio of negative samples to pos-
itive samples for the h-th layer (obtained during training
process). It decreases as h increases to reflect the fact that
the more layers x passes, the more likely it is the true target.

The elements of learning techniques chosen here are
well-established and we would not elaborate on them. How-
ever, why they are chosen is paid much consideration and
has withstood extensive experiments. E.g., while both Ob-
server 2 and 3 adopt boosting algorithms, the differences
between them is meaningful: for Observer 2 we use a much
smaller weak classifier pool and Discrete AdaBoost instead
of Real AdaBoost, so that both the training time and the
risk of over-fitting on small online training set are reduced;
on the other hand, since the number of weak classifiers is
limited, 10d LDA is adopted to compound simple Haar-like
features into more powerful descriptors to guarantee quick
training convergence.

4. Cascade particle filter
In this section we first reveal the deficiency of the com-

mon approach of particle filter in case of LFR, then describe
how the above observers can be coupled tightly together in
cascade particle filter to tackle our problem.

4.1. Particle filter under unpredictable motion

By our notation for target state and observation, the aim
of a tracking system is to estimate p(xt|Zt), which stands
for the distribution of target state given all observations
Zt = (z1, . . . , zt) up to time t. Particle filter (PF, or CON-
DENSATION [10]) simulates this distribution by the well-
known two-step recursion:

Prediction : p(xt|Zt−1) =
∫

p(xt|xt−1)p(xt−1|Zt−1)dxt−1,

Update : p(xt|Zt) ∝ p(zt|xt)p(xt|Zt−1). (7)

Calculation of the integral is carried out by importance
sampling, which means samples are generated from a trial
distribution. A common practice is to use a presumed
p(xt|xt−1) as the trail.

But when target motion becomes drastic and unpre-
dictable (e.g., under LFR conditions), such trial distribu-
tion will result in gradual departure of the sample set from
the true target state which eventually leads to tracking loss
(Figure 1(a)). It may be remedied by increasing samples
– decreasing efficiency at the mean time. Another choice
is to introduce p(zt|xt) into the trail [14][12], which re-
quires calculation of p(zt|xt) over large state space. There-
fore, under both choices, the system’s efficiency degrades
towards exhaustive calculation of p(zt|xt) under unpre-
dictable motion. This problem looms as long as only one
computation-intensive p(zt|xt) is available. So how can we
overcome this when multiple observers are available?

4.2. Cascade particle filter

Denote the observation vector as z = (z1, . . . , zm), as-
suming independency among the observers will grant us:

p(z|x) = p(z1, . . . , zm|x) =
m∏

k=1

p(zk|x). (8)

A standard PF can be directly adopted by updating par-
ticle weight by

∏m
k=1 p(zk|x). But besides what we have

analyzed in the above subsection, it is also particularly inef-
ficient here because every particle must be evaluated by ev-
ery classifier while most of them end up with a weight close
to zero (a comparison based on Effective Sample Size [13]
will illustrate this point in the next section). In the detec-
tion problem, the cascade detector has been invented for this
very reason. However, the conventional cascade detector
can only be viewed as an extreme case where each p(zi|x)
either takes the value 0 or 1, and those x with p(z|x) > 0
are classified as positive. And detection using such classi-
fier structure by exhaustive search is like uniformly scatter-
ing particles over the whole state space of x.

To overcome the deficiencies of standard PF and cascade
detector while combining their merits, our method melts a
series of observers into multiple stages of importance sam-
pling (IS). Define

π0(xt) = p(xt|Zt−1), (9)
πk(xt) = p(zk,t|xt)πk−1(xt), k = 1..m. (10)

By this definition we also have

πm(xt) = p(xt|Zt−1)
m∏

k=1

p(zk|xt) (11)

= p(xt|Zt−1)p(zt|xt) = p(xt|Zt), (12)

which is the target distribution of our interest.
The algorithm proceeds as follows. At the k-th

stage, IS is done to simulate πk(xt) with weighted parti-
cles. πk−1(xt) is used as the trial distribution of IS, for
which we have already obtained a weighted particle set
Pk−1,t = {x(i)

k−1,t, w
(i)
k−1,t}

Nk−1
i=1 ∼ πk−1(xt) from pre-

vious stages. Therefore sampling from this trial distribu-
tion can be carried out by re-sampling of Pk−1,t to obtain
{x(i)

k,t, 1/Nk}Nk
i=1. The weight of x(i)

k,t should be updated ac-
cording to IS as

w
(i)
k,t =

πk(x(i)
k,t)

πk−1(x
(i)
k,t)

= p(zk,t|x(i)
k,t). (13)

The particle set Pk,t = {x(i)
k,t, w

(i)
k,t} can be used to repre-

sent πk(xt). IS is repeated for m stages to obtain Pm,t =
{x(i)

m,t, w
(i)
m,t} ∼ πm(xt) = p(xt|Zt).

Figure 4 gives an illustration of a cascade PF and a con-
ventional cascade detector both with 3 classifiers. And a
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Figure 4. Illustration of our method and the cascade detector,
both with 3 classifiers. Here we assume the initial particles for the
cascade particle filter is uniformly distributed, which might not be
the exact case in practice due to temporal propagation.

Method Time Complexity Comments

Standard
Particle
Filter

N
Pm

k=1 τk,test When N is sufficiently large to en-
sure an accurate result, the time
complexity also becomes much
larger than the other two methods.

Cascade
Detec-
tor

Pm
k=1 N ′

kτk,test N ′
1 > N ′

2 > · · · > N ′
m. N ′

k de-
pends on the fixed threshold of each
classifier. Candidates are selected
uniformly over the state space.

Our
method

Pm
k=1 Nkτk,test N1 > N2 > · · · > Nm. Nk

acts as a dynamic “threshold” in the
sense of controlling how many par-
ticles should be kept in each stage.
Particles are re-distributed and re-
weighted in each stage to adapt to
the target distribution.

Table 2. A comparison among standard particle filter, conventional
cascade detector, and our method. τk,test is the cost of calculating
p(zk|x); Nk(or N ′

k) is the number of particles (or passed candi-
dates) in the k-th stage.

further comparison of standard PF, cascade detector and our
method is shown in Table 2.

In implementation, we have observed p(zk|x) noisy and
with many peaks (see Figure 5(a) for an idea), which is
typical for discriminative models. And the peaks of suc-
cessive observers do not necessarily overlap. This would
cause problems in approaches using observation model in
a cascade detector manner without re-distributing and re-
weighting particles (such as that in [20] which simply dis-
cards low-weight particles and keeps high-weight ones).
But in our framework it is handled conveniently by adding

With {x(i)
m,t−1, w

(i)
m,t−1}

Nm
i=1 the particle set at the previous time step,

proceed as follows at time t:

• Resample (also to enlarge the particle number from Nm

to N1): simulate αj ∼ {w(i)
m,t−1}

Nm
i=1 , and replace

{x(i)
m,t−1, w

(i)
m,t−1}

Nm
i=1 with {x(αj)

m,t−1, 1/N1}N1
j=1.

• Prediction: For i = 1..N1, simulate x
(i)
1,t ∼ p(xt|x(i)

t−1), note

that x
(i)
1,t should be diffused enough to cover the expected range of

possible state transition.

• At stage 1 do: For i = 1..N1 let w
(i)
1,t = p(z1,t|x(i)

1,t).

• For stage k = 2..m do:

– Resample (also to reduce the particle number from Nk−1

to Nk): simulate αj ∼ {w(i)
k−1,t}

Nk−1
i=1 and replace

{x(i)
k−1,t, w

(i)
k−1,t}

Nk−1
i=1 with {x(αj)

k−1,t, 1/Nk}
Nk
j=1.

– Add small diffusion: For i = 1..Nk , simulate x
(i)
k,t ∼

g(xk,t|x
(i)
k−1,t), and let λ(i) = g(x

(i)
k,t|x

(i)
k−1,t), where g

is a 0-mean gaussian.

– For i = 1..Nk , let w
(i)
k,t = p(zk,t|x

(i)
k,t)/λ(i).

– Normalize weight so that
PNk

i=1 w
(i)
k,t = 1.

• Estimate xt: Cluster the particles {x(i)
m,t, w

(i)
m,t}

Nm
i=1 . Select the

cluster C with maximum weight. Output x̂t =

P
i∈C w

(i)
m,t·x

(i)
m,tP

i∈C w
(i)
m,t

.

Table 3. Algorithm of the cascade particle filter.

a small gaussian diffusion into the trial distributions in each
IS stage. The final algorithm is show in Table 3.

Also, we would like to mention the annealed particle fil-
ter [5], which is quite similar to our approach at the first
glance. Both of them seek for the global maximum of multi-
modal likelihood functions in a particle-based stochastic
manner. However, they are different in motive and mea-
sure: 1) annealed PF is originally designed for searching in
a high dimensional state space; cascade PF is for search-
ing in a large range of state space; 2) the number of par-
ticles in each stage of cascade PF is decreased instead of
being constant as in annealed PF; 3) different observers are
adopted in each stage of cascade PF, while annealed PF uses
the same likelihood function only with a increasing power
(w(z,x)βm for the m-th stage).

5. Experiment and discussion

The algorithm is implemented in C++ and runs at about
30fps for 320x240 video (single target) on a PC with Pen-
tium 2.8GHz CPU. The numbers of particles adopted in
each level are 3000, 600, and 200 respectively.
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(a) Sampling process in each level: observation likelihood and corresponding sample set after
updating weight.
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(b) Tracking error curve and ESS curve of CONDEN-
SATION and proposed approach. Results of proposed
approach are shown in frames where CONDENSA-
TION have large error (yellow rectangle denotes target
in the previous frame).

Figure 5. Illustration of sampling process, comparison of tracking accuracy and sampling efficiency between CONDENSATION and
proposed approach.

5.1. Analysis of the sampling process

To give a vivid view of how our algorithm works, Figure
5(a) shows the sampling steps in one frame of a video. As is
expected, likelihood output by the higher-level observer is
more peaked, and as a result the particles are more focused
around the true target state after each level’s re-weighting
and re-sampling. Also notice that the likelihood output of
the later two observation models are not smooth even near
the true target (which is typical of a discriminative model),
making the re-sampling with diffusion necessary.

With comparison to CONDENSATION with different
number of particles, Figure 5(b) includes a quantitative
analysis of sampling effectiveness and efficiency, by the
curve of tracking error on the left and the curve of Effec-
tive Sample Size (ESS) on the right. It is obvious that en-
larging particle set of CONDENSATION compensates its
poor accuracy under drastic motion to some extent (com-
pare the green curve with 800 particles and the red one with
200 particles), but the error of our method is still lower (the
blue curve). Further, a much higher sampling efficiency
of our method is shown by the “rule of thumb” of impor-
tance sampling [13] – the ESS, calculated by ESS(N) =
N/(1+ cv2(ω)), where N is particle number and cv2(ω) is
the coefficient of variation of the unnormalized weight. ESS
can be interpreted as that N weighted samples are worth of
ESS(N) samples drawn from the target distribution.

5.2. Quantitative comparison

A comparison is done among CONDENSATION, mean
shift using color histogram (implemented by [1]), online
tracker of [19] (by online selecting Haar-like features) and
our method on videos with manually labeled ground truth
for comparison. All videos are taken by hand-held cam-
era and down-sampled to 5pfs. baseball.mpg (Figure 7)

and hopping.mpg record single person engaged in sports,
excursion{1|2}.mpg (Figure 1 and 6) record several peo-
ple walking along a passage, and boy{1|2}.mpg (Figure
8) record children playing (2676 frames in all). By using
these videos we aim to test our algorithm on concurrence of
abrupt motion, low frame rate and a moving camera. Track-
ing accuracy is shown in Figure 9 and Table 4. Our method
shows much higher accuracy than other methods under LFR
condition. For more tracking results please refer to the sup-
plementary video.

5.3. Discussion on scenarios

Online and offline fusion. In Figure 7 we selected two
challenging cases. The first is a fast camera motion which
caused both drastic target motion and appearance blur. Ap-
plying the offline trained face detector, we observe miss-
ing detection. Moreover, an offline trained model cannot
identify targets by online context. On the other hand, our
method successfully grabs the target appearance and adapts
itself to the variation (blur). The second case is a quick pose
change (more than 120◦ within 5 frames). While our tracker
accurately located the target, a tracker which solely depends
on online knowledge exhibits a “drift” which eventually
leads to failure. These phenomena are frequently observed
in our experiments, which illustrate the importance of com-
plementing online and offline models with each other.

Multi-target tracking. We extend the proposed method
to multi-target tracking in a simple way: after each target is
tracked individually, several particle clusters are obtained
for each target. A data-association stage is then added,
by greedily associate one target with the highest-weighted
cluster, and then eliminate clusters of un-determined targets
that overlaps with determined ones. During the experiment,
we observe that the online observation models not only de-
velop discriminative power against background clutter, but
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Figure 6. Multi-target tracking and likelihood output of online ob-
servers for different targets, yellow rectangle denotes target in the
previous frame (excursion2.mpg).
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Figure 9. Position error curves of different methods.

Algorithm Mean Pos
Err

Mean
Scale Err

Success
Rate

CONDENSATION 0.7592 0.2654 48.65%
Mean shift (color) 1.7808 0.3802 8.74%
Online tracker in [19] 0.9167 0.2869 32.06%
Ours 0.1641 0.2079 94.39%

Table 4. Comparison with other methods. Error is normalized by
ground truth target size. And the criterion of successful tracking is
that both position and scale errors are smaller than 0.5.

also against ambiguity with other targets (Figure 6).

6. Conclusion and future work
There are always two essential parts in a tracking system:

the observation model, and the temporal inference process
based on it. To deal with LFR conditions, we have pushed
both of them towards integration with their counterparts in a
detection problem, to enhance discriminative power and ef-
ficiency. A temporal probabilistic combination of observers
is presented, in which each observer is statistically learned
from online or offline samples, to grasp target appearance
of longer or shorter temporal vicinity. The cascade particle
filter serves for efficient fusion, and combines the advan-
tages of a cascade detector and the nonparametric temporal
propagation framework of particle filter.

Using multiple observers has enabled efficient cascade
structure and avoided the difficulty in incrementally up-

dating one offline learned model, which could be time-
consuming when the model complexity is high (especially
for discriminative models); also, setting the updating ratio
can be very subtle because over-update may even ruin the
original model. Nevertheless, we regard sustainable incre-
mental learning as a promising direction for further improv-
ing our observers. Also, a detailed performance analysis by
modeling and controlling training and testing errors of on-
line learned observers will be necessary to make the system
more robust and stable.
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(a) Offline face detection. It fails due to motion blur, and is unable to identify different persons.
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(b) Proposed approach under drastic camera motion and considerable blur (yellow rectangle denotes target in the previous frame).
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(c) Online tracking by method in [19], drift can be observed.
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(d) Proposed approach under fast view change (right full profile to left profile in 5 frames).

Figure 7. Comparison with offline approach and online approach in challenging cases (baseball.mpg).
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(a) Tracking by proposed approach under poor illumination, significant camera motion and fast zooming (yellow rectangle denotes target in the previous frame).
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(b) Mean Shift by color histogram.
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(c) CONDENSATION.
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(d) Online tracking by method in [19].
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(e) Tracking a jumping and running kid in a cluttered scene by proposed approach (yellow rectangle denotes target in the previous frame).
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(f) Mean Shift by color histogram.
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(g) CONDENSATION.
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(h) Online tracking by method in [19].

Figure 8. Comparison with other methods on 5fps videos under various conditions (boy1.mpg, boy2.mpg).


