The Hyperbolic Geometry of Illumination-Induced Chromaticity Changes

Reiner Lenz
Dept. Science and Technology, Linkoping University, Norrkoping, Sweden, reile @itn.liu.se

Pedro Latorre Carmona
Comp. Languages and Systems, Jaume I University, Castellon, Spain, latorre @1si.uji.es

Peter Meer
Electrical and Computer Eng., Rutgers University, Piscataway, USA, meer @caip.rutgers.edu

Abstract

The non-negativity of color signals implies that they span
a conical space with a hyperbolic geometry. We use per-
spective projections to separate intensity from chromatic-
ity, and for 3-D color descriptors the chromatic properties
are represented by points on the unit disk. Descriptors de-
rived from the same object point but under different imag-
ing conditions can be joined by a hyperbolic geodesic. The
properties of this model are investigated using multichan-
nel images of natural scenes and black body illuminants
of different temperatures. We show, over a series of static
scenes with different illuminants, how illumination changes
influence the hyperbolic distances and the geodesics. De-
scriptors derived from conventional RGB images are also
addressed.

1. Introduction

Processing of color images is difficult and has received
less interest in the past than gray-value image processing. A
fundamental problem of color signal processing is the fact
that the output signals generated by the sensors (the pixel
vectors) are the result of a complex interaction between the
properties of the illumination source, the object reflection
and the sensors sensitivity properties. Understanding these
processes is, however, useful in a great number of applica-
tions, ranging from better color correction in cameras, over
improvements in automatic inspection tasks to a better un-
derstanding of the human visual system.

In this paper we develop a geometrical theory of color
signal processing (see also [1, 3, 4, 14] and [5] for a com-
prehensive historical overview over geometrical models of
color spaces). We observe that all spectral distributions in-
volved in color imaging describe energies, probabilities or
sensitivities. They can therefore only assume non-negative
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function values. This implies that these functions are al-
ways located in the positive part of the corresponding func-
tion space. These regions in the function spaces have a spe-
cial geometry and admissible transformations of these func-
tions can never move the resulting functions outside these
regions. Based on this observation we argue that the func-
tion spaces of interest in color signal processing can be de-
scribed by direct products of the positive-axis (representing
intensity) and the unit ball (describing chromaticity-related
properties). The properties related to intensity are investi-
gated by gray-value-based image processing and here we
concentrate on the study of the chromaticity part.

The natural geometry for two-dimensional chromaticity
descriptors is the hyperbolic geometry of the unit disk with
the pseudo-unitary group SU(1,1) as symmetry group (an
early application of group theory in color is [1]). It was ear-
lier shown [8, 9, 10] that illumination induced chromatic-
ity changes can be described by curves generated by one-
parameter subgroups of SU(1,1). The methods used to esti-
mate these curves from measurements require however that
at least three points on these curves are known (in practice
more than three since they are based on regression meth-
ods). In the following we will describe descriptors, derived
from the straight lines in hyperbolic geometry, that only re-
quire two measurements. The straight lines in this geometry
are the Euclidean circles meeting the bounding unit circle at
perpendicular angles and they can therefore be parameter-
ized by the two points where they cross the unit circle. The
space of all hyperbolic lines can thus be identified with the
torus.

We will show that the chromaticity descriptors of a scene
point generated by illumination changes define a curve on
the unit disk and that these curves can be approximated by
hyperbolic lines. In Section 2 we introduce the basic coni-
cal model. Section 3 describes the application of hyperbolic
geometry to color changes and in Section 4 we show in our
experiments that the descriptors derived from purely geo-



metrical properties are useful for separating the influence
of the illumination changes from the reflection properties of
the scene points. Most of our results are derived from im-
ages captured with multispectral cameras but we will also
show that RGB images captured by conventional cameras
contain sufficient information to estimate the same results.

2. The conical model of color signal processing

An illumination spectrum or a spectral power distribu-
tion /() is a non-negative function (or vector) defined on
the wavelength interval of interest (usually in the range
400nm to 700nm with 10nm sampling). The value [()) de-
scribes the emission of photons of wavelength A from the
light source and can only assume non-negative values. The
optical properties of materials are characterized by their re-
flection spectra r where r(x, \) is the probability that a pho-
ton of wavelength ) is reflected from point = of the object.
We have 0 < r < 1. The product s(z, ) = r(x, A) - [()\)
defines the color signal and describes the number of pho-
tons of wavelength A reflected from point x. The spectral
sensitivity functions c of the camera or sensors describe the
contribution of an incoming photon of wavelength A to the
final output signal of the sensor. We use the simplest model
to describe color imaging. In this model the output p(z) of
the sensor pointed at position x in the scene is given by

p() = / KO, A)e(A) dA ()

where integration is over the relevant wavelength interval
and effects like fluorescence and all dependencies on the
geometrical relations between the components involved are
ignored.

The key components of the conical model are now ex-
plained, first in a mathematical Hilbert or vector space
setting, and then they are translated into concepts from
color image processing and color science. All func-
tions [(A), r(z, A), ¢(\) used in the model can only assume
non-negative values. The set of all such functions can there-
fore never span the full function (or vector) space. Instead
these functions define a conical subspace, ie. a space closed
under addition and scalar multiplication with non-negative
constants. Some properties of these conical spaces are cru-
cial:

In a space consisting of non-negative functions it is pos-
sible to select an orthogonal basis by(A), b1 (N), ba(N), ...
with the following properties.

1. A non-negative function s has an expansion
s(A) = aobo(A) + a1bi(A) + azba(A) +...  (2)

2. bo(A) has strictly positive values and therefore cvg > 0
for non-zero functions s;

3. If we break the series expansion after K + 1 terms then
we can find a constant C'x such that

At az+... +ak < Cgad (3)

After applying a perspective projection &, = z—’g we
get

E+e+... +& <0k (4)

For color image processing the basis is often derived by
Principal Component Analysis (PCA) from representative
collections of spectral data such as the Munsell or NCS
color atlas. In these cases it was shown [8] that the first
eigenvector b is proportional to the mean vector. The coef-
ficient gy is computed as the scalar product of the spectral
distribution s to be analyzed and by, it is thus a weighted
average of s. Since both, s and by are non-negative, we
get g > 0. The ratios &, = z—g are well-defined and in-
dependent of scalings of the original signal s. The &, are
constant under intensity changes of the original color signal
and thus descriptors of its chromatic properties.

3. Hyperbolic Geometry and Color Changes

From the inequality in Eq. (4) follows that the vec-
tors (&1,&2,...,€k) are points inside a K -dimensional
sphere. In the rest of the paper we will restrict us to the
case K = 2, write x = &1,y = & and refer to the val-
ues ag, , y as color descriptors.

Restriction to three descriptors is motivated by mathe-
matical simplicity, the trichromatic structure of normal hu-
man color vision and, as will be demonstrated by our exper-
iments, by its close relation to the three-dimensional RGB-
vectors.

Mathematically the simplest conical structures of inter-
est are three-dimensional, and the 3-D case illustrates many
of the characteristic properties of non-euclidean geometry
that will be of interest in the rest of the paper. Most color
systems related to human color vision are three-dimensional
mainly because the human eye contains three different types
of sensors. In [7] it was shown that there is a close re-
lation between the geometry of the color signal space and
the CIELAB coordinate system, derived from color match-
ing experiments of human observers. There it was demon-
strated that if the basis in the color signal space is derived
by PCA from a color atlas, then the angle arctan(z, y) cor-
relates to the hue-angle in the CIELAB coordinate system,
and the radius /22 + y2 is related to the saturation. In the
experiments described below, we will also show that the
RGB-vectors of a conventional camera can be used to es-
timate the values of these descriptors.

In the following we assume that the axes are scaled such
that 22 + y? < 1 for all points. We also identify (z,y)
with 2 = z + 7y. In the complex plane the unit circle



Three geodesics
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Figure 1. Three hyperbolic straight lines

is€C ={ze€C:|z|=1}and ® = {z€C:|z|< 1} is
the unit disk. The metric on ® is introduced as follows
(see [6, 15] for more information on the disk model of hy-
perbolic geometry): consider a curve y(t) = z(t) + 1y(¢)
on the disk. Differentiating this curve gives tangent vec-
tors /(t) and the length of the curve segment between pa-
rameter values 0 and 1 is (for details see [15], Chapter 3):

IO T
_2/ 1= 2()? — y(t)? dt 5)

where the conventional euclidean metric is changed by a
correction factor (1 — |z|*)~!. Euclidean distances grow
thus without bound the nearer the points come to the bound-
ary (given by the unit circle ).

A geodesic (or a hyperbolic straight line) is the short-
est curve between two points. For the metric defined in
Eq. (6) the geodesics are those Euclidean circle arcs pass-
ing through z;, zo that are orthogonal to €. If 21, 29,0 are
collinear then the geodesic is the diameter. Furthermore
if wq, wo are the points where the geodesic through 21, 29
intersects the boundary circle €, then the distance between
the points 21, z5 is given by

21— 22

d(z1, z2) = 2atanh —
— 2122

= In(wy, wa, 21, 22) (6)

where (w1, wa, 21, 22) is the cross ratio

(22 —wi)(z1 —w2)
(22 — w2)(21 —w1)

(’(1)1,’(1)2,21,22) = (7)
Three examples of geodesics are shown in Figure 1. For a
geodesic we show two points zj, zo on the disk and their
corresponding boundary points wy, ws.

The conical structure of the space ensures that for ev-
ery triple (v, x, y) and all positive constants v > 0 the de-
scriptors (ya, x,y),~y > 0 are elements in this space. For
fixed (z,y) the points (yo, x,y),v > 0 define a ray. We
call such a ray a chromatic-ray since it represents all col-
ors with constant chromatic properties but varying inten-
sity. The positivity of the spectral distributions imply that

all chromatic rays pass through the unit disk (after suitable
scaling of the axes). This geometrical structure is identi-
cal to models in computer vision that describe cameras by
perspective projections [2, 11]. In these models the plane
containing the unit disk represents the sensor array, and the
projection rays connect the pixels in the image to the points
in the scene.

In the space of chromatic rays, represented by points on
the unit disk, we select the group of transformations that
leave the hyperbolic distance invariant. All such mappings
are specified by complex numbers a, b with |a|* — [b]* = 1.
It operates on the unit disk as follows. Define first the matrix

a b
M—(Ea) ®)

and for such a matrix the fractional linear transform:

Mz:fz—i—b
bz+a

forze® ©))

These matrices define the (Lorentz) group SU(1,1) and act
on the unit disk. Occasionally we will use the shorthand
notation M (, ) to specify the matrix defined in Eq.(8). For
constants a, b with a|> — [b]* # 1 we define the conven-
tion that we first construct the matrix M of the same form
as in Eq.(8) and then we enforce det M = 1 by dividing
with ¢/ |al® — [b]>.

These matrices form a group under ordinary matrix mul-
tiplication and matrix multiplication acts in the same way
as a concatenation of the fractional linear mappings:

MiMsz = M, (MZZ) 12 €9, My, Mo GSU(L 1)
(10)
As mentioned above, these transforms are the motions of
this geometry, ie. they preserve the distance in Eq.(6):

d(z1,22) = d(Mz1, M z5) (11)

for all z1, zo € ® and all M €SU(1,1).

We now use these properties to show: for every
pair z1,29 € D, there is an M € SU(1,1), such that
the images of these points under this fractional linear
mapping M are the origin and a positive real number:
Mz = 0 and Mz, > 0. We define first the ma-
trix L = M _,) (recall the determinant convention in
connection with Eq.(8)) mapping the first point to the ori-
gin. By construction L is in SU(1,1) and Lz; = 0. Now
apply L to 25 and get w = Lzy. The matrices M (i ) are
also in SU(1,1) and act as ordinary rotations with rotation
angle 2. We combine L and a rotation K = M (i ) t0
get

KLz =Kuw=¢>0 (12)

The geodesic through 0 and £ is the real line, the points
where the geodesic crosses the unit circle are -1 and 1, and



therefore

d(z1,22) = d(KLz,KLz) (13)

d(0,¢) = 2atanh & = In (1—+§>
1-¢
For any two points z1, zo we characterize their geomet-
ric relation by the hyperbolic distance between them, and
the two points w1, ws where the unique geodesic through
the points crosses the unit circle. We compute these three
parameters by applying the procedure just described.

1. Given two points z1, 2o, compute the matrices L, K
such that z;, zo are mapped to 0 and &.

2. The distance between z1, z5 is In (%) .

3. The points —1,0,&, 1 are collinear and the geodesic
through 0, ¢ is thus the real axis. The points wy, wo
are obtained by applying the inverse N = (K L)f1
to—1,1:w; = N(—1) and we = N(1).

In the following we will investigate the relation between
two descriptors 21, 2o € ©, representing the same point in
the scene under different imaging conditions. For geometri-
cal reasons we choose the hyperbolic geodesics to describe
their relation. In our experiments with real data we found
that this hyperbolic model provides a good description of
actual color changes.

4. Experiments

In our experiments we use three types of color measure-
ments:

1. color signals computed from multichannel measure-
ments of reflectance spectra and blackbody radiators
and measured illumination spectra;

2. simulated RGB vectors obtained from measured re-
flectance spectra, illumination spectra and an estima-
tion of the spectral sensitivity functions of a consumer
SLR camera and

3. measured color signals from a scene under different
illuminations.

In all our experiments we use the same PCA basis by, b1, b2
(see Eq.(2)) computed from the reflection spectra in the
Munsell color atlas (described by Parkkinen et. al. in [13])
combined with 100 blackbody radiators with temperatures
from 4000K to 10000K. The temperatures represent typi-
cal daylight distributions. We use the mired or reciprocal
megakelvin scale to select them since human color vision is
more adapted to changes in inverse color temperature. More
information on blackbody radiators and the mired scale can

Point 1 Point 2

Part of the original multispectral image
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Figure 2. RGB image of a scene

be found in [17]. The spectra are sampled with 10nm res-
olution in the range from 400nm to 700nm resulting in 31-
dimensional vectors. In the experiments we use the basis
to compute the color descriptors ag, z,y (as described in
Section 3).

In the first series of experiments we use the reflectance
spectra of natural scenes analyzed by Nascimento et. al.
in [12]. One part of the RGB image of the scene is shown
in Figure 2. A typical result obtained within the hyperbol-
ical framework is shown in Figure 3. In this experiment
we use two illuminants: blackbody radiators with 4000K
and 10000K. The color signal is computed as the pointwise
product between the reflection spectra of the object points
and the illuminant. From these color signals the color de-
scriptors were extracted. Chromatic changes are described
by the geodesics and the hyperbolic distance. In Figure 3A
the values of the angle belonging to the first intersection
points w; of the geodesics with the unit circle are shown.
Figure 3B contains the corresponding angular values of the
second intersection points ws. The histogram of the dis-
tance values obtained is in Figure 3D. It shows that most
distance values are located in the range 0.2 to 1. Very few
object points generated distance values greater than one.
This shows that the basis computed from the Munsell chips
and the selected blackbody illuminants captures the chro-
maticity properties of the natural scene spectra very well.
The pixel values in Figure 3C are proportional to the value
of the hyperbolic distances truncated at value one.

Figure 4 contains a detailed analysis of two selected
points representing object points with low and high hyper-
bolic distances in Figure 3. In this experiment we simulate
50 blackbody illuminants ranging from 4000K to 10000K
(in the mired sampling) and compute the corresponding de-
scriptors. The two selected points are located in the center
and the boundary of the flower marked in Figure 2. The two
dark curves in Figure 4A show the location of the original
points. For two pairs of points from such a sequence we es-
timate the geodesics shown as light lines in the figure. The
selected point pairs used to compute the geodesics are com-
puted from the illuminants with 4500K and 5041K (for the
first pair) and 5731K and 6746K (for the second geodesic).
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Figure 3. Natural scene and blackbody illuminants of 4000K and
10000K. The two angles (A) and (B), the hyperbolic distance (C)
and the histogram of the distance values (D)

Figure 4. Chromaticity changes for two selected scene points (A)
computed from PCA coefficients (B) computed from RGB images

Multichannel cameras are still expensive and difficult to
handle. Therefore it is of great practical interest to see if the
color descriptors can be estimated from conventional RGB
images. The second experiment illustrates that this may be
feasible, although RGB cameras and PCA-based basis func-
tions describe different subspaces of the full space of color
signals.

In this experiment we use the estimated sensitivity func-
tions of a Canon-10D consumer camera (described by Solli
et. al. in [16]) to compute simulated RGB images. We cre-
ated color signals from the reflection spectra in the Munsell
atlas and 100 blackbody radiators in the range from 4000K
to 10000K (in mired sampling). For these color signals we
computed both, the first three PCA coefficients in the se-
lected basis and the simulated camera RGB vectors. From
this collection of PCA/RGB vector pairs we obtained the
3 x 3 regression matrix that estimates the PCA coefficients
from the RGB vectors. This regression matrix was then
used to estimate the positions of the color descriptors on
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Figure 5. Spectral distribution of the 26 illuminants

Figure 6. Multichannel illumination and image acquisition system

the unit disk. The estimates obtained from the coefficients
and the RGB vectors are very similar as seen in Figure 4B
showing the traces of the same two points as shown in Fig-
ure 4A.

In the third experiment we used a multichannel camera to
obtain images of four wooden toys under the 26 different il-
luminants shown in Figure 5. The distributions were scaled
with a common factor to the maximum value of one. Fig-
ure 6 shows the half-dome with the light sources, the camera
mounted on top of the half-dome and the four wooden toys
in the middle, located directly under the camera. The spec-
tral resolution was from 400nm to 720nm in 10nm steps.

From this sequence of 26 images we computed the
hyperbolic descriptors for all image pairs [Image(1) with
Image(k)], £ = 2...26. Figure 7A shows the hyperbolic
distance values computed comparing the first and the last
image in the sequence, ie. from the pair [(Image(l) - Im-
age(26)]. The line marks the position of the points that
will be selected in Figures 7B-D. In these figures the im-
age pairs [Image(1) - Image(5)], [Image(1l) - Image(11)]
and [Image(1) - Image(26)] are used. Figure 7B shows the
location of the points w; on the circle, Figure 7C the posi-
tion of the points wy and Figure 7D the hyperbolic distance
values.

From Figures 7B and 7C we see that the values for the
angles are stable once the chromaticity points correspond
to sufficiently different image pairs (Image(1) - Image(k))
with k& > 5. The hyperbolic distance values, on the other
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Figure 7. Evaluation of a series of illumination changes. A): Image
of hyperbolic distances between the first and the last image in the
sequence. B) Value of first angle. C) Value of second angle. D)
Value of hyperbolic distance. See text for detailed explanation.

hand, are increasing monotonically. The interpretation in
this case is that the chromaticity points for one material are
approximately located on a hyperbolic straight line. We can
thus see that in this experiment the material properties are
encoded in the parameters of the hyperbolic line whereas
the chromaticity changes of the illuminant is only changing
the relative position of the points on such a line.

5. Discussion and Conclusion

We started from the simple observation that all wave-
length dependent functions involved in color imaging have
only non-negative function values. From this we concluded
that chromaticity changes can be described by transforma-
tions of the unit disk. Using the natural hyperbolic geom-
etry of the disk leads to the assumption that the geodesics
curve segments are natural candidates for descriptors of the
chromaticity changes defined by two points on the disk. In
our experiments we used both, theoretical models and mea-
sured multispectral and RGB images, to demonstrate that
this really is the case for chromaticity changes induced by
varying illumination sources. The multispectral images in-
dicate also that the properties of the material mainly defines
the overall parameters of the chromaticity curve whereas
the illumination changes lead to movements of the coordi-
nate points along such a curve. This separation of the ma-
terial properties and the illumination changes makes these
methods suitable for such tasks as color-based segmenta-
tion, color correction and design of color invariants.

In this paper we described only the basic idea and some
experimental results. One interesting question is the com-
parison between local and global estimation methods. The

method described here is local in the sense that only two
points are used to compute the geodesic and the distance.
Regression methods based on one-parameter subgroups [9]
are global since they use the whole sequence of data points
for the estimation of the curve. Global methods are usually
superior since the curves are not limited to be straight lines.
They are, however, unable to adapt to sudden changes like
changes from daylight to a sunset. We also investigated the
relation between the hyperbolic distance and the standard
CIELAB distance used in color science. These results and
applications to color based segmentation will be reported
elsewhere.
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