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Abstract

We present a new post-processing step to enhance the
resolution of range images. Using one or two registered
and potentially high-resolution color images as reference,
we iteratively refine the input low-resolution range image,
in terms of both its spatial resolution and depth preci-
sion. Evaluation using the Middlebury benchmark shows
across-the-board improvement for sub-pixel accuracy. We
also demonstrated its effectiveness for spatial resolution en-
hancement up to 100× with a single reference image.

1. Introduction
There exists a variety of range measuring technologies

to acquire 3D information about our world. For exam-
ple, laser range scanners can provide extremely accurate
and dense 3D measurement over a large working volume
[4, 5, 9, 11, 13, 15]. However, most of these high-quality
scanners measure a single point at a time, limiting their
applications to static environments only. The options to
capture depth at video rate are rather limited: the main
contender–stereo vision–is known to be quite fragile in
practice.

Recently new sensors [1, 2, 16] have been developed to
overcome this limitation. By using extremely faster shutter
(on the order of nanosecond), these sensors measure time
delay between transmission of a light pulse and detection
of the reflected signal on an entire frame at once. While
the technology is promising, in the current generation, these
sensors are either very expensive or very limited in terms of
resolution. For example the Canesta EP DevKit sensors can
provide range images only up to 64×64. Their applications
are therefore limited to background segmentation and user
interface control.

In this paper we present a framework to substantially en-
hance the spatial and depth resolution of low-quality and
highly quantized range maps, e.g., those from stereo vision
or the Canesta sensor. Our approach takes advantage of the
fact that a registered high-quality texture image can provide
significant information to enhance the raw range map.

Most related to our work is a range-enhanced method by
Diebel and Thrun [8], in which a Markov Random Field
(MRF) is first designed based on the low resolution depth
maps and high resolution camera images. The MRF is then
solve with the well-known conjugate gradient (CG) algo-
rithm [12]. This method gives promising spatial resolution
enhancement up to 10×. Our formulation has demonstrated
spatial resolution enhancement up to 100×. Although our
work is in the multi-sensor fusion scope, we are different
from most of the other approaches [10] because the resolu-
tions of our sensors are quite different from each other.

Key to our success is the use of a bilateral filter [17],
inspired by several state-of-the-art stereo algorithms [3, 18,
19]. In essence, we consider that the input range map pro-
vides a probabilistic distribution of depth, from which we
can construct a 3D volume of depth probability, typically
referred to as the cost volume in the stereo vision literature.
Then we iteratively apply a bilateral filter to the cost vol-
ume. The output high-resolution range image is produced
by taking the winner-takes-all approach on the weighted
cost volume and a sub-pixel refinement afterward.

This simple formulation turns out to be very effective.
As demonstrated with a variety of real-world objects, it
can provide not only visually compelling range images up
to 100× resolution, but also a numerically more accurate
depth estimate. We have applied our framework to all the
algorithms reported on the Middlebury stereo benchmark
site [14]. Our depth-enhanced disparity maps, when com-
pared to their original counter parts, are superior in overall
ranking for each and every algorithm listed, including those
already having sub-pixel disparity refinement.

The paper is organized as follows: Section 2 presents
an overview of our super resolution framework and the de-
tails about spatial resolution enhancement using a bilateral
filter and depth resolution enhancement by quadric poly-
nomial interpolation. In Section 3 we then discuss how to
enhance the depth resolution for general two-view stereo
vision problems through a sub-pixel refinement step. The
experimental results are reported in Section 4, followed by
a conclusion in Section 5.
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Figure 1. Framework of our post-processing approach. The range
image is up-sampled to the same size as the camera image, and
serves as the initial depth map hypothesis. The following is an it-
erative refinement process. A cost volume is built according to the
current depth map hypothesis. A bilateral filter is then applied to
the cost volume to handle the fattening problem near depth discon-
tinuities. A winner-take-all and sub-pixel estimation procedure is
used to produce a new depth map hypothesis, which is fed back
into the process.

2. Approach

An overview of the framework of the approach is pro-
vided in Figure 1. First, up-sample the low-resolution depth
map from the range image to the same size as the high-
resolution camera image, save it as D(0). Then follows
an iterative refinement module. A cost volume Ci is built
based on the current depth map D(i), then a bilateral filter-
ing is performed throughout each slice of the cost volume
to produce the new cost volume CCW

(i) . The refined depth
map D(i+1) is generated based on this cost volume by first
selecting the depth hypothesis with the minimal cost and a
sub-pixel estimation afterwards.

2.1. Construction and refinement of the cost volume

At first, a coarse cost volume is built based on the cur-
rent depth map. In order to allow large depth variations, as

the current depth values are not guaranteed to be correct,
the cost function should become constant as the differences
become large. One such common function is the truncated
quadric model, where the cost increases quadratically based
on the distance between the potential depth candidate d and
the currently selected depth D(i)(y,x)

C(i)(y,x, d) = min(η ∗ L, (d − D(i)(y,x))2) (1)

L is the search range, η is a constant. The square difference
is selected as the cost function since we will use quadratic
polynomial interpolation for sub-pixel estimation later. This
cost function can help to preserve the sub-pixel accuracy of
the input depth map.

Bilateral filtering is then applied to each slice of the cost
volume based on the following prior assumptions:

• World surfaces are piecewise smooth.

• The pixels with similar colors around a region are
likely to have similar depth.

Stereo matching based on bilateral filtering was first pre-
sented in [3], and then integrated into the stereo algorithm
proposed in [19] which is one of the Middlebury top al-
gorithms. The experimental results in both papers show
that the bilateral filter works very well near discontinuities,
which is the main challenge for spatial super-resolution
discussed in this paper. For the smooth areas, after up-
sampling, all the missed sampling areas are filled in cor-
rectly by interpolation. However, this is generally not true
for the discontinuous areas. The missed sampling areas are
blurred after up-sampling. But by using the color informa-
tion provided by the registered camera images, we demon-
strate that it is possible to get sharp/true depth edges for
stereo spatial super resolution. This is the central theme of
the paper.

The bilateral filter used in the paper is designed as fol-
lowing:

F (y+u,x+v) = fc(Wc(y,x,u,v))fs(Ws(u,v)), (2)

fc(x) = exp(−|x|
γc

),

fs(x) = exp(−|x|
γs

),

Wc(y,x,u,v) =
1
3
(|R(y+u,x+v) − R(y,x)|

+ |G(y+u,x+v) − G(y,x)|
+ |B(y+u,x+v) − B(y,x)|),

Ws(u, v) =
√

u2 + v2.

y, x are the indices of the current pixel in the camera image,
and u, v are two variables. R, G, B are the RGB channels
of the camera image. γc and γs are two constants used as



the thresholds of the color difference and the filter size. The
bilateral filter works as soft color segmentation in the super
resolution framework, which aggregates the probabilities of
each depth candidates of the pixels around a region based
on the color similarity of the central pixel and its neighbors.

As it is shown in Figure 1, the bilateral filter is iteratively
applied to the current cost volume to smooth the cost vol-
ume while preserving the edges, then we search through all
the depth hypotheses and select the one with the minimal
cost. Finally, sub-pixel estimation is performed based on
the current cost volume and the depth hypotheses with the
minimal cost.

2.2. Sub-pixel Estimation

To reduce the discontinuities caused by the quantization
in the depth hypothesis selection process, a sub-pixel esti-
mation algorithm is proposed based on quadratic polyno-
mial interpolation. If the cost function is continuous, the
depth with the minimum matching cost can be found. How-
ever, the cost function is discrete in practice. The search
range is limited, which results in discontinuous depth maps.
In order to eliminate this effect, we use quadratic polyno-
mial interpolation to approximate the cost function between
three discrete depth candidates: d, d− and d+. d is the
discrete depth with the minimal cost, d− = d − 1, and
d+ = d + 1.

f(x) = ax2 + bx + c, (3)

xmin =
−b

2a
, (4)

f(xmin) is the minimum of function f(x). Thus, given d,
f(d), f(d−) and f(d+), the parameters a and b of the con-
tinuous cost function can be calculated. Thus:

xmin = d − f(d+) − f(d−)
2(f(d+) + f(d−) − 2f(d))

, (5)

xmin is the depth with the minimum of the quadric cost
function f(x). Figure 2 provides a visual comparison of
the depth maps and their synthesized views before and after
sub-pixel estimation. Notice that the quantization effect on
the man’s face and the background on the synthesized view
is removed after sub-pixel estimation.

3. Extended depth super resolution with two
views

The main difference between one-view super resolution
and two-view super resolution is the construction of the cost
volume. In two view case, general stereo matching algo-
rithm can be performed, together with the range image, to
provide a more accurate cost volume. At first, three depth

(a) Depth maps. (b) Synthesized views.

Figure 2. (a) Depth maps generated with the DoubleBP algorithm
[19] reported on the Middlebury website. (b) Synthesized views
using (a). First row shows results without sub-pixel refinement,
second row shows results with sub-pixel refinement. Notice that
the quantization effect on the man’s face and the background on
the synthesized view before sub-pixel is removed after sub-pixel
estimation.

candidates d, d−, d+ are computed from the input depth
map for each pixel. d is extracted from the input depth
map, d− = d − 1 and d+ = d + 1. To perform depth
enhancement with two views, three slices of matching cost
are calculated based on the three depth candidates. The cal-
culation of matching cost is implemented according to the
symmetric correlation approach presented in [19]. First,
project the pixel in the reference view to the other view
using the depth candidates calculated from the input depth
map, and the matching cost is the pixel dissimilarity of the
corresponding pixels. To reduce the noise, Birchfield and
Tomasi’s pixel dissimilarity [6] is used. Second, a symmet-
ric bilateral filtering is applied to the cost slices:

Fsymm(y+u,x+v)=F (y+u,x+v)F (y′+u,x′+v), (6)

F (y + u,x + v) is the filter defined in Equation 3, y, x is
the index of the current pixel in the reference view, and y′,
x′ is the index of the corresponding pixel in the other view.

The sub-pixel depth enhancement is performed by a
quadratic polynomial interpolation with the symmetric cor-
relation volume as it is described in Section 2.2. Finally, an
adaptive box-car filter (G) is applied to smoothen the depth
map:

G(y+u,x+v) =
{

1.0 if |D0(y,x) − D0(u, v)| < 1
0 else

D0 is the input depth map. The size of the box-car used in
this paper is relatively small (9x9).



Algorithms Average Rank

Two Views Single View

Before After Before After

DoubleBP 21.5 5.75 18.42 11.33

AdaptingBP 15.33 6.92 12.58 9.17

C-SemiGlob 11.75 7.25 7.75 5.25

Segm+visib 16.08 9 14.67 11.17

SymBP+occ 25 12 22.42 14.92

SemiGlob 15 12.33 12 9.83

AdaptWeight 29.25 12.42 25.58 14.92

RegionTreeDP 32.75 14 29.75 18.17

GC+occ 25.33 14.42 24 19.08

TensorVoting 24.83 17.67 22.08 16.33

MultiCamGC 28.17 17.83 27 23.08

Layered 34.83 18.08 32.25 25

SegTreeDP 28.33 18.17 26.33 17.42

RealtimeBP 34 18.92 31.42 21.92

CostRelax 23.58 20.17 21.58 21.17

GenModel 22.17 20.83 20.25 17.58

ReliabilityDP 40.17 23.5 37.5 29.5

RealTimeGPU 38.42 24 36.58 24.67

GC 33.67 24.5 32.42 29.25

TreeDP 44 30.5 42.5 36.67

DP 43.92 31.33 42.17 31.17

SSD+MF 46.08 34.75 45.17 41.75

STICA 44.67 35.25 44 35.58

SO 45.17 37.83 43.42 36.75

Infection 44.83 38.75 43.42 38.08

Figure 3. The scores on the last four columns are the average ranks
with error threshold 0.5. The scores with bold font are among the
top 10 performers. The entries with blue highlighting are stereo
algorithms originally without sub-pixel estimation, the others are
algorithms originally having sub-pixel estimation. The scoring
scheme is the same as the Middlebury benchmark [14].

To validate our sub-pixel refinement approach, an off-
line stereo benchmark that has the same scoring scheme
as the Middlebury benchmark [14] is built. Every result
reported on the Middlebury website is used with our sub-
pixel refinement approach, and evaluated on the sub-pixel
benchmark. Figure 3 shows that our approach is very ro-
bust, it works for all the algorithms, even for those origi-
nally having sub-pixel refinement. The completed version
of Figure 3 is provided in the supplemental materials, which
gives more details about the ranks on different datasets and
error thresholds.

4. Experimental Results

Our experimental system consists of a Canesta EP De-
vKit camera [1] and a FLEA digital camera at [7]. The EP
DevKit camera can produce range images with size up to
64 × 64 of the objects in its view, and the FLEA camera

(a) (b)

Figure 4. (a) γc ∈ {5, 10, 20, 30}. (b) γs = 10.

can produce color images with resolution up to 1024×768.
These two cameras are placed very close to each other and
image registration is achieved by a 3×3 homographic warp.
The warping function is dependent on the average range to
the object. A better setup would be to use an beam-splitter
to align the optical axes of both sensors to guarantee image
alignment.

Three main parameters are involved in the experiment,
they are η, γc and γs. η is the constant used in Equation 1,
it is set to 0.5 experimentally. To allow large depth varia-
tions, the cost function is truncated by η × L, where L is
the search range. Two parameters are involved in the bilat-
eral filter, they are γc and γs. In this paper, they are both
set to 10. A visual explanation about how these parameters
control the shape of the weighting functions in Equation 3
is provided in Figure 4. The experimental results show that
γc is relatively sensitive, it should be decreased around the
low texture area.

4.1. Spatial super resolution

To show the power of the iterative bilateral filtering, a
series of intermediate depth maps are provided in Figure 5
in a coarse-to-fine manner architecture.

In Figure 5, D0 is the depth map after up-sampling from
the low-resolution range image. The quality of D0 is unac-
ceptable. D1 is the depth map after iteration 1. The quality
has been improved a lot, but the areas around part of the
discontinuities are incorrect. D3 is the depth map after it-
eration 3, the discontinuities are well detected, and the al-
gorithm has almost converged. D10 is the depth map after
iteration 10. By visual comparison, the difference between
D10 and D3 is tiny. Others experimental results are shown
in Figure 6. The input depth maps are up-sampled from the
64×64 range images, and the resolution of the output depth
maps is 640 × 640.

Table 1 evaluates the performance of our approach and
the MRF approach presented in [8] on the Middlebury
datasets on three different scales. On each scale, the depth
image is down-sampled by a factor of 2 gradually. On scale
0, the depth image is the ground truth. By comparing the
bad pixel percentages before and after bilateral filtering re-
finement, we show that our approach improves the stereo



(a) Camera image (b) D0 (c) D1 (d) D3 (e) D10

Figure 5. Intermediate results from iterative bilateral filtering refinement module. (a) Camera image. (b) The initial depth map. (c) Depth
map after one iteration. (d) Depth map after three iterations. (e) Depth map after ten iterations.

Algorithms Tsukuba Venus Teddy tsukuba
Scale Scale Scale Scale

1 2 3 1 2 3 1 2 3 1 2 3
Before Refinement 2.67 5.18 9.66 0.61 1.34 2.79 2.92 8.64 14.7 3.92 7.85 14.7

MRF Refinement [8] 2.51 5.12 9.68 0.57 1.24 2.69 2.78 8.33 14.5 3.55 7.52 14.4
Bilateral filtering Refinement 1.16 2.56 6.95 0.25 0.42 1.19 2.43 5.95 11.5 2.39 4.76 11.0

Table 1. Experimental results on the Middlebury datasets. The numbers in the last twelve columns are the percentages of the bad pixels
with error threshold 1.

quality of all data sets. The MRF approach in [8] also
improves the stereo quality, but the improvement is rela-
tively small compared to our approach. A visual compari-
son of the depth maps of the Middlebury datasets on Scale
3 are provided in Figure 7. Clearly, the results using our
approach have more clean edges than the input depth maps
and the results using MRF approach. For further compari-
son, Figure 8 provides the experimental results of the Cones
data set from scale 1 to scale 4 using the MRF approach
and our approach. By visual comparison, our approach out-
performs the MRF approach as the resolution of the range
sensor keeps on decreasing. On the last row in Figure 8,
we show that even with tiny sensors (23 × 28), we can still
produce decent high-resolution range images.

4.2. Sub-pixel estimation with one or two reference
image(s)

Besides the enhancement of the spatial resolution of
range images, our approach also provides sub-pixel estima-
tion for general stereo algorithms with either one or two
camera image(s). To evaluate the performance of our sub-
pixel estimation approach, we established an off-line stereo
benchmark. The scoring scheme is the same as the Mid-
dlebury benchmark. In our off-line benchmark, all the algo-
rithms reported to the Middlebury benchmark and their sub-
pixel refinement results are evaluated, thus the total number
of algorithms evaluated is twice the number on the Middle-

bury benchmark [14]. Figure 3 provides the average ranks
for all the algorithms. With either one or two view(s), we
achieve across-the-board improvement for sub-pixel accu-
racy. The 10 entries with bold font are the top 10 perform-
ers. In two-view case, nine of them are the algorithms with
our sub-pixel refinement approach. All the entries with-
out blue highlighting in Figure 3 are average ranks of those
algorithms using its own sub-pixel refinement techniques.
The experimental results show that our sub-pixel estimation
approach works for all of these algorithms, however the im-
provement is naturally a bit smaller than for the cases that
originally don’t have any kind of sub-pixel refinement. A
set of synthesized views built from the DoubleBP algorithm
[19] are shown in Figure 9, providing a visual comparison
of the algorithms with and without sub-pixel refinement.
The depth enhancement is obvious. The results shown in
column (a) are quantized to discrete number of planes. Af-
ter sub-pixel estimation, the quantization effect is removed,
as it is shown in column (b).

5. Conclusion
In this paper, we present a new post-processing step to

enhance the spatial resolution of range images up to 100x
with a registered and potentially high-resolution color im-
age as reference. We have validated our approach on several
real datasets, including the Middlebury data set, demon-
strating that our approach gives clear improvements. In ad-
dition, the depth super resolution is extended to two-view



(a) Camera images. (b) Input depth maps. (c) Refined depth maps. (d) Synthesized views.

Figure 6. Experimental results of depth super resolution. (a) Camera images. (b) Input depth maps. (c) Refined depth maps. (d) Synthesized
views by using (c). The input depth maps are up-sampled from range image with resolution 64 × 64, and resolution of the refined depth
maps is 640 × 640. The spatial resolution is enhanced 100×.



(a)

(b)

(c)

Figure 7. Super resolution on Middlebury datasets. (a) Before refinement. (b) Using MRF approach [8]. (c) Using our approach.

case. To evaluate the effectiveness of our depth-enhanced
approach, we first built an off-line stereo benchmark that
has the same scoring scheme as the Middlebury bench-
mark, then tried our approach on all the stereo algorithms
reported to the Middlebury benchmark. Together with all
the results submitted to Middlebury benchmark, we evalu-
ated all the depth-enhanced results on the off-line bench-
mark with different error thresholds, and showed across-
the-board improvement in sub-pixel accuracy. We are hop-
ing to release an on-line sub-pixel benchmark in the near
future.

References
[1] CanestavisionTM electronic perception development kit,

canesta inc.
http://www.canesta.com/html/developmentkits.htm. 1, 4

[2] Z-cam, 3dv systems.
http://www.3dvsystems.com/home/index.html. 1

[3] Adaptive support-weight approach for correspondence
search. IEEE Trans. Pattern Anal. Mach. Intell., 28(4):650,
2006. K.-J. Yoon and S. Kweon. 1, 2

[4] J. Batlle, E. Mouaddib, and J. Salvi. Recent progress in
coded structured light as a technique to solve the correspon-
dence problem: A survey. Pattern Recognition, 31(7):963–
982, 1998. 1

[5] P. Besl. Active Optical Range Imaging Sensors, in Advances
in Machine Vision, chapter 1, pages 1–63. 1989. 1

[6] S. Birchfield and C. Tomasi. A pixel dissimilarity measure
that is insensitive to image sampling. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(4):401–406,
apr 1998. 3

[7] F. Camera. Point grey research.
http://www.ptgrey.com/products/flea/index.asp. 4

[8] J. Diebel and S. Thrun. An application of markov random
fields to range sensing. In NIPS, 2005. 1, 4, 5, 7

[9] R. Jarvis. A perspective on range finding techniques for com-
puter vision. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 5(2):122–139, 1983. 1

[10] G. Piella. A general framework for multiresolution image fu-
sion: from pixels to regions. Information Fusion, 4(4):259–
280, 2003. 1

[11] D. Poussart and D. Laurendeau. 3-D Sensing for Industrial
Computer Vision, in Advances in Machine Vision, chapter 3,
pages 122–159. 1989. 1

[12] W. H. Press. Numerical recipes in C: the art of scientific
computing. Cambridge University Press, New York, 1988. 1

[13] J. Salvi, J. Pagès, and J. Batlle. Pattern codification strategies
in structured light systems. Pattern Recognition, 37(4):827–
849, 2004. 1

[14] D. Scharstein and R. Szelisk. Middlebury stereo vision
research page.
http://bj.middlebury.edu/ schar/stereo/newEval/php/results.php.
1, 4, 5

[15] T. C. Strand. Optical three-dimensional sensing for machine
vision. Optical Engineering, 24(1):33–40, 1985. 1

[16] C. S. Swiss Ranger SR-2. The swiss center for electronics
and microtechnology.
http://www.csem.ch/fs/imaging.htm. 1



(a) Using MRF approach. (b) Using our approach.

Figure 8. Super resolution on Cones datasets. From up to bottom:
Experimental results on scale 1 (resolution: 187 × 225), Exper-
imental results on scale 2 (resolution: 93 × 112), Experimental
results on scale 3 (resolution: 46 × 56), Experimental results on
scale 4 (resolution: 23 × 28). This figure shows that, by visual
comparison, our approach performs better than the MRF approach
as the resolution of the range sensor continues to drop.

[17] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In ICCV, pages 839–846, 1998. 1

[18] L. Wang, M. Liao, M. Gong, R. Yang, and D.Nistér. High-
quality real-time stereo using adaptive cost aggregation and
dynamic programming. In Third International Symposium
on 3D Processing, Visualization and Transmission (3DPVT
2006), June 2006. 1

[19] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér.
Stereo matching with color-weighted correlation, hierarchi-
cal belief propagation and occlusion handling. In CVPR (2),
pages 2347–2354, 2006. 1, 2, 3, 5, 8

(a) Before. (b) After.

Figure 9. (a) Synthesized views produced by the DoubleBP algo-
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