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Abstract

Although many color constancy methods exist, they are
all based on specific assumptions such as the set of possible
light sources, or the spatial and spectral characteristics of
images. As a consequence, no algorithm can be considered
as universal. However, with the large variety of available
methods, the question is how to select the method that in-
duces equivalent classes for different image characteristics.
Furthermore, the subsequent question is how to combine the
different algorithms in a proper way.

To achieve selection and combining of color constancy
algorithms, in this paper, natural image statistics are used
to identify the most important characteristics of color im-
ages. Then, based on these image characteristics, the
proper color constancy algorithm (or best combination of
algorithms) is selected for a specific image. To capture the
image characteristics, the Weibull parameterization (e.g.
texture and contrast) is used.

Experiments show that, on a large data set of 11, 0 0 0

images, our approach outperforms current state-of-the-art
single algorithms, as well as simple alternatives for com-
bining several algorithms.

1. Introduction
Differences in illumination cause measurements of ob-

ject colors to be biased towards the color of the light source.
Fortunately, humans have the ability of color constancy:
they perceive the same color of an object despite large dif-
ferences in illumination. A similar color constancy capabil-
ity is necessary for various computer vision tasks such as
object recognition, video retrieval and scene classification.
In this way, the extracted image features are only dependent
on the colors of the objects. This is beneficial for the task at
hand [12].

Many color constancy algorithms have been proposed,
see [13] for a recent overview. In general, color con-
stancy algorithms can be divided into two groups: algo-
rithms based on low-level image features and algorithms

that use information acquired in a learning phase to esti-
mate the illuminant. Gamut-based methods [7, 8, 10] are
examples of the latter group. Such methods are based on
the assumption that in real-world images, for a given illumi-
nant, one observes only a limited number of colors. Similar
approaches include probabilistic methods [1, 5] and meth-
ods based on genetic algorithms [6]. Examples of methods
using low-level features are the Grey-World algorithm [2],
the White-Patch algorithm [16], and more recently the gen-
eral Grey-World algorithm [9] and the Grey-Edge algorithm
[21].

All of the above color constancy methods are based on
specific imaging assumptions. These assumptions include
the set of possible light sources, the spatial and spectral
characteristics of scenes, or other presumables (e.g. white
patch, averaged color is grey, etc.). As a consequence, no
algorithm can be considered as universal. With the large
variety of available methods, the inevitable question arises
how to select the method that induces the equivalence class
for a certain imaging setting. Furthermore, the subsequent
question is how to combine the different algorithms in a
proper way.

Little research has been published on the selection and
fusion of color constancy methods. In [3], fusing is per-
formed by a weighted average of several methods. More
recently, a statistics-based method is combined with a
physics-based method [18]. Both methods are based on
weighting the output of the used color constancy algo-
rithms, where the weights are optimized for a specific data
set. However, the combination of the used algorithms still
depends on the type of images being processed.

Therefore, in this paper, to achieve selection and com-
bining of color constancy algorithms, natural image statis-
tics are used to identify the recording settings of color im-
ages. To this end, the Weibull parameterization is used to
express the image characteristics such as texture and con-
trast. Then, based on these image characteristics, the proper
color constancy algorithm (or best combination of algo-
rithms) is selected for a specific image. As Weibull distri-
butions are derived from higher-order image statistics (i.e.
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(a) White-Patch and corresponding power spectra

(b) general Grey-World and corresponding power spectra

Figure 1. Examples of images on which the White-Patch algorithm
(a) and the general Grey-World algorithm (b) perform better than
other algorithms.

image derivatives), the choice of a proper set of different
color constancy methods should support this. To this end,
the color constancy framework proposed by Weijer et. al. is
used [21]. This framework incorporates higher-order statis-
tics. Further, it allows us to generate different color con-
stancy algorithms in a systematic way.

To illustrate the principle of color constancy using nat-
ural image statistics, in figure 1(a) 1, images are shown on
which the White-Patch algorithm performs best. These im-
ages contain many textures, like vegetation. In contrast, the
general Grey-World algorithm performs better on images
with less texture and contrast (see figure 1(b)). Texture and
contrast are related to spatial and spectral frequencies in im-
ages. Torralba and Oliva [20] show that characteristics of
natural image statistics can be captured by a power spec-
trum of derivatives. Different types of scenes will result
in different power spectra. In other words, natural image
statistics reflect the type of scene from which the images
are taken from.

The paper is organized as follows. First, in section 2,
color constancy based on low-level image features is dis-
cussed. In section 3, the concept of natural image statistics
is provided. In section 4, several approaches to combine
color constancy algorithms are given. Finally, in section
5, the methods are evaluated on a large data set containing
over 11, 000 images.

1images taken from http://cvcl.mit.edu/database.htm

2. Color Constancy
Let’s assume that an image f is composed of:

f(x) =

∫

ω

e(λ)c(λ)s(x, λ)dλ, (1)

where e(λ) is the color of the light source, s(x, λ) is de sur-
face reflectance and c(λ) is the camera sensitivity function.
Further, ω and x are the visible spectrum and the spatial co-
ordinates respectively. Assuming that the observed color of
the light source e depends on the color of the light source
e(λ) as well as the camera sensitivity function c(λ), then
color constancy is equivalent to the estimation of e by:

e =

∫

ω

e(λ)c(λ)dλ, (2)

given the image values of f , since both e(λ) and c(λ) are,
in general, unknown. This is an under-constrained problem
and therefore it can not be solved without further assump-
tions.

To study the possible correlation between natural im-
age statistics (image derivatives) and color constancy, the
choice of a proper set of different color constancy methods
should support the capability to extract higher-order statis-
tics. Recently, a method is proposed [21] which incorpo-
rates higher-order derivatives. Further, it allows us to gen-
erate different color constancy algorithms in a systematic
way. Therefore, in this paper, we focus on algorithms using
low-level image features.

Two well-established algorithms, using low-level fea-
tures, are based on the Retinex Theory proposed by Land
[16]. The White-Patch algorithm is based on the White-
Patch assumption, i.e. the maximum response in the RGB-
channels is caused by a white patch. The Grey-World al-
gorithm [2] is based on the Grey-World assumption, i.e. the
average reflectance in a scene is achromatic. In [9], these
two algorithms were proved to be special instances of the
Minkowski-norm:

Lp =

(
∫

f
p(x)dx
∫

dx

)

1

p

= ke. (3)

When p = 1 is substituted, equation (3) is equivalent to
computing the average of f(x), i.e. L1 equals the Grey-
World algorithm. When p = ∞, equation (3) results in
computing the maximum of f(v), i.e. L∞ equals the White-
Patch algorithm. In general, this parameter is tuned for a
given data set.

An extension of (3) is proposed in [21], resulting in the
Grey-Edge assumption: the average of the reflectance dif-
ferences in a scene is achromatic. The reflectance differ-
ences can be determined by taking derivatives of the image.
Using image derivatives, the method is an extended version



of (3) as follows:

(
∫

∣

∣

∣

∣

∂n
f
σ(x)

∂xn

∣

∣

∣

∣

p

dx

)

1

p

= ken,p,σ, (4)

where n is the order of the derivative, p is the Minkowski-
norm and f

σ(x) = f ⊗ G
σ is the convolution of the image

with a Gaussian filter with scale parameter σ.
Using equation (4), many different color constancy al-

gorithms can be generated. For instance, algorithms based
on zeroth-order statistics like Grey-World, White-Patch and
general Grey-World can be generated by substituting n = 0:

1. e
0,1,0 (≡ L1) is equivalent to the Grey-World algo-

rithm;

2. e
0,∞,0 (≡ L∞) is equivalent to the White-Patch algo-

rithm;

3. e
0,p,σ is called the general Grey-World algorithm,

where the values for p and σ are dependent on the type
of images that are in the data set. For the images in the
data set we use in our experiments, p = 13 and σ = 2
was found to produce good results, i.e. e0,13 ,2.

Equation (4) extends these instantiations to higher-order
statistics. For instance, when taking the first-order or
second-order derivative, the values for the Minkowski-norm
and the smoothing parameter can be used to produce differ-
ent algorithms:

4 e
1,p,σ is the first-order Grey-Edge. The Minkowski-

norm p and the smoothing parameter σ are dependent
on the images that are in the data set. For our data set,
p = 1 and σ = 6 produces good results, i.e. e1,1,6.

5 e
2,p,σ is the second-order Grey-Edge. Again, the op-

timal Minkowski-norm p and smoothing parameter σ

can be derived for a specific data set, and for our data
set p = 1 and σ = 5 produces good results, i.e. e2,1,5.

To summarize, five different algorithms are computed
based on zero-, first- and second-order image statistics. It is
obvious that many other instantiations can be generated by
varying the Minkowski-norm for different orders of deriva-
tives. However, for the ease of illustration, we focus on
these five instantiations.

3. Natural Image Statistics
Spatial and spectral image structures are valuable clues

in determining which type of scene the image is taken from.
In [20], the authors show that the power spectrum of an im-
age is characteristic for the type of scene. In the context of
scene classification, features derived from the power spec-
trum and Weibull distributions have been successfully ap-
plied [19, 11, 22]. The distribution of edge responses of an

(a) White-Patch

(b) general Grey-World

(c) First-order Grey-Edge

(d) Second-order Grey-Edge

Figure 2. Examples of images that can be considered to be charac-
teristic for the corresponding color constancy algorithms, i.e. the
corresponding color constancy algorithm will perform especially
good on such images. Underneath every image, two contour plots
are shown: plot (i) represents the power-spectrum of correspond-
ing image, while plot (ii) represents the Weibull fit of the edge
responses.

image can be modeled by a Weibull distribution [11]:

f(x) =
γ

β

(

x

β

)γ−1

e−( x
β )

γ

, (5)



The parameters of this distribution are indicative for the
statistics of a (natural) scene. In fact, the contrast of the
image is given by β (i.e. the width of the distribution), and
the grain size is given by γ (i.e. the peakedness of the dis-
tribution). Hence, a higher value for β indicates more con-
trast, while a higher value for γ indicates a smaller grain
size (more fine textures).

To fit the Weibull distribution, edge responses are com-
puted. This is calculated using a Gaussian derivative fil-
ter. [11] shows that a single filter type, although mea-
sured in different orientations, is sufficient to assess the spa-
tial statistics. There exists a high correlation between the
Weibull parameters fitted through the distribution of edges
for the first derivative, second derivative and third deriva-
tive. In this paper, we use a first-order derivative filter in
the x and y-direction, resulting in two values for β and two
values for γ for every color channel.

In figure 2, examples are shown of images with their cor-
responding power spectrum and edge distribution (the con-
tour plot (i) represents the power spectrum, obtained by us-
ing the Fourier transform on the intensity image, and the
contour plot (ii) represents Weibull fit of the edge distribu-
tion of the intensity image). The images are examples of im-
ages on which the corresponding color constancy algorithm
performs well. The contour plots show the similarity be-
tween the power spectrum [20] and the weibull distribution
[11]. Important to note is the difference between the con-
tour plots for the type of scenes, i.e. the contour plots cor-
responding to images on which the White-Patch algorithm
performs best are significantly different from the contour
plots corresponding to the images on which the 1st-order
Grey-Edge performs successfully (a color constancy algo-
rithm performs good on a certain image, if it successfully
estimates the illuminant of that scene, or the estimation is
very close to the real illuminant). For instance, the plots in
figure 2(c) are sharply peaked around the origin, while the
plots in figure 2(a) are more round.

4. Combination of Methods

In this section, methods are proposed to select the color
constancy method that induces the equivalence class for dif-
ferent imaging settings. Furthermore, a strategy is provided
to combine the different algorithms in a proper way.

Therefore, in section 4.1, a basic approach is discussed
which is using the output of multiple algorithms. In Section
4.2, natural image statistics are used to identify the most
important characteristics of color images. Based on these
image characteristics, the proper color constancy algorithm
(or best combination of algorithms) is selected for a specific
image.

4.1. Standard Fusion

When using the output of multiple algorithms to gener-
ate a new estimate of the illuminant, the simplest method
of combining is to take the average of the estimates over
all algorithms. A straightforward extension is to take the
weighted average. If n algorithms are combined, then the
weighted average is define as:

e =
n

∑

i=1

wiei, (6)

where
∑n

i=1
wi = 1. The average is just a special instance

of the weighted average: w1 = w2 = ... = wn. The esti-
mates can also be combined using a non-linear committee.
However, in [3], it is shown that a non-linear neural network
did not produce better results than the weighted average. In
fact, the weighted average outperformed a multi-layer Per-
ceptron neural network.

In [18], two algorithms (a statistics-based and a physics-
based algorithm) were combined using a similar approach.
However, the output of the two used algorithms are some-
what different than the output of a general color constancy
algorithm. Both methods produce a vector of probabili-
ties, where each element represents the probability that the
corresponding illuminant is the illuminant that was used to
create the current image. In the combination-phase, the
weighted average of these two vectors is determined, after
which the illuminant with the highest probability is selected
to be correct. Since this method requires the output of the
color constancy algorithms to comply to a specific (irregu-
lar) form, this approach is not further evaluated here.

4.2. Color Constancy using Natural Image Statistics

In section 3, the Weibull distribution is used as the pa-
rameterization of natural image statistics. Characteristics
like the amount of texture and contrast is captured in the
value of β and γ, which are derived from a histogram of
edge responses in the x and y-direction.

In this section, we propose three different ways to se-
lect and fuse different color constancy methods. The first
method is to select the most appropriate color constancy
algorithm based on natural image statistics. The second
method combines the algorithms using a weighted average.
The difference with the basic committee-based approach is
that the weights are derived using the natural image statis-
tics and that the weights are adjusted for every single image.
The third method involves the presetting of color constancy
algorithms for specific scene categories.

4.2.1 Selection

The first approach is concerned with the selection of the
most appropriate color constancy algorithm. The learning



Figure 3. A scatterplot of the β and γ of the derivatives in the x-direction. Every point represents the Weibull-parameters of one image, and
the parameters of more than 11, 0 0 0 images are plotted. The differently colored parts in the graph represent clusters with images that are
generally best solved by some specific color constancy algorithm. Note that the Grey-World algorithm was also present during the learning
phase, but it was never assigned to any cluster, which means that for any cluster, one of the four other algorithms perform better than the
Grey-World algorithm.

algorithm is based on postsupervised prototype classifica-
tion [15]. It consists of the following steps:

1. Compute the Weibull-parameters for all images.

2. Cluster the Weibull-parameters using k-means. In this
way, k prototypes are determined, corresponding to the
cluster centers.

3. Label the prototypes by determining the best suited
color constancy algorithm for every cluster. This is
computed by analyzing the angular errors (i.e. a per-
formance measure that determines the angular distance
between the estimated illuminant and the true illumi-
nant) for all color constancy algorithms on the images
within one cluster. The color constancy algorithm with
the lowest mean angular error is ”assigned” to this
cluster, i.e. every prototype is labeled with the most
appropriate color constancy algorithm.

4. Create a 1-nearest neighbor classifier on the k proto-
types. The labels, determined in the previous step, are
used as classes. Hence, when an (unseen) test image
is classified, then the output of the classifier is a color
constancy algorithm. This algorithm is used on the test
image to produce a result.

In figure 3, the result is shown for 15 prototypes. For this
experiment, the five instantiations are used as presented in
section 2. For visualization purposes, only the Weibull-
parameters β and γ of the edge derivatives in the x-direction
are used. In this figure, it can be seen that images that are
generally best solved by a specific instantiation are grouped
together according to their natural image statistics: zeroth

order methods (e.g. White-Patch and general Grey-World)
perform best on images with many fine textures and an av-
erage or high amount of contrast, while methods based on
first-order statistics are just the opposite of this: they per-
form best on images with low contrast and texture. Meth-
ods based on second-order statistics perform best on images
with either high contrast or with many textures.

4.2.2 Combination

Looking at the scatter plot in figure 3, a general preference
of several color constancy algorithms for images with cer-
tain statistics is derived. However, the borders of these clus-
ters are abrupt. To allow membership from different clus-
ters for method located at the borders, a probabilistic clas-
sification is taken by the use of a weighting function. This
weighting function will assign lower weights to clusters that
are further away, where the weights correspond to the prob-
ability that an image corresponds to a certain cluster. The
weighting function is the multivariate Gaussian function:

W (~x) =
1

((2π)N/2|Σ|
1

2 )
e−

1

2
(~x −~µ )T Σ−1(~x −~µ ), (7)

where ~µ is the mean vector, Σ is the covariance matrix and
| · | is the determinant.

4.2.3 Presetting type of scene

[20] shows that natural image statistics can be used to iden-
tify different types of natural scenes, like forest, coast and
street. It would be interesting to see whether this also ap-
plies to color constancy algorithms: do certain color con-



stancy algorithms perform better for certain scene cate-
gories?

In [17], a data set is provided consisting of eight urban
and natural scene categories (e.g. Coast & Beach, Open
Country, Forest, Mountain, Highway, Street, City Center,
and Tall Building). In figure 4, it is shown how the Weibull-
parameters from these categories correspond to the clusters
from figure 3. Note that the images that were used to cre-
ate the clusters and the images from the natural scene cate-
gories (indicated as black stars in figure 4) come from com-
pletely different data sets. This enhances the applicability
of the approach. The images from the category Forest co-
incide with the cluster that is labeled with the White-Patch
algorithm. Further, most of the images from the category
Street coincide with the cluster that is labeled by the 1st-
order Grey-Edge. Images from the category Coast gener-
ally coincide with the 2nd -order Grey-Edge algorithm. Im-
ages from the category Tall Building do not coincide with a
single constancy algorithm, but is the result of the 1st-order
Grey-Edge and the 2nd -order Grey-Edge algorithm.

In conclusion, color constancy on images from certain
scene categories can be done using one specific color con-
stancy algorithm. For the category Open Country, a combi-
nation of two algorithms is appropriate.

Figure 4. Scatter plots of the Weibull-parameters of images from
several categories (defined in [17]), compared to the clusters that
are shown in figure 3. A large correlation between the scene cate-
gories and the clusters exists.

5. Experiments
Data set. All methods are evaluated on a large set of im-

ages, which are taken from the data set that was introduced
in [4]. In this data set, over 11, 000 images are present, ex-
tracted from 2 hours of video for a wide variety of settings
(including indoor, outdoor, desert, cityscape, and other set-
tings). In total, the images are taken from 15 different clips

(a) Original images

(b) Ideal correction

(c) Correction using our proposed algorithm

(d) Correction using White-Patch

(e) Correction using Grey-World

Figure 5. Examples of images that are in the data set used for eval-
uation in section 5. Figure (a) show the original images, in figure
(b) the images are shown after correction with the ideal illuminant
(e.g. the ground truth). In figures (c), (d) and (e), the results of
our proposed selection algorithm, the White-Patch and the Grey-
World respectively, are shown.

taken at different locations. The main advantage of this data
set is the availability of the ground truth of the color of the
illuminant. This ground truth was acquired by making use
of the small grey sphere in the bottom right corner of the
images. Note that this grey sphere was masked while esti-
mating the illuminant using the color constancy algorithms
and are omitted from the results that are shown in figure 5.

Performance measure. For all images in the data set,
the correct color of the light source el is known a priori. To
measure how close the estimated illuminant resembles the
true color of the light source, the angular error ε is used:

ε = co s−1(êl · êe), (8)



Method Mean Median
Grey-World 7.9◦ 7.0◦

White-Patch 6.8◦ 5.3◦

General Grey-World 6.2◦ 5.3◦

1st-order Grey-Edge 6.2◦ 5.2◦

2
nd-order Grey-Edge 6.1◦

5.2◦

Gamut mapping 8.5◦ 6.8◦

Color-by-correlation 6.4◦ 5.2◦

Simple average 5.8◦ (−5% ) 5.1◦ (−5% )
Weighted average 5.7◦ (−7% ) 4.9◦ (−6% )
Proposed: Selection (5 methods) 5.7◦ (−7% ) 4.7◦ (−10% )
Proposed: Combination (5 methods) 5.6◦ (−8% ) 4.6◦ (−12% )
Proposed: Combination (75 methods) 5.0◦ (−18 % ) 3.7◦ (−29 % )

Table 1. Mean and median angular errors for several algorithms. The best results using a single algorithms are obtained using 2nd-order
Grey-Edge: a mean and median angular error of 6.1 and 5.2, respectively. Using our proposed combination of color constancy algorithm
results in an improvement of nearly 20% over the best-performing single algorithm on the mean angular error and nearly 3 0% on the
median angular error.

where êl · êe is the dot product of the two normalized vec-
tors representing the true color of the light source el and the
estimated color of the light source ee. To measure the per-
formance of an algorithm on a whole data set, the mean as
well as the median angular error is considered [14].

Single algorithms. In table 1, the results for the sin-
gle algorithms are shown. The first five algorithms are the
instantiations that are discussed in section 2. For compar-
ison reasons, the gamut mapping and color-by-correlation
methods are included. However, these algorithms were not
specifically calibrated for this data set. From 1, it can be
derived that the performance of the general Grey-World, 1st

and 2nd-order Grey-Edge and color-by-correlation are very
similar. However, the 2nd-order Grey-Edge performs best
on this data set. Hence, this method will be used as a base-
line for the evaluation of the different fusion algorithms.

Multiple algorithms (5 methods). By simple averag-
ing the outputs of the five algorithms (the same five instan-
tiations), performance already improves: the mean angu-
lar error becomes 5.8◦ and the median angular error 5.1◦,
see table 1. The angular error drops even more when using
a weighted average (the weights where empirically deter-
mined to be optimal around 1

4 , 2
5 , 0, 1

10 and 1
4 , respectively).

When using natural image statistics to select the most ap-
propriate algorithm, performance increase slightly (espe-
cially the median angular error drops). The use of the fuzzy
classification, to smoothen the transition from one cluster to
another, establishes another slight increase in performance:
compared to the ” baseline” algorithm, an increase of 8%
on the mean angular error and an increase of 12% on the
median angular error is reached.

Multiple algorithms (75 methods). The best perfor-
mance is reached when we use more color constancy al-
gorithms than the five instantiations described in section 2.

A total of 75 algorithms were created in a systematic way:
two parameters in equation (4) were kept fixed while vary-
ing the third, which resulted in a wide variety of algorithms
based on zero-, first- and second-order image statistics. This
way, an increase of 18% on the mean angular error and an
increase of 29% on the median angular error compared to
the best-performing single algorithm was obtained.

Note that for combining the algorithms, a 3-fold cross-
validation was performed: the data set was randomly di-
vided into three subsets. The optimal combination was
learned on two subsets and then tested on the third. This
learning was performed three times, once for every couple
subsets, and the performance that was reported is averaged
over the three tests.

Scene categories. Finally, the hypothesis is tested that
for certain scene categories one specific color constancy al-
gorithm can be used. From the data set, used in this sec-
tion, a number of images were taken that were annotated
as the same scene category. In total, 70 images from 7 dif-
ferent categories (10 images per category) are annotated as
forest, 75 images from 5 categories (15 images per cate-
gory) as open country and 70 images from 7 categories (10
per category) as street (these categories were inspired by
[17]). First, the angular error of the proposed method (se-
lection based on natural image statistics) is computed using
the same five methods as discussed in the previous experi-
ment. Then, per category the dominant color constancy al-
gorithm is selected (i.e. the algorithm that is selected most
often), and the angular error for all images in the subset is
determined, using the selected color constancy algorithm.
In table 2, the results are shown. It can be seen than using
just the dominant algorithm, performance is slightly worse
than using the proposed selection method. From this it is de-
rived that for certain scene categories, one color constancy



Category Mean Median
Forest - Selection algorithm 6.2◦ 7.0◦

Forest - Dominant algorithm 6.4◦ 7.1◦

Open country - Selection algorithm 6.6◦ 6.0◦

Open country - Dominant algorithm 6.7◦ 6.4◦

Street - Selection algorithm 5.4◦ 4.1◦

Street - Dominant algorithm 5.6◦ 4.7◦

Table 2. Mean and median angular errors on several categories.
Selection refers to the proposed algorithm of selecting the most
suitable color constancy algorithm based on natural image statis-
tics. Dominant algorithm refers to presetting the color constancy
algorithm, based on the type of the scene. The dominant algorithm
is the algorithm that was selected most often by the selection algo-
rithm.

method is suited.

6. Conclusion

In this paper, we have investigated the question how to
select the method that induces the equivalence class for dif-
ferent imaging settings. Furthermore, we investigated how
to combine the different algorithms in a proper way. Be-
cause all color constancy algorithms are based on specific
assumptions, such as the spatial and spectral characteris-
tics of scenes, no algorithm can be considered as universal.
Therefore, we proposed to use natural image statistics in the
form of the Weibull parameterization to select the proper
color constancy algorithm for a specific image.

Experimental results show a large improvement over
state-of-the-art single algorithms. On a data set consist-
ing of more than 11, 000 images, the best-performing single
algorithm is found to be the 2nd-order Grey-Edge. Com-
paring the mean angular error of this algorithm with our
proposed algorithm, an increase of nearly 20% is reached,
while an increase of nearly 30% was reached when compar-
ing the median angular errors. Finally, we showed that for
certain scene categories, one specific color constancy algo-
rithm can be used.
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