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Abstract

We propose a novel MRF-based model for deformable

image matching. Given two images, the task is to estimate a

mapping from one image to the other maximizing the qual-

ity of the match. We consider mappings defined by a dis-

crete deformation field constrained to preserve 2D conti-

nuity. We pose the task as finding MAP configurations of

a pairwise MRF. We propose a more compact MRF repre-

sentation of the problem which leads to a weaker, though

computationally more tractable, linear programming relax-

ation – the approximation technique we choose to apply.

The number of dual LP variables grows linearly with the

search window side, rather than quadratically as in pre-

vious approaches. To solve the relaxed problem (subopti-

mally), we apply TRW-S (Sequential Tree-Reweighted Mes-

sage passing) algorithm [13, 5]. Using our representation

and the chosen optimization scheme, we are able to match

much wider deformations than was considered previously

in global optimization framework. We further elaborate on

continuity and data terms to achieve more appropriate de-

scription of smooth deformations. The performance of our

technique is demonstrated on both synthetic and real-world

experiments.

1. Introduction

Recently, substantial advances in low-level vision prob-

lems like stereo, segmentation, image de-noising, etc., have

been achieved by using MRFs. This is mainly due to new

algorithms for inference in MRF, in particular algorithms

for finding maximum a posteriori (MAP) configurations.

Szeliski et al. [12] give experimental comparison of recent

optimization algorithms for popular vision problems. More

background on inference and learning algorithms for MRFs

is given e.g. in [3].

In this work we consider the problem of two-dimensional

matching of non-rigid objects. Out of possible applications

we would like to point some non-obvious ones, employing

2D deformation as a part of more complex generative mod-

els. For example, in learning object appearance jointly with

motion [4, 8] or joint segmentation and classification [15]

the deformation field is used to describe non-rigid motions

(people in video), the inclass variations (different human

faces, cars, etc.) or both. Classical applications include

computation of the optical flow to estimate motion of a 3D

scene, registration of images taken by different measuring

devices, tracking in video sequences, etc.

1.1. Related work

Here, we survey existing works on modeling non-rigid

deformation as a field of discrete displacements with conti-

nuity constraints imposed on pairs of neighboring displace-

ments. The optimal deformation is sought as MAP config-

uration of the corresponding MRF. Finding a globally opti-

mal or even a reasonably good suboptimal solution in this

problem is a difficult task and such models of deformation

have been addressed only rarely. The potential advantage

however is that harder matching problems could be solved

thanks to use of global optimization techniques.

Roy and Govindu [9] applied the MRF model to the op-

tical flow problem. They modeled flow orientation field and

flow magnitude field as separate MRFs. They first solve for

orientation field and then for the magnitude. Each of these

problems is reduced to computation of max-flow under their

model.

Boykov et al. [1] introduced α-β swap algorithm and

considered the problem of 2D motion estimation as an ex-

ample. Variables in their model take values from the prod-

uct set of allowed displacements ∆X × ∆Y . Optimization

by α-β swap algorithm for this MRF becomes quickly in-

tractable for larger displacements ∆X and ∆Y . Another

disadvantage is that starting point is required and the solu-

tion is dependent on it — the algorithm finds local optimum

w.r.t. swap moves, which might not be reasonable for the

problem we consider.

Kumar et al. [8] computed piecewise rigid deformation

of consecutive frames in a video sequence. Deformation

was locally described by translation rotation and scale. An

MRF model with states being discretized deformations and

pairwise potentials encouraging rigid motion of fragments

was optimizing using (sum-product) belief propagation al-
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gorithm. Due to large state-space, a coarse-to-fine approach

was applied to reduce memory and computation require-

ments.

Winn and Jojic [15] employed 2D deformation as a part

of their model of flexible appearance. They applied α-

expansion algorithm [1] to find the best deformation (a

truncation is needed to apply α-expansion to their non-

metric [1] model).

Kovtun [7] proposed an algorithm for finding a guar-

anteed persistent part of optimal solutions. The approach

was applied also to 2D deformation. The work suggests

a more compact MRF model which we refer to as decom-

posed model and will discuss in more detail in the sequel.

Kovtun’s experiments on real images showed that it is hard

to find a reasonably large persistent part of optimal solu-

tions.

1.2. Contribution and outline

Our model is based on the model [7], we extend its

flexibility by using blocks and hard continuity constraints

(Sect. 2). We apply TRW-S algorithm (recently devel-

oped [13, 5]) to our model. It is a variational optimization

algorithm designed to solve the LP-relaxation of a discrete

energy minimization problem. This LP-relaxation was stud-

ied in, e.g., original paper [10], review [14]). The TRW-S

algorithm has the same asymptotic behavior as algorithms

in [6, 14]. It may not solve the LP-relaxation problem, since

its stationary points satisfy only a necessary optimality con-

dition (studied in [10, 14, 5]). Yet the algorithm is very effi-

cient in certain practical applications. We achieved signifi-

cant improvement in the deformable image matching prob-

lem as we show in our experiments (Sect. 4), demonstrat-

ing that qualitatively larger displacement ranges are feasi-

ble and that the solution provided is robust to noise. We

conclude with possible extensions in Sect. 5.

2. Deformation model

In this section we review previously used MRF models

for the 2D deformation and introduce block model. We con-

sider two important aspects of these models. The first aspect

is demands of the models w.r.t. TRW-S algorithm: the num-

ber of variational variables (all components of all messages)

and the complexity of elementary updates in one iteration

(passing of one message). The second aspect is the model-

ing power to represent continuous deformations. We start

with defining the standard energy minimization framework,

following the notation of [13, 5]. We refer to [3, 13] for

more background on graphical models and MRFs.

2.1. Energy minimization

Let L = {1 . . .K} be a set of labels. Let G = (V, E) be

a graph with E ⊆ V × V antisymmetric and antireflexive,

i.e. (s, t) ∈ E ⇒ (t, s) /∈ E . In what follows we will

denote by st an ordered pair (s, t) ∈ E . Let each graph

node s ∈ V be assigned a label xs ∈ L and let a labeling

(or configuration) be defined as x = {xs | s ∈ V}. Let

{θs(i) ∈ R | i ∈ L, s ∈ V} be univariate potentials and

{θst(i, j) ∈ R | i, j ∈ L, st ∈ E} be pairwise potentials.

Let energy of a configuration x be defined by:

E(x|θ) =
∑

s∈V

θs(xs) +
∑

st∈E

θst(xs, xt) , (1)

where θs(·) is also referred to as data term and θst(xs, xt)
as pairwise interaction term. The probability distribution

defined by p(x|θ) ∝ exp(−E(x|θ)) is a Gibbs distribu-

tion which corresponds to a certain Markov Random Field.

The problem of finding a maximum a posteriori configura-

tion of this MRF corresponds to the energy minimization,

minx E(x|θ).

2.2. Product model

Let T 1, T 2 be sets of pixels and I1 : T 1 7→ [0, 1]3,

I2 : T 2 7→ [0, 1]3 be two images. We start with the

simplest model for a 2D deformation which was consid-

ered in e.g. [1]. Let configuration x with components

xs = (x1
s, x

2
s), s ∈ V = T 1, be a 2D displacement field

over T 1. Coordinates x1
s and x2

s denote x- and y- displace-

ments of the pixel s. Let mapping Dx from image I2 to

image I1 be defined by (DxI)s = Is+xs
. Let both coordi-

nates take values from L = {Kmin, . . . ,Kmax}, thus vari-

ables xs = (x1
s, x

2
s) take their values from the set L = L2.

Let θs(xs) = (I1
s − I2

s+xs
)2/2σ2

I . This term corresponds

to the statistical assumption of p
(

(DxI
2)s − I1

s | x
)

∝
N 3(0, σ2

I ), s ∈ V , which means that under fixed x de-

formed image DxI
2 is a noisy observation of image I1

assuming Gaussian noise in each color component with

variance σ2
I . A usual setting for interaction potentials is:

θst(xs, xt) = ‖xs − xt‖
2
/2σ2

x = (x1
s − x1

t )
2/2σ2

x + (x2
s −

x2
t )

2/2σ2
x, st ∈ E , where E is the set of all horizontally

and vertically neighboring pairs of pixels. This term penal-

izes discontinuities in the deformation field x, so that close

pixels are forced to go to close destinations (see Fig. 1).

Minimizing energy defined by θ for a general input is

not known to be polynomially solvable. A message-passing

algorithm for this problem (TRW-S, belief propagation)

would require keeping O(|V||L|2) variational variables—

this is the number of variables in the dual of the LP-

relaxation of the energy minimization. Generally, such al-

gorithms would require O(|L|4) operations for an elemen-

tary message update. In our case, it may be reduced to

O(|L|2) if the special form of functions θst is exploited (ap-

plying distance transform, see e.g. [2]). Let us also note that

if θst was chosen to be ‖xs − xt‖ the energy would satisfy

metric properties and the α-expansion algorithm could be

applied.
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Figure 1. Deformation as pairwise MRF: data terms penalize color

deviation of singe pixels from hypothesized destination, pairwise

terms penalize spatial deviations.

2.3. Decomposed model

The model, proposed in [7], represents x and y displace-

ments by two interacting fields which we refer to as layers.

Graph G in this model is constructed as follows (see Fig. 2):

nodes V = V1 ∪ V2, with V1 ∼ V2 ∼ T 1 (here, ∼ denotes

that sets V1, V2 and T 1 are isomorphic, i.e., copies of each

other); edges E = E1 ∪ E2 ∪ E12, where E1 (resp. E2)

is the set of vertically and horizontally neighboring pixel

pairs in V1 (resp. V2), and E12 = {(s1, s2) | s1 ∈ V1, s2 ∈
V2, s1 ∼ s2} is the set of intra-layer edges (here, s1 ∼ s2

denote that these elements correspond in the isomorphism

∼). Let x = {xsi | si ∈ Vi, i = 1, 2}. The data term

in this model is encoded in the interaction pairs form E12,

as θst(xs, xt) = (I1
s − I2

s+(xs,xt)
)2/2σ2

I , s ∈ V1, t ∈ V2,

st ∈ E12. The continuity term is set identically for both

layers: θst(xs, xt) = (xs − xt)
2/2σ2

x, st ∈ E i, i = 1, 2.

It can be seen that the resulting energy function E(x|θ) is

equivalent to that of the product model.

For this model we need to keep only O(|V||L|) varia-

tional variables, with complexity of elementary update of

O(|L|2) for pairs st ∈ E12 and O(|L|) for pairs st ∈ E1∪E2

(the latter is due to special form of interactions, (xs − xt)
2,

[2]). Let us note that LP relaxation of the decomposed

model is weaker than that of the product model (see details

in [11]), however this did not seem critical for our instances.

2.4. Block model, crisp discontinuity term

A drawback of the two above models is that the conti-

nuity term ‖xs − xt‖
2
/2σ2

x assigns a nonzero penalty to

affine transformations except pure translations, in particu-

lar, scaling is very poorly handled. The solution therefore is

biased towards pure translations which is not only undesir-

able but leads to a sensitive tradeoff between the data term

and the continuity term: either the model will not follow

the deformation observed by the data term or it will allow

discontinuities in the case noise is present.

It is reasonable that e.g. small affine transformations and

scaling receive the same penalty as pure translations. One

might think that this could be ensured by replacing the soft

interaction term with a crisp one, which would assign zero

s2

V1
V2

s1
xs1

xs2

Figure 2. Decomposed model. Left: model consist of two layers

V
1 and V

2, the neighborhood structure is shown by nodes s
1, s

2

and interaction edges to their neighbors in E . Right: inter-layer in-

teraction is used to encode data term – 2D displacement of a pixel

s is determined by pair of labels x
s
1 , x

s
2 (shown black) being the

two coordinates; data fitness term for the displacement is encoded

on edge (x
s
1 , x

s
2) (shown bold dashed).

penalty to small relative displacement of ±1 pixel and in-

finite penalty to larger displacements. However, it turned

out in experiments that this model is too flexible and causes

overfitting, which results in many irregularly spaced gaps in

the displacement field.

To avoid overfitting we require the deformation field to

be locally affine (in some small regions of pixels). As we

consider discrete models, we want the deformation field to

be described locally by translations. We propose to aggre-

gate pixels into blocks and allow each block to have dis-

placements with a pixel precision. We do not penalize rel-

ative displacements of ±1 pixels in vertical and horizon-

tal directions, and completely forbid larger displacements,

see Fig. 3. Let set T 1 be regularly subdivided into square

(d)

(b)(a)

(c)

Figure 3. Block model: (a) two neighboring blocks of 4×4 pixels;

(b)-(d) examples of nonpenalized relative displacements. There

are nine nonpenalized relative displacements in total.

blocks and let B be a set of these blocks. We assume the

horizontal and vertical neighborhood of the blocks. We let

V1 ∼ V2 ∼ B and construct the graph G as in the decom-

posed model. We define the data term as

θst(xs, xt) = 1
2σ2

I

d(I1
s , I2

s+(xs,xt)
), (2)

where s ∈ V1, t ∈ V2, st ∈ E12; I1
s is a fragment of im-

age I1 over block s; s + (xs, xt) is the block s shifted by

(xs, xt), and d(·, ·) is a dissimilarity measure between the



two image fragments (sum of squared differences or other).

For all edges st ∈ E1 ∪ E2 we set the continuity term to

θst(xs, xt) =







0, xs = xt ,
cr, |xs − xt| ≤ 1 ,
∞, |xs − xt| > 1 ,

(3)

where 0 < cr ≪ 1/σ2
I is a regularization term that enforces

uniqueness of solution. The subclass of transformations

with low penalty (less than cr for each continuity edge) nat-

urally incorporates a certain range of affine transformations

(e.g., it includes scale changes in the range 0.75–1.25, when

blocks are 4×4 pixels) and a certain degree of local flexibil-

ity, as can be seen from our experiments.

3. Implementation

We have implemented TRW-S as proposed in [5], i.e.

using monotonic chains and the efficient update scheme

(see also short derivation of TRW-S in [11]). Our tree de-

composition consists of all vertical and horizontal chains

in layers V1 and V2 plus one-edge chains, correspond-

ing to inter-layer edges E12. For intra-layer (edges from

E1, E2) updates corresponding to continuity term (3), we

used method [2] giving complexity O(|L|). Because inter-

layer (E12) updates are considerably slower, we modified

the sequential schedule to perform more intra-layer itera-

tions (this is compatible with TRW-S’s constraints on the

order of updates). For the data term, we precomputed block

similarities (also this is not necessary and the technique

can be implemented purely in O(|V||L|) memory complex-

ity). To speed up this computation, we first cluster im-

age color space and precompute the table of color com-

parisons. For the color comparison we use Fλ(c1, c2) =

λ2 〈c1−c2,c2〉
||c2||2

+ (c1 − 〈c1, c2〉
c2

||c2||2
)2, which scales down

the projection of c1 − c2 onto c2 by λ and provides robust-

ness against brightness changes: when λ = 1, Fλ becomes

squared Euclidean distance (c1 − c2)
2, when λ < 1, then

component of (c1 − c2) along the direction defined by c2 is

scaled down by λ.

Finding a configuration. As an output of the TRW-

S algorithm, we expect a locally consistent set of optimal

configurations over the trees (WTA conditions) [5]. To as-

sess convergence, we measure how well WTA conditions

are satisfied: we estimate the smallest ε such that ε-optimal

configurations of the trees satisfy WTA, where ε-optimal

configurations are those having quality within ε from the

optimum. It follows from convergence properties of TRW-

S [5] that for a given ε0 there exists an iteration number such

that ε < ε0 is satisfied. Having reached predefined ε0, we

need to pick a solution based on the set of configurations

satisfying WTA, which is hard (NP-complete) constraint

satisfaction problem and its solution need not even exist.

Instead we resort to the following greedy heuristic. Hav-

ing reached ε0 we split the optimization problem into two

independent ones by fixing an optimal configuration at the

horizontal (vertical) chain in the middle of our grid graph.

This fixation can increase ε for each of the two subproblems

so we continue with TRW-S updates and the whole proce-

dure for the subproblems until we fix solution at all nodes.

The procedure is accomplished in O(log |V|) splitting steps

and it is guaranteed that no ∞ edge will be encountered at

the output solution.

Parameters. We represent color space as [0, 1]3 and

compute color similarity using Fλ with λ = 0.1. For

d(x, y) we use 1
N

∑N

i=1 Fλ(xi, yi), where xi, yi are colors

of pixels in correspondence. We set σI = 1 and cr = 0.001.

When a pixel is mapped out of the field of view, we assign

it a penalty of 0.01. Experimental results were not very

sensitive to these parameters. Block size is a free parameter

chosen accordingly to the desired flexibility of deformation,

ε0 is a ”precision” parameter.

4. Experiments

We ran the optimization scheme on many real im-

ages and gathered statistics to evaluate its perfor-

mance. We also optimized on synthetically deformed

images to learn how well the deformation field is re-

covered and how robust it is to noise. Results

on large real-world images and the animated defor-

mations are available at http://cmp.felk.cvut.cz/

˜shekhovt/deform-match-mrf.

Figure 4. First line: example of input-output for the matching set:

input image pair (template and target images) and the deformed

template overimposed on target image. The deformation is found

by the algorithm. Second line: the same for the non-matching set

(notice: traffic signs are different). Images are 100×100, search

regions are 10×10 and blocks are 4×4. Black background of the

template images is excluded from the data term.

Optimization evaluation. We evaluated the optimiza-

tion on two sets of real world images: one contains truly



matching image pairs and the second contains pairs of non-

matching images, Fig. 4 gives representative examples. In

the set of non-matching pairs many instances contain really

different objects, which could not be matched by a smooth

deformation, however it does not prevent us from running

the algorithm on them. At each run, we compute the best

TRW-S lower bound, LB, guaranteed not to be greater than

the quality of an optimal configuration Q∗ [13]. Let the

quality of found solution be Q. We calculate the approxi-

mation ration as α = Q/LB ≥ Q/Q∗. The statistics over

100 test pairs from both sets is given in Table 1. Let us

note that the optimization is invariant to adding a constant

to the energy function, however, the approximation ration

is not. Therefore it is specific to our particularly chosen

energy function.

(a)

ε0 10−2 10−3 10−4

mean α − 1 0.72% 0.43% 0.28%

max α − 1 2.14% 1.64% 1.5%

std of α 0.43% 0.33% 0.3%

avg time 0.92s 1.4s 4.2s

(b)

mean α − 1 4.04% 3.5% 3.34%

max α − 1 19.5% 18.7% 18.7%

std of α 4.5% 4.2% 4.3%

avg time 0.97s 2.1s 7.5s

Table 1. Statistics of approximation ratio over 100 test instances

of : (a) matching traffic signs; (b) non-matching traffic signs.

Our observations are as follows: 1) Waiting longer for

better TRW-S convergence gives only a slight improvement

at the cost of significantly more computations. 2) More

difficult matching tasks (ambiguous, clutter, etc.) lead to

harder optimization problems – the approximation ratio is

worse and the required time to achieve the same conver-

gence precision is higher.

Visual evaluation of the results. We applied sev-

eral parametric transformations to an image (Fig. 5) to

show the flexibility of the deformation field, and searched

for a matching of its subregion to the deformed images

(Figs. 6, 7). We cropped the subregion to ensure that all

pixels from T 1 are matched; however, the algorithm works

well also without this cropping. The chosen subregion does

not align with visual edges of the image so the quality of the

matching could be seen visually when superimposed. All

images are 300×225 pixels, we used L = {−30 . . . 30} for

x and y allowed displacements, blocks were 4× 4. Compu-

tation took ∼40 sec. per image, from which 11.2 sec were

spent on precomputing block correlations. We keep a small

translation component since the optimization is invariant to

it provided the search range is wide enough. The robustness

to noise is tested with synthetic gaussian noise (Fig. 8).

Figure 5. Synthetic deformations: initial picture, rotation+scaling,

twirl, twirl + projective transform.

Figure 6. Searched fragment and its found deformations superim-

posed (inside the outline) onto corresponding inputs.
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Figure 7. (a) Close-in at rotation-scaling deformation shown with-

out fills between blocks. (b-d) Found deformation field (shown

sparse) and a transformed regular grid w.r.t. Fig. 6.



Figure 8. (a) Image from Fig. 5(d) perturbed with noise N (0, 0.1)
with the matched fragment superimposed. (b) The same with noise

N (0, 0.2).

5. Conclusion

We have designed a novel model for image matching

based on the MRF optimization framework. Our constraints

allow flexible local deformations and impose hard penalty

on discontinuities. By varying size of blocks we can control

the class of allowed deformations and avoid overfitting. We

have applied the TRW-S algorithm to maximize the dual of

the linearly relaxed energy minimization problem. As we

used the structure of the model from [7], our relaxed opti-

mization problem needs only a number of variables, which

is linear in the sizes of the search window (not quadratic as

it would be with the commonly used model). This allows us

to deal with much wider local displacements of the defor-

mation fields compared to ones considered previously in the

global optimization framework. Our experiments demon-

strate high visual accuracy within a wide class of continu-

ous deformations and robustness to a high degree of noise.

Extensions. As in stereo, we could possibly use a trun-

cated continuity term and gradient cues to model piece-

wise continuous deformations, and a truncated data term to

model outliers (clutter, occlusions, etc.). Another option is

to couple our model with other MRF models, e.g., a seg-

mentation model, as in [15]. A sparse set of corresponding

pixels can be easily incorporated in the data term as a prior.

This is likely to greatly stabilize the result. One could imag-

ine a user-guided tool for image morphing: first, images are

matched fully automatically, then the user constraints cor-

respondence by mouse in one or several places and re-runs.

To cope with larger global translations (or scale, rota-

tion etc.) one may consider adding a common, roughly

discretized, transformation variable. This however leads to

many ambiguous solutions so the optimization by TRW-S

becomes badly conditioned. Another related issue is the

choice of a solution based on min-marginals. We consider

pairing this algorithm with a local search algorithm, e.g.,

graph cuts, so the latter would have a good initial point to

start. We also noted that many states of variables xs could

be discarded as non-optimal if the computation of lower

bound is repeated for each of them and compared to the

quality of the best solution found, however the challenge is

to organize this computation efficiently.
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