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Abstract
In this paper we extend the class of energy functions for

which the optimal α-expansion and αβ-swap moves can be
computed in polynomial time. Specifically, we introduce a
class of higher order clique potentials and show that the ex-
pansion and swap moves for any energy function composed
of these potentials can be found by minimizing a submodu-
lar function. We also show that for a subset of these poten-
tials, the optimal move can be found by solving an st-mincut
problem. We refer to this subset as the Pn Potts model.

Our results enable the use of powerful move making al-
gorithms i.e. α-expansion and αβ-swap for minimization of
energy functions involving higher order cliques. Such func-
tions have the capability of modelling the rich statistics of
natural scenes and can be used for many applications in
computer vision. We demonstrate their use on one such ap-
plication i.e. the texture based video segmentation problem.

1. Introduction
In recent years discrete optimization has emerged as an

important tool in solving Computer Vision problems. This
has primarily been the result of the increasing use of energy
minimization algorithms such as graph cuts [4, 11], tree-
reweighted message passing [10, 25] and variants of belief
propagation (BP) [17, 26]. These algorithms allow us to per-
form approximate inference (i.e. obtain the MAP estimate)
on graphical models such as Markov Random Fields (MRF)
and Conditional Random Fields (CRF) [14].
α-expansion and αβ-swap are two popular move mak-

ing algorithms for approximate energy minimization which
were proposed in [4]. They are extremely efficient and have
been shown to produce good results for a number of prob-
lems [23]. These algorithms minimize an energy function
by starting from an initial labelling and making a series
of changes (moves) which decrease the energy iteratively.
Convergence is achieved when the energy cannot be mini-
mized further. At each step the optimal move (i.e. the move
decreasing the energy of the labelling by the most amount)
is computed in polynomial time. However, this can only be
done for a certain class of energy functions.

Boykov et al. [4] provided a characterization of clique
potentials for which the optimal moves can be computed by
solving an st-mincut problem. However, their results were
limited to potentials of cliques of size at most two. We call
this class of energy functions P2. In this paper we provide

the characterization of energy functions involving higher or-
der cliques i.e. cliques of sizes 3 and beyond for which the
optimal moves can be computed in polynomial time. We
refer to the class of functions defined by cliques of size at
most n as Pn. It should be noted that this class is different
from the class Fn of energy functions which involve only
binary random variables [6, 11].

Higher order cliques Most energy minimization based
methods for solving Computer Vision problems assume that
the energy can be represented in terms of unary and pairwise
clique potentials. This assumption severely restricts the rep-
resentational power of these models making them unable to
capture the rich statistics of natural scenes [15].

Higher order clique potentials have the capability to
model complex interactions of random variables and thus
could overcome this problem. Researchers have long rec-
ognized this fact and have used higher order models to im-
prove the expressive power of MRFs and CRFs [15, 19, 20].
The initial work in this regard has been quite promising and
higher order cliques have been shown to improve results.
However their use has been quite limited due to the lack
of efficient algorithms for minimizing the resulting energy
functions.

Traditional inference algorithms such as BP are quite
computationally expensive for higher order cliques. Lan et
al. [15] recently made some progress towards solving this
problem. They proposed approximation methods for BP

to make efficient inference possible in higher order MRFs.
However their results indicate that BP only gave compara-
ble results to naı̈ve gradient descent. In contrast, we provide
a characterization of energy functions defined by cliques
of size 3 (P3) or more (Pn) which can be solved using
powerful move making algorithms such as α-expansion and
αβ-swaps. We prove that the optimal α-expansion and αβ-
swap moves for this class of functions can be computed in
polynomial time. We then introduce a new family of higher
order potential functions, referred to as the Pn Potts model,
and show that the optimal α-expansion and αβ-swap moves
for them can be computed by solving an st-mincut problem.
It should be noted that our results are a generalization of the
class of energy functions specified by [4].

Outline of the Paper In section 2, we provide the no-
tation and discuss the basic theory of energy minimiza-
tion and submodular functions. Section 3 describes the α-
expansion and αβ-swap algorithms. Further, it provides
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constraints on the pairwise potentials which guarantee com-
putation of the optimal move in polynomial time. In section
4, we generalize this class to Pn functions. We also show
that the optimal moves for a sub-class of these functions,
i.e. the Pn Potts model, can be computed by solving an
st-mincut problem. This enables us to address the texture
based segmentation problem (see section 5). We conclude
by listing some Computer Vision problems where higher
order clique potentials can be used.

2. Preliminaries
Consider a random field X defined over a lattice V =

{1, 2, . . . , N} with a neighbourhood system N . Each ran-
dom variableXi ∈ X is associated with a lattice point i ∈ V
and takes a value from the label set L = {l1, l2, . . . , lk}.
Given a neighborhood system N , a clique c is specified
by a set of random variables Xc such that ∀i, j ∈ c, i ∈
Nj and j ∈ Ni, where Ni and Nj are the sets of all neigh-
bours of variable Xi and Xj .

Any possible assignment of labels to the random vari-
ables will be called a labelling (denoted by x). In other
words, x takes values from the set L = LN . The posterior
distribution Pr(x|D) over the labellings of the random field
is a Gibbs distribution if it can be written in the form:

Pr(x|D) =
1
Z

exp(−
∑
c∈C

ψc(xc)), (1)

where Z is a normalizing constant known as the partition
function, and C is the set of all cliques. The term ψc(xc) is
known as the potential function of the clique c where xc =
{xi, i ∈ c}. The corresponding Gibbs energy is given by

E(x) = − logPr(x|D) − logZ =
∑
c∈C

ψc(xc) (2)

The maximum a posterior (MAP) labelling xmap of the ran-
dom field is defined as

xmap = argmax
x∈L

Pr(x|D) = arg min
x∈L

E(x). (3)

2.1. Submodular Energy Functions
Submodular set functions play an important role in en-

ergy minimization as they can be minimized in polynomial
time [2, 8]. In this paper we will explain their properties in
terms of functions of binary random variables which can be
seen as set functions [11].

Definition 1. A projection of a function f : Ln → R on s
variables is a function fp : Ls → R which is obtained by
fixing the values of n − s arguments of f(·). Here p refers
to the set of variables whose values have been fixed.

Example 1. The function fp(x2, . . . , xn) =
f(0, x2, . . . , xn) is a projection of the function
f(x1, x2, . . . , xn).

Definition 2. A function of one binary variable is always
submodular. A function f(x1, x2) of two binary variables
{x1, x2} is submodular if and only if:

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0) (4)

A function f : Ln → R is submodular if and only if all its
projections on 2 variables are submodular [2, 11].

Minimizing submodular functions using graph cuts
Certain submodular functions can be minimized by solving
an st-mincut problem [2]. Kolmogorov et al. [11] showed
that all submodular functions of binary variables which can
be written in terms of potential function of cliques of sizes
2 and 3 can be minimized in this manner. Freedman and
Drineas [6] extended this result by characterizing the class
of functions Fn involving higher order cliques defined on
binary variables whose minimization can be translated to
an st-mincut problem. The class of multi-label submodular
functions which can be translated into an st-mincut problem
has also been characterized independently by [5] and [7].

2.2. Metric and Semi-metric Potential functions
In this subsection we provide the constraints for pairwise

potentials to define a metric or a semi-metric.

Definition 3. A potential function ψij(a, b) for a pairwise
clique of two random variables {xi, xj} is said to be a semi-
metric if it satisfies

ψij(a, b) = 0 ⇐⇒ a = b (5)

ψij(a, b) = ψij(b, a) ≥ 0 (6)

Definition 4. The potential function is metric if in addition
to the above mentioned constraints it also satisfies

ψij(a, d) ≤ ψij(a, b) + ψij(b, d). (7)

Example 2. The function ψij(a, b) = |a − b|2 is a semi-
metric but not a metric as it does not always satisfy condi-
tion (7).

3. Move Making Algorithms
In this section we describe the move making algorithms

of [4] for approximate energy minimization and explain the
conditions under which they can be applied.

3.1. Minimizing P2 functions
Boykov et al. [4] addressed the problem of minimizing

energy functions consisting of unary and pairwise cliques.
These functions can be written as

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Nj

ψij(xi, xj). (8)

They proposed two move making algorithms called α-
expansions and αβ-swaps for this problem. These algo-
rithms work by starting from a initial labelling x and mak-
ing a series of changes (moves) which lower the energy it-
eratively. Convergence is achieved when the energy cannot



be decreased further. At each step the move decreasing the
energy of the labelling by the most amount is made. We will
refer to such a move as optimal. Recently an alternative in-
terpretation of α-expansions was given in [12].

Boykov et al. [4] showed that the optimal moves for cer-
tain energy functions of the form (8) can be computed by
solving an st-mincut problem. Specifically, they showed
that if the pairwise potential functions ψij define a metric
then the energy function in equation (8) can be approxi-
mately minimized using α-expansions. Similarly if ψij de-
fines a semi-metric, it can be minimized using αβ-swaps.

3.2. Binary Moves and Move Energies
The moves of both the α-expansion and αβ-swap algo-

rithms can be represented as a vector of binary variables
t ={ti, ∀i ∈ V}. A transformation function T (x, t) takes
the current labelling x and a move t and returns the new la-
belling x̂ which has been induced by the move. The energy
of a move t (denoted by Em(t)) is defined as the energy of
the labelling x̂ it induces i.e. Em(t) = E(T (x, t)). The
optimal move is defined as t∗ = arg mintE(T (x, t)).

As discussed in section 2.1, the optimal move t∗ can be
computed in polynomial time if the function Em(t) is sub-
modular. From definition 2 this implies that all projections
of Em(t) on two variables should be submodular i.e.
Ep

m(0, 0)+Ep
m(1, 1) ≤ Ep

m(0, 1)+Ep
m(1, 0), ∀p ∈ V×V. (9)

3.3. The α-expansion algorithm
An α-expansion move allows any random variable to ei-

ther retain its current label or take label ‘α’. One iteration
of the algorithm involves performing expansions for all α
in L in some order successively. The transformation func-
tion Tα(.) for an α-expansion move transforms the label of
a random variable Xi as

Tα(xi, ti) =
{
xi if ti = 0
α if ti = 1. (10)

The optimalα-expansion move can be computed in polyno-
mial time if the energy function Eα(t) = E(Tα(x, t)) sat-
isfies constraint (9). Substituting the value of Eα in (9) we
get the constraint
Ep(α,α)+Ep(xi, xj) ≤ Ep(xi, α)+Ep(α, xj), ∀p ∈ V ×V.

(11)

3.4. The αβ-swap algorithm
An αβ-swap move allows a random variable whose cur-

rent label is α or β to either take label α or β. One itera-
tion of the algorithm involves performing swap moves for
all α, β in L in some order successively. The transforma-
tion function Tαβ() for an αβ-swap transforms the label of
a random variable xi as

Tαβ(xi, ti) =
{
α if xi = α or β and ti = 0,
β if xi = α or β and ti = 1. (12)

The optimalαβ-swap move can be computed in polynomial
time if the energy function Eαβ(t) = E(Tαβ(x, t)) satis-
fies (9). As before, substituting the value of Eαβ in (9) we
get the constraint

Ep(α, α) + Ep(β, β) ≤ Ep(β, α) + Ep(α, β), ∀p ∈ V × V.
(13)

In the next section we show how the above mentioned move
algorithms can be used to minimize higher order energy
functions.

4. Characterizing Pn Functions
Now we characterize a class of higher order clique po-

tentials for which the expansion and swap moves can be
computed in polynomial time. Recall that Pn functions are
defined on cliques of size at most n. From the additivity
theorem [11] it follows that the optimal moves for all en-
ergy functions composed of these clique potentials can be
computed in polynomial time. We constrain the clique po-
tentials to take the form:

ψc(xc) = fc(Qc(⊕,xc)). (14)

where Qc(⊕,xc) is a functional defined as:
Qc(⊕,xc) = ⊕i,j∈cφc(xi, xj). (15)

Here fc is an arbitrary function of Qc, φc is a pairwise func-
tion defined on all pairs of random variables in the clique c,
and ⊕ is an operator applied on these functions φc(xi, xj).
4.1. Conditions for αβ-swaps

We will now specify the constraints under which all αβ-
swap moves for higher order clique potentials can be com-
puted in polynomial time. For the moment we consider the
case ⊕ =

∑
, i.e.

Qc(xc) =
∑
i,j∈c

φc(xi, xj). (16)

Theorem 1. The optimal αβ-swap move for any α, β ∈ L
can be computed in polynomial time if the potential function
ψc(xc) defined on the clique c is of the form (14) where fc(·)
is a concave1 non-decreasing function, ⊕ =

∑
and φc(·, ·)

satisfies the constraints

φc(a, b) = φc(b, a) ∀a, b ∈ L (17)

φc(a, b) ≥ φc(d, d) ∀a, b, d ∈ L (18)

Proof. To prove that the optimal swap move can be com-
puted in polynomial time we need to show that all projec-
tions on two variables of anyαβ-swap move energy are sub-
modular. From equation (13) this implies that ∀i, j ∈ c the
condition:

ψc({α, α} ∪ xc\{i,j}) + ψc({β, β} ∪ xc\{i,j}) ≤
ψc({α, β} ∪ xc\{i,j}) + ψc({β, α} ∪ xc\{i,j}) (19)

1A function f(x) is concave if for any two points (a, b) and λ where
0 ≤ λ ≤ 1: λf(a) + (1 − λ)f(b) ≤ f(λa + (1 − λ)b).



should be satisfied. Here xc\{i,j} denotes the labelling of
all variables Xu, u ∈ c except i and j. The cost of any
configuration {α, α} ∪ xc\{i,j} of the clique can be written
as

ψc({xi, xj} ∪ xc\{i,j}) = fc(Qc({xi, xj} ∪ xc\{i,j}))
= fc(φc(xi, xj) + Qc\{i,j}(xc\{i,j}) +∑

u∈c\{i,j}
φc(xi,xu) +

∑
u∈c\{i,j}

φc(xj ,xu)) (20)

Let D represent Qc\{i,j}(xc\{i,j}), Dα repre-
sent

∑
u∈c\{i,j} φc(α,xu), and Dβ represent∑

u∈c\{i,j} φc(β,xu). Using equation (20), the equa-
tion (19) becomes

fc(φc(α, β) +Dα +Dβ +D) (21)

+ fc(φc(β, α) +Dβ +Dα +D)
≥ fc(φc(α, α) + 2Dα +D) + fc(φc(β, β) + 2Dβ +D).

As φc(β, α) = φc(α, β) from constraint (17) this condition
transforms to:

2fc(φc(α, β) +Dα +Dβ +D) ≥ (22)

fc(φc(α, α) + 2Dα +D) + fc(φc(β, β) + 2Dβ +D).

To prove (22) we need lemma 1.

Lemma 1. For a non decreasing concave function f(x):

2c ≥ a+ b =⇒ 2f(c) ≥ f(a) + f(b). (23)

Proof in [9].

Using the above lemma together with the fact that

2φc(α, β) ≥ φc(α, α) + φc(β, β) ∀α, β ∈ L (24)

(see constraint (18)), we see that the theorem hold true.

The class of clique potentials described by theorem 1 is a
strict generalization of the class specified by the constraints
of [4] which can be obtained by considering only pairwise
cliques, choosing fc() as a linear increasing function2, and
constraining φc(a, a) = 0, ∀a ∈ L.

4.2. Conditions for α-expansions

In this subsection we characterize the higher order clique
potentials for which the optimal α-expansion move can be
computed in polynomial time for all α ∈ L,x ∈ L.

Theorem 2. The optimal α-expansion move for any α ∈ L
can be computed in polynomial time if the potential function
ψc(xc) defined on the clique c is of the form (14) where
fc(·) is a increasing linear function, ⊕ =

∑
and φc(·, ·) is

a metric.
2All linear functions are concave.

Proof. To prove that the optimal expansion move can be
computed in polynomial time we need to show that all pro-
jections of any α-expansion move energy on two variables
of the clique are submodular. From equation (11) this im-
plies that ∀i, j ∈ c the condition

ψc({α, α} ∪ xc\{i,j}) + ψc({a, b} ∪ xc\{i,j}) ≤
ψc({a, α} ∪ xc\{i,j}) + ψc({α, b} ∪ xc\{i,j}) (25)

is satisfied. Here a and b are the current labels of the vari-
ables Xi and Xj respectively.

Let D represent Qc\{i,j}(xc\{i,j}), and Dl represent∑
u∈c\{i,j} φc(l,xu) for any label l. Then, using equation

(20) the constraint (25) becomes

fc(φc(α, b) +Dα +Db +D) (26)

+ fc(φc(a, α) +Da +Dα +D)
≥ fc(φc(α, α) + 2Dα +D)
+ fc(φc(a, b) +Da +Db +D).

Let R1 = φc(α, b) + Dα + Db + D, R2 = φc(a, α) +
Da + Dα + D, R3 = φc(α, α) + 2Dα + D, and R4 =
fc(φc(a, b) +Da +Db +D). Since φc(·, ·) is a metric, we
observe that

φc(α, b) + φc(a, α) ≥ φc(α, α) + φc(a, b) (27)

⇒ R1 +R2 ≥ R3 +R4. (28)

Thus, we require a function f such that

R1+R2 ≥ R3+R4 =⇒ f(R1)+f(R2) ≥ f(R3)+f(R4).
(29)

The following lemma provides us the form of this function.

Lemma 2. For a function f , y1 + y2 ≥ y3 + y4 =⇒
f(y1) + f(y2) ≥ f(y3) + f(y4) if and only if f is linear.
Proof in [9].

Since f(·) is linear, this proves the theorem.

It should be noted that the class of clique potentials de-
fined by the above theorem is a small subset of the class
of functions which can be used under αβ-swaps. In fact it
is the same class of energy function as defined by [4] i.e.
P2. This can be seen by observing that the potentials of
the higher order cliques defined by theorem 2 can be repre-
sented as a sum of metric pairwise clique potentials. This
raises the question whether we can define a class of higher
order clique potentials which cannot be decomposed into a
set of P2 potentials and be solved using α-expansions. To
answer this we define the Pn Potts model.

4.2.1 Pn Potts Model
We now introduce the Pn Potts model family of higher or-
der clique potentials. This family is a strict generalization



of the Generalized Potts model [4] and can be used for mod-
elling many problems in Computer Vision.

We define the Pn Potts model potential for cliques of
size n as

ψc(xc) =
{

γk if xi = lk, ∀i ∈ c,
γmax otherwise.

(30)

where γmax > γk, ∀lk ∈ L. For a pairwise clique this re-
duces to the P2 Potts model potential defined as ψij(a, b) =
γk if a = b = lk and γmax otherwise. If we use γk = 0, for
all lk, this function becomes an example of a metric poten-
tial function.

4.2.2 Going Beyond P2 for α-expansions
We now show how the class of potential functions charac-
terized in section 4.2 can be extended by using: ⊕ =‘max’
instead of ⊕ =

∑
as in the previous subsection. To this end

we define Qc(xc) as

Qc(xc) = max
i,j∈c

φc(xi, xj). (31)

Theorem 3. The optimal α-expansion move for any α ∈ L
can be computed in polynomial time if the potential function
ψc(xc) defined on the clique c is of the form (14) where
fc(·) is a increasing linear function, ⊕ = ’max’ and φc(·, ·)
defines a P2 Potts Model.

Proof. The cost of any configuration {α, α} ∪ xc\{i,j} of
the clique under ⊕ =‘max’ can be written as

ψc({xi, xj} ∪ xc\{i,j})
= fc(Qc({xi, xj} ∪ xc\{i,j})) (32)

= fc(max(φc(xi, xj),Qc\{i,j}(xc\{i,j}),
max

u∈c\{i,j}
φc(xi,xu), max

u∈c\{i,j}
φc(xj ,xu))) (33)

Substituting this value of ψc in constraint (25) and again
using D to represent Qc\{i,j}(xc\{i,j}) and Dl represent∑

u∈c\{i,j} φc(l,xu) for any label l, we get:

fc(max(φc(α, b), Dα, Db, D))
+ fc(max(φc(a, α), Da, Dα, D))
≥ fc(max(φc(α, α), Dα, Dα, D))
+ fc(max(φc(a, b), Da, Db, D)). (34)

As fc is a linear function, from lemma 2 we see that the
above condition is true if:

max(φc(α, b), Dα, Db, D) + max(φc(a, α), Da, Dα, D) ≥
max(φc(α, α), Dα, Dα, D) + max(φc(a, b), Da, Db, D).

We only consider the case a 
= α and b 
= α. It can be easily
seen that for all other cases the above inequality is satisfied
by a equality. As φc is a P2 Potts model potential, the LHS

of the above inequality is always equal to 2γmax. As the
maximum value of the RHS is 2γmax the above inequality is
always true.

Figure 1. Graph construction for computing the optimal moves for the
Pn Potts model.

Note that the class of potentials described in above the-
orem is the same as the family of clique potentials defined
by the Pn Potts model in equation (30) for a clique c of size
n. This proves that for the Pn Potts model the optimal α-
expansion move can be solved in polynomial time. In fact
we will show that the optimal α-expansion and αβ-swap
moves for this subset of potential functions can be found by
solving an st-mincut problem.

4.3. Graph Cuts for Pn Potts Model
We now consider the minimization of energy functions

whose clique potentials take the form a Pn Potts model (see
equation (30)). Specifically, we show that the optimal αβ-
swap and α-expansion moves for such potential functions
can be computed by solving an st-mincut problem. The
graph in which the st-mincut needs to be computed is shown
for only a single clique potential. However, the additivity
theorem [11] allows us to construct the graph for an arbi-
trary number of potentials by simply merging the graphs
corresponding to individual cliques.

αβ-swap : Given a clique c, our aim is to find the optimal
αβ-swap move (denoted by t∗c ). Since the clique potential
ψc(xc) forms a Pn Potts model, we do not need to consider
the move from a configuration in which any variable in the
clique is assigned a label other than α or β. In this scenario
the clique potential only adds a constant to the αβ-swap
move energy and thus can be ignored without changing the
optimal move. For all other configurations, the potential
function after an αβ-swap move tc = {ti, i ∈ c} (where
ti ∈ {0, 1}) is given by

ψc(Tαβ(xc, tc)) =

8<
:

γα if ti = 0, ∀i ∈ c,
γβ if ti = 1, ∀i ∈ c,
γmax otherwise.

(35)
Further, we can add a constant κ to all possible values of the
clique potential without changing the optimal move t∗c . We



choose κ = γmax − γα − γβ. Note that since γmax ≥ γα

and γmax ≥ γβ , the following hold true:

γα + κ ≥ 0, γβ + κ ≥ 0, (36)

γα + κ+ γβ + κ = γmax + κ. (37)

Without loss of generality, we assume tc = {t1, t2, . . . , tn}.
Fig. 1 shows the graph construction corresponding to the
above values of the clique potential. Here, the node vi cor-
responds to move variable ti. In other words, after the com-
putation of the st-mincut if vi is connected to the source
(i.e. it belongs to the source set) then ti = 0 and if vi is
connected to the sink (i.e. it belongs to the sink set) then
ti = 1. In addition, there are two extra nodes denoted by
Ms andMt respectively. The weights of the graph are given
bywd = γβ +κ andwe = γα +κ. Note that all the weights
are positive (see equations (36)). In order to show that this
graph corresponds to the clique potential in equation (35)
(plus the constant κ) we consider three cases:
• ti = 0, ∀i ∈ c : In this case, the st-mincut corresponds

to the edge connecting Mt with the sink which has a
cost we = γα + κ. Recall that the cost of an st-mincut
is the sum of weights of the edges included in the st-
mincut which go from the source set to the sink set.

• ti = 1, ∀i ∈ c : In this case, the st-mincut corresponds
to the edge connecting the source with Ms which has
a cost wd = γβ + κ.

• All other cases: The st-mincut is given by the edges
connecting Mt with the sink and the source with Ms.
The cost of the cut is wd + we = γα + κ+ γβ + κ =
γmax + κ (from equation (37)).

Thus, we can find the optimal αβ-swap move for minimiz-
ing energy functions whose clique potentials form an Pn

Potts model using an st-mincut operation.

α-expansion : Given a clique xc, our aim is to find the
optimal α-expansion move t∗c . Again, since the clique po-
tential ψc(xc) forms an Pn Potts model, its value after an
α-expansion move tc is given by

ψc(Tα(xc, tc)) =




γ if ti = 0, ∀i ∈ c,
γα if ti = 1, ∀i ∈ c,
γmax otherwise,

(38)
where γ = γβ if xi = β for all i ∈ c and γ = γmax

otherwise. The above clique potential is similar to the one
defined for the αβ-swap move in equation (35). Therefore,
it can be represented using a graph by adding a constant κ =
γmax − γα − γ. This proves that the optimal α-expansion
move can be obtained using an st-mincut operation.

5. Texture Based Segmentation
We now present experimental results which illustrates

the advantage of higher order cliques. Higher order cliques

provide a probabilistic formulation for a wide variety of ex-
emplar based applications in computer vision, e.g. 3D re-
construction [18] and object recognition [13]. For this pa-
per, we consider one such problem i.e. texture based seg-
mentation3. This problem can be stated as follows. Given a
set of distinct textures (e.g. a dictionary of RGB patches or
histograms of textons [22]) together with their object class
labels, the task is to segment an image. In other words, the
pixels of the image should be labelled as belonging to one
of the object classes (e.g. see Fig. 3).

The above problem can be formulated within a prob-
abilistic framework using a CRF [14]. A CRF represents
the conditional distribution of a set of random variables
X = {X1, X2, . . . , XN} given the data D. Each of the vari-
ables can take one label xi ∈ {1, 2, . . . , ns}. In our case, ns

is the number of distinct object classes, a variable Xi repre-
sents a pixel Di and x = {x1, x2, . . . , xN} describes a seg-
mentation. The most (or a highly) probable (i.e. maximum a
posterior) segmentation can be obtained by (approximately)
minimizing the corresponding Gibbs energy.

Pairwise CRF : For the problem of segmentation, it is
common practice to assume a pairwise CRF where the
cliques are of size at most two [1, 3, 21]. In this case, the
Gibbs energy of the CRF is of the form:

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψij(xi, xj), (39)

where Ni is the neighbourhood of pixel Di (defined in this
work as the 8-neighbourhood). The unary potential ψi(xi)
is specified by the RGB distributions Ha, a = 1, . . . , ns of
the segments as

ψi(xi) = − log p(Di|Ha), when xi = a. (40)

The pairwise potentials ψij(xi, xj) are defined such that
they encourage contiguous segments whose boundaries lie
on image edges, i.e.

ψij(xi, xj) =

(
λ1 + λ2 exp

“
−g2(i,j)

2σ2

”
if xi �= xj ,

0 if xi = xj ,
(41)

where λ1, λ2 and σ are some parameters. The term g(i, j)
represents the difference between the RGB values of pixels
Di and Dj . We refer the reader to [3] for details. Note that
the pairwise potentials ψij(xi, xj) form a metric. Hence,
the energy function in equation (39) can be minimized using
both αβ-swap and α-expansion algorithms.

Higher Order Cliques : The Pn functions presented in
this paper allow us to go beyond the pairwise CRF frame-
work by incorporating texture information as higher order
cliques. Unlike the distributions Ha which describe the po-
tential for one variable Xi, texture captures rich statistics

3Our forthcoming work also demonstrates the effectiveness of Pn

functions on other applications.



Figure 2. Segmented keyframe of the garden sequence. The left image
shows the keyframe while the right image shows the corresponding seg-
mentation provided by the user. The four different colours indicate pixels
belonging to the four segments namely sky, house, garden and tree.

Figure 3. The first row shows four frames of the garden sequence. The
second row shows the segmentation obtained by minimizing the energy of
the pairwise CRF (in equation (39)) using the αβ-swap algorithm. The four
different colours indicate the four segments. The segmentations obtained
using α-expansion to minimize the same energy are shown in the third
row. The fourth row shows the results obtained by minimizing the energy
containing higher order clique terms which form a Pn Potts model (given
in equation (42)) using the αβ-swap algorithm. The fifth row shows the
results obtained using the α-expansion algorithm to minimize the energy
in equation (42). The use of higher order cliques results in more accurate
segmentation.

of natural images [16, 24]. In this work, we represent the
texture of each object class s ∈ {1, 2, · · · , ns} using a dic-
tionary Ps of np×np RGB patches. Note, however, that our
framework is independent of the representation of texture.
As we will describe later, the likelihood of a patch of the
image D belonging to the segment s can be computed using
the dictionary Ps.

The resulting texture based segmentation problem can be
formulated using a CRF composed of higher order cliques.
We define the Gibbs energy of this CRF as

E(x) =
X
i∈V

ψi(xi) +
X

i∈V,j∈Ni

ψij(xi, xj) +
X
c∈C

ψc(xc), (42)

where c is a clique which represents the patch Dc =
{Di, i ∈ c} of the image D and C is the set of all cliques.
Note that we use overlapping patches Dc such that |C| = N .
The unary potentials ψi(xi) and the pairwise potentials
ψij(xi, xj) are given by equations (40) and (41) respec-
tively. The clique potentials ψc(xc) are defined such that

Figure 4. The keyframe of the ‘Dayton’ video sequence segmented into
three segments.

Figure 5. Segmentation results of the ‘Dayton’ sequence. Rows 2 and 3
show the results obtained for the frames shown in row 1 by minimizing the
energy function in equation (39) using αβ-swap and α-expansion respec-
tively. Row 4 and 5 show the segmentations obtained by minimizing the
energy in equation (42) using αβ-swap and α-expansion respectively. The
use of higher order cliques results in more accurate segmentation.

they form a Pn Potts model (n = n2
p), i.e.

ψc(xc) =
n
λ3G(c, s) if xi = s,∀i ∈ c,

λ4 otherwise.
(43)

Here G(c, s) is the minimum difference between the RGB

values of patch Dc and all patches belonging to the dictio-
nary Ps. Note that the above energy function encourages
the patch Dc which are similar to a patch in Ps to take the
label s. Since the clique potentials form a Pn Potts model,
they can be minimized using the αβ-swap and α-expansion
algorithms as described in section 4.3.

Results : We tested our approach for segmenting frames
of a video sequence. A keyframe of the video was manually
segmented and used to learn the distributions Ha and the
dictionary of patches Ps. The αβ-swap and α-expansion
algorithms were used to perform segmentation on the other
frames. In all our experiments, we used patches of size 4×4,
together with the following parameter setting: λ1 = 0.6,
λ2 = 6, λ3 = 0.6, λ4 = 6.5 and σ = 5.

Fig. 2 shows the segmented keyframe of the well-known
garden sequence. Fig. 3 (row 2) shows the segmentation
obtained for four frames by minimizing the energy function
of the pairwise CRF (defined in equation (39)) using the αβ-
swap algorithm. Note that these frames are different from



the keyframe (see Fig. 3 (row 1)). The results obtained by
the α-expansion algorithm are shown in Fig. 3 (row 3). The
α-expansion algorithm takes an average of 3.7 seconds per
frame compared to the 4.7 seconds required by theαβ-swap
algorithm. Note that the segmentations obtained by both the
algorithms are inaccurate due to small clique sizes.

Fig. 3 (row 4) shows the segmentations obtained when
the energy function of the higher order CRF (defined in
equation (42)) is minimized using αβ-swap. Fig. 3 (row
5) shows the results obtained using the α-expansion algo-
rithm. On average, α-expansion takes 4.42 seconds while
αβ-swap takes 5 seconds which is comparable to the case
when the pairwise CRF is used. For both αβ-swap and α-
expansion, the use of higher order cliques provides more
accurate segmentation than the pairwise CRF formulation.

Fig. 4 shows another example of a segmented keyframe
from a video sequence. The segmentations obtained for four
frames of this video are shown in Fig. 5. Note that even
though we do not use motion information, the segmenta-
tions provided by higher order cliques are comparable to
the methods based on layered motion segmentation.

6. Discussion and Conclusions
In this paper we have characterized a class of higher or-

der clique potentials for which the optimal expansion and
swap moves can be computed in polynomial time. We also
introduced the Pn Potts model family of clique potentials
and showed that the optimal moves for it can be solved us-
ing graph cuts. Their use is demonstrated on the texture
based video segmentation problem. The Pn Potts model
potentials can be used to solve many other Computer Vi-
sion problems such as object recognition and novel view
synthesis as will be shown in forthcoming works.

We conclude with the observation that the optimal moves
for many interesting clique potentials such as those that pre-
serve planarity are NP-hard to compute [9]. Hence, they do
not lend themselves to efficient move making algorithms.
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