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Abstract

A method is proposed for estimating radiometric re-
sponse functions from noise observations. From the sta-
tistical properties of noise sources, the noise distribution
for each scene radiance value is shown to be symmetric for
a radiometrically calibrated camera. However, due to the
non-linearity of camera response functions, the observed
noise distributions become skewed in an uncalibrated cam-
era. In this paper, we capitalize on these asymmetric pro-
files of measured noise distributions to estimate radiomet-
ric response functions. Unlike prior approaches, the pro-
posed method is not sensitive to noise level, and is therefore
particularly useful when the noise level is high. Also, the
proposed method does not require registered input images
taken with different exposures; only statistical noise distri-
butions at multiple intensity levels are used. Real-world ex-
periments demonstrate the effectiveness of the proposed ap-
proach in comparison to standard calibration techniques.

1. Introduction
Many computer vision algorithms rely on the assumption

that image intensities are linearly related to the image irra-
diance recorded at the camera sensor. Since most cameras
non-linearly alter irradiance values for purposes such as dy-
namic range compression, this assumption generally does
not hold. It is therefore important to calibrate the response
function of a camera, so that the non-linear mapping can be
inverted and subsequent algorithms can assume linearity of
intensity observations.

As stated by the late Rolf Landauer, a founder of meso-
scopic physics, noise is a signal [10]. Fluctuations of a mea-
surement in time, or the distribution of fluctuations, can of-
fer information that cannot be found in the time-averaged
value. This observation is exploited in noise thermome-
try, an established technique for measuring temperature in
high-pressure environments based on the level of electric
noise. Likewise, image noise can provide valuable informa-
tion about the imaging process, and we show in this paper
that the noise distribution in observed images reveals the
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Figure 1. The symmetric profile of a noise distribution in the im-
age irradiance domain becomes skewed by the non-linearity of the
radiometric response function. The profile of the measured noise
distribution becomes asymmetric accordingly.

shape of the radiometric response function. Because of the
symmetrically random nature of noise sources in the imag-
ing process, asymmetry of noise distributions in a measured
image is the result of a non-linear transformation that oc-
curs in the camera due to the radiometric response function.
Based on this observation, our method estimates the inverse
response function as the function that maps the asymmetric
distribution of noise in the observation domain to a sym-
metric distribution in the irradiance domain. This idea is
illustrated in Figure 1.

The primary contributions of our work are twofold. First,
it introduces the use of image noise as a signal for estimat-
ing radiometric response functions. Noise has widely been
considered a nuisance in computer vision, but here we de-
rive an important benefit from noise observations. Second,
the proposed radiometric calibration method is effective at
high noise levels, which can substantially degrade previous
radiometric calibration techniques. Our method examines
only the symmetry of noise distributions, which is not af-
fected by noise level. Since noise is inevitable in real im-
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Figure 2. Imaging process and noise sources of digital cameras.

ages, the proposed method has wide applicability.
Since the noise characteristics of a camera typically vary

with respect to irradiance value, our technique takes as in-
put the noise distributions for different image irradiances.
This data can be collected by capturing multiple images of
a fixed scene, or by combining intensity data from uniform
scene regions in a single image, as done in [13]. With the
proposed approach, calibration results that match those of
standard techniques can be computed from less data, by
capitalizing on a new source of calibration information.

1.1. Background

Radiometric calibration aims to estimate the response
function f of a camera. The radiometric response function
f maps irradiance I that is captured at the sensor to the im-
age intensity M that is read from the camera:

M = f(I). (1)

For vision algorithms that require irradiance values I rather
than measured intensity M as input, the inverse response
function g = f−1 needs to be determined so that measured
intensities can be made linear with respect to irradiances.
Since response functions f are monotonic, they are invert-
ible. As in most previous radiometric calibration methods,
we assume in this work that the sensor response does not
change over the image.

1.2. Prior work

Several methods have been proposed to estimate the
camera response function. Most of them require as input an
image sequence taken with varying exposures from a fixed
camera. With known ratios among exposure levels, Mann
and Picard [15] compute a parametric response function in
the form of a gamma curve, and Debevec and Malik [4]
obtain a nonparametric response function using a smooth-
ness constraint. With only approximate knowledge of rel-
ative exposure levels, Mitsunaga and Nayar [16] iteratively
solve for a response function based on the assumption that
it has a polynomial form. Other iterative estimation meth-
ods include that of Tsin et al. [22], which estimates non-
parametric responses using a statistical model of the CCD

imaging process, and of Pal et al. [20], which utilizes prob-
abilistic imaging models and prior models of response func-
tions to compute response functions that can differ from im-
age to image.

A few prior methods allow some camera movement or
scene motion, but still require changes in exposure level.
Mann [14] presents a method for response function estima-
tion from image sequences taken by a rotating and zooming
camera. Kim and Pollefeys [9] compute point correspon-
dences to allow free movement of the camera and some mo-
tion in the scene. Grossberg and Nayar [6] avoid reliance on
spatial correspondences by relating histogrammed intensity
values between two images of different exposure.

In many applications such as those for web cameras,
multiple images at different exposures cannot be obtained
for radiometric calibration. Some previous techniques have
been presented without the need to make adjustments in
camera exposure settings. Nayar and Mitsunaga [17] place
an optical filter with spatially varying transmittance on the
imaging array, which effectively leads to different expo-
sures for neighboring pixels. The response function can
then be computed from neighboring pixels that have differ-
ent exposures but equal scene brightness. Farid [5] proposes
a gamma correction technique based on the frequency-
domain correlations that it introduces to an image. This ap-
proach requires assumptions on the statistics of scene radi-
ance, and the radiometric responses of many cameras differ
significantly from a gamma function.

A more general approach based on edge information in
single-image input was proposed by Lin et al. for color im-
ages [11] and for grayscale images [12]. The former obtains
information about the radiometric response function from
color distributions of local edge regions. Due to blending of
distinct region colors, irradiance colors from edge regions
should form linear distributions in color space. But because
of nonlinear radiometric response functions, measured edge
colors actually compose nonlinear distributions that are di-
rectly related to the response function. With a prior model
of response functions compiled by Grossberg and Nayar [7],
the inverse radiometric response is computed as the func-
tion that maps the nonlinear distributions of measured edge
colors into linear distributions. For grayscale images, a 1D
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Figure 3. Illustration of our method. Symmetric noise profiles are skewed by the radiometric response function in the imaging process.
Radiometric calibration is performed by estimating a function that transforms the skewed noise distributions into symmetric forms.

analogue of the 3D color method is presented in [12].
Our work may be considered as complementary to the

methods based on edge information. Since the edge-
based methods rely on statistical distributions from possibly
sparse data, they may be susceptible to high levels of image
noise. In contrast, our technique utilizes noise as an infor-
mation source. Our method is also able to use non-edge re-
gions in an image for radiometric calibration. In principle,
a single-image technique could be developed that combines
the edge processing of [11] together with our proposed ap-
proach applied to uniform regions in the image.

2. Transformation of noise distributions
Figure 2 outlines the imaging process and sources of

noise. Our method is built upon the assumption that the
noise distributions from the various noise sources are statis-
tically symmetric. In this section, we first review the prop-
erties of the different types of noise in the imaging pipeline,
and confirm the validity of this assumption. Then we de-
scribe the transformation of these symmetric noise distri-
butions by nonlinear camera response functions into asym-
metric distributions in measured images.

2.1. Symmetry of imaging noise

In the imaging process, radiance from the scene is first
focused by the lens onto the sensor. This scene radiance
fluctuates over time due to the discrete nature of photons.
These temporal fluctuations are called photon noise, or pho-
ton shot noise. Photon noise obeys the Poisson law [3, 1],
and a Poisson distribution is well-approximated by a Gaus-
sian distribution when the number of arrivals is large [21].
Since the number of photon arrivals at an sensor element
can be considered large under ordinary imaging conditions,
the distribution of photon noise can reasonably be approxi-
mated as Gaussian. Photon noise is therefore symmetric.

The incoming rays are then captured by the imaging sen-
sor and converted to an electrical signal. In the process of
conversion, the signal is contaminated by dark current, shot
noise, and thermal noise. Dark current adds a constant off-
set to the signal with zero-mean fluctuations. This fluctu-

ation is called dark current noise, or thermal noise. Dark
current noise arises from thermally generated charges in the
sensor. Due to manufacturing variances, some pixels in the
sensor have greater dark current than others. These pixels
are referred to as hot pixels, and are a source of fixed pat-
tern noise. Since dark current noise occurs in the form of
discrete electrons, the noise process obeys the Poisson law.
Electronic shot noise, which is different from photon shot
noise, occurs in the electronic circuitry due to random fluc-
tuations of current in an electrical conductor. These fluc-
tuations similarly arise from the fact that current is carried
by discrete electrons. These sources of noise at the sensor
all obey the Poisson process. Since the number of electrons
involved per pixel is large, their noise distributions are also
well-approximated by a Gaussian.

An output amplifier sequentially transforms the electrons
from each pixel into a voltage. The amplifier adds read-out
noise, whose distribution is zero-mean and independent of
the number of captured electrons. Read-out noise can be
treated as having a symmetric distribution since it results
from the random effects of coupled sources: that counting
of electrons is not a perfectly repeatable process, and that
spurious electrons exist within the amplifier.

In the case of color cameras, a demosaicking process
converts the raw sensor signal into a three-channel color
image by interpolating the red, green, and blue pixels in
the imaging array. This process can affect the noise distri-
butions for interpolated pixel values, since they are being
estimated from other noisy signals. Since interpolation is
computed among measurements with symmetric noise dis-
tributions, we regard the noise distributions of demosaicked
color values also to be statistically symmetric.

At this point, the demosaicked irradiance value is then
transformed to the measured intensity by the camera’s ra-
diometric response function f . In this process, the symmet-
ric profiles of the noise distributions becomes distorted by
the non-linearity of the camera response function, as further
described in Section 2.2.

Finally the signal is quantized, and quantization noise is
introduced. Since quantization noise results from the round-
ing of signal amplitudes to discrete levels, it can be consid-
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Figure 4. A noise profile measured using a Canon EOS 20D (ISO
1600), and the corresponding noise profile after calibration with
the ground truth response curve. The noise profiles are scaled hor-
izontally for better visualization.

ered as a zero mean random variable with a uniform proba-
bility distribution [19].

2.2. Asymmetry of measured noise

As reviewed above, all noise sources in a digital cam-
era can be considered statistically symmetric. For a camera
with a linear response function, its observed noise distribu-
tions should therefore be symmetric. On the other hand,
non-linearity of the radiometric response function will lead
to asymmetry in the observed noise distributions, as illus-
trated in Figure 3. For typical response functions, the non-
linear mapping results in greater condensation of the dis-
tribution towards higher intensities and broadening towards
lower intensities. This leads to measured noise distributions
that are negatively skewed.

The correct inverse response function g should transform
the asymmetric profile of the measured noise distribution to
a symmetric profile as illustrated in Figure 3 (right). In Fig-
ure 4, we show a real-world example of how a measured
asymmetric noise profile is projected using the ground truth
response function into a symmetric distribution in the irra-
diance domain. Our work aims to find such a function for
radiometric calibration.

3. Calibration algorithm

In presenting our calibration algorithm, we first describe
how we evaluate the degree of symmetry of a noise pro-
file. Based on this symmetry measure, we then derive an
energy function that estimates the inverse response function
g that best transforms measured noise profiles to symmetric
forms. For cases where the available noise data is insuffi-
cient to avoid solution ambiguities, we utilize a prior model
of inverse response functions to regulate the solution.

3.1. Degree of symmetry

There exist various possible approaches to measuring the
symmetry of a statistical distribution. Since the mean, me-
dian and mode are all the same in a symmetric distribution,
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Figure 5. Evaluation of the degree of distribution symmetry.

one basic symmetry metric is Pearson’s skewness coeffi-
cients S1 = 3(x̄− x̃)/σ and S2 = 3(x̄− x̌)/σ, with distri-
bution mean x̄, mode x̃, median x̌, and standard deviation
σ [8]. Values of these two coefficients that are closer to zero
indicate greater distributional symmetry.

In this work, we evaluate symmetry in a manner that is
similar to the Bowley skewness [8], which computes dis-
tances among interquartile ranges to effectively obtain a
measure of distribution balance around its median. In our
symmetry metric, we compute the distance from the dis-
tribution mode to the profile of the distribution at multiple
different heights as shown in Figure 5. At each i-th height
in the distribution q, the distance to the profile on the left
d−q,i and on the right d+

q,i are respectively computed. The
degree of symmetry of the distribution q is then evaluated
as

S(q) = − 1
n

n∑
i=1

(
d−q,i − d

+
q,i

d−q,i + d+
q,i

)2

, (2)

where n is the number of heights to be evaluated. A larger
value of n yields a more accurate result at the expense of
greater computation time, which is proportional to n. The
denominator normalizes each term by the distribution width
at the given height. Larger values of S indicate greater sym-
metry.

While the inverse of any skewness metric could in prin-
ciple be used in place of Equation (2), we utilize this mea-
sure because of its effectiveness in optimization. In con-
trast, we have empirically found the Bowley skewness and
Pearson’s skewness coefficients to be less sensitive to the
slight changes in distribution structure that occur in an iter-
ative optimization procedure.

3.2. Solution method

With this symmetry measure, our method computes the
inverse response function g from the set of collected noise
profiles Ω by maximizing the following energy function:

E(g; Ω) =
1
|Ω|

∑
q∈Ω

S(g; q) =
1
|Ω|

∑
q∈Ω

S(g(q)), (3)

where |Ω| represents the number of noise distributions in
the set Ω. This function evaluates the degree of symmetry



of noise profiles that are projected to the irradiance domain
by the inverse response function g.

While argmaxg E(g) gives the optimal estimate of the
inverse response function g, it is computationally difficult
to solve for a non-parametric inverse response function, be-
cause of the large number of intensity levels (e.g., 256 for 8-
bit images). To facilitate optimization, we utilize a paramet-
ric model based on Grossberg and Nayar’s principal compo-
nents analysis (PCA) on the DoRF database of real-world
response functions [7]. The response functions in the DoRF
database are first inverted so that principal components of
inverse response functions can be computed. With these
principal components, an inverse response function g can
be represented as

g = g0 + Hc, (4)

where g0 is the mean inverse response, H is the matrix
whose columns are composed of the first N eigenvectors,
and c is an N -dimensional vector of PCA coefficients. In
this work we set N = 5 as done in [7, 12]. With this
representation of inverse response functions, the problem
is transformed into estimating the N coefficients of c:

ĉ = argmax
c

E(g; g = g0 + Hc). (5)

3.3. Solution using prior model

In cases where the projected noise profiles g(∀q ∈ Ω) do
not cover the entire range of irradiance values, there may
exist multiple solutions that result in symmetry of noise dis-
tributions. To avoid this ambiguity, additional constraints
on the inverse response function, such as smoothness and
monotonicity, could be used. In this paper, we use prior data
from the DoRF database to regulate the solution as done
in [12].

Using the eigenvectors of Equation (4), we compute
the PCA coefficients of each inverse response function in
DoRF. We then construct a prior model on inverse responses
by fitting a multivariate Gaussian mixture model to this set
of PCA coefficients:

p(g) =
K∑

i=1

αiN (g;µi,Σi), (6)

where N represents a normal distribution with mean µi

and covariance matrix Σi. We empirically set K = 5,
and the mixture model is obtained using the cross-entropy
method [2].

We also model the likelihood of the degree of symmetry
as

p(Ω|g) =
1
Z

exp(−λE(g; Ω)), (7)

where Z is the normalization factor, and λ is a regulariza-
tion coefficient, which is empirically set to 104.
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Figure 6. Processing of incomplete noise distributions. (a) Upper
portion of noise profile is used for evaluating the degree of sym-
metry. (b) Noise profile is discarded due to insufficient symmetry
data.

The optimal coefficients ĉ that define the inverse re-
sponse function g are solved in the following MAP prob-
lem:

ĉ = argmax
c

p(g(c)|Ω) = argmax
c

p(Ω|g(c))p(g(c)). (8)

Inserting Equations (6) and (7) into the logarithmic form of
Equation (8), we obtain

ĉ = argmin
c

λE(g(c); Ω)− log p(g(c)). (9)

The optimized coefficients ĉ yield our estimate of the in-
verse response function as ĝ = g0 + Hĉ.

4. Experiments
To evaluate our method, we performed experiments on

various real-world cameras and scenes. In our implemen-
tation, optimization is performed using the Nelder-Mead
simplex method [18] with multiple initial values. The de-
gree of symmetry in Equation (2) is evaluated with n = 20
for all examples in this paper. The evaluation is performed
in the irradiance domain as described in Equation (3). At
the lower and upper bounds of the intensity range where a
complete noise profile cannot be observed, we use only the
available partial profile in computing the degree of symme-
try, as illustrated in Figure 6.

In our experiments, we first examine cases where noise
distributions are recovered over the entire range of inten-
sity levels. We then consider the case of incomplete data,
which utilizes the prior model of inverse response functions
to determine a solution.

Results with complete data In this experiment, we ef-
ficiently measure noise distributions at different intensity
levels by capturing a static scene with a fixed video cam-
era. With this setup, the intensity fluctuations at a pixel over
time are caused only by noise. By combining the intensity
observations of a pixel into a histogram, noise distributions
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Figure 7. Measured noise distributions (Sony DSR-PD190P). The
logarithm of normalized frequency values are used for visualiza-
tion purposes. Each vertical slice represents a noise distribution at
the corresponding intensity level.

are directly measured for each pixel. Furthermore, these
collected noise distributions from the image set are merged
together according to intensity level for greater statistical
stability. The mode of each measured noise distribution is
taken as its true intensity.

We used four different video cameras for experi-
ments: JVC GR-D230AH, Sony DCR-TRV9E, Sony DSR-
PD190P, and PointGrey DragonFly. Each input dataset is
collected by capturing a static scene for 100 frames (about 3
secs at 30 fps). In this experiment, we ensure that noise dis-
tributions are acquired over the full range of intensity levels.
This can often be achieved simply by capturing two image
sequences of a scene at different exposure levels, e.g., one
bright scene and one dark scene, and then merging them to-
gether to form a single dataset. Figure 7 shows a measured
noise distribution for the Sony DSR-PD190P camera. Each
column of the chart represents the noise distribution of the
corresponding intensity level.

Representative results of the proposed method are shown
in Figure 8. In the figure, comparisons of our estimated in-
verse response curves to those of standard radiometric cal-
ibration methods are shown in the left column. The center
column displays the measured noise profiles and the result-
ing symmetric noise profiles after applying the estimated in-
verse response functions. For better visualization, the noise
profiles are displayed at every ten intensity levels starting
from intensity level 5. In actual computation, the noise pro-
files for all intensity levels are used to estimate the inverse
response functions.

For a quantitative comparison of our method to standard
techniques, we evaluated the RMSE (root-mean-squared er-

Camera RMSE Disparity
JVC GR-D230AH 0.0224 0.0495
Sony DCR-TRV9E 0.0247 0.0522
Sony DSR-PD190P 0.0332 0.0673

PointGrey DragonFly 0.0265 0.0478
Table 1. RMSE and disparity of estimated inverse response func-
tions in terms of normalized irradiance.
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Figure 9. Result of calibration from a single image using our
method. The scene is photographed at an ISO 800 gain level.

ror) in terms of normalized irradiance and disparity, which
represents the average value among the dataset of the max-
imum difference between our function and the comparison
curve. In computing disparity, four sequences for each cam-
era are used. The result is summarized in Table 1. For
the Sony DSR-PD190P and PointGrey DragonFly cameras,
the comparison curve is generated by averaging the curves
obtained by the method in [16] and by fitting to Macbeth
color checker measurements, which were interpolated us-
ing a fifth-degree polynomial. For the JVC GR-D230AH
and Sony DCR-TRV9E cameras, the inverse response func-
tion obtained using the Macbeth color checker is used as
the comparison curve. The low RMSE and disparity values
demonstrate an agreement between our calibration method
and the standard techniques, which utilize additional data
such as multiple exposure settings or known relative scene
colors.

Results with incomplete data When the observed noise
distributions do not span the entire range of intensity lev-
els, we use the prior model on inverse response functions to
constrain the solution as described in Section 3.3. We con-
duct this experiment using a single input image that does
not include a full range of intensities. For simplicity in val-
idating our method, we photographed a scene composed of
relatively flat, uniform surfaces, and then manually selected
image regions from which to obtain noise distributions. A
more sophisticated algorithm such as in [13] could alterna-
tively be used to automate this process.

Figure 9 shows a result from a single input image using
the prior. The RMSE and disparity are 0.0337 and 0.096 re-



spectively using five datasets, where the ground truth curve
is computed as the mean curve between those obtained us-
ing a Macbeth color chart and the method of Mitsunaga &
Nayar [16]. The relatively large disparity value likely re-
sults from the limited number of observations per noise dis-
tribution, which degrades the accuracy of the distributions
in a statistical sense. Our solution nevertheless exhibits a
close match to the ground truth curve.

5. Discussion
Symmetry assumption Our method is based on the as-
sumption of symmetric noise distributions from the vari-
ous sources. As we reviewed in Section 2, the assump-
tion is valid under typical conditions where the numbers of
photons and electrons in the sensor are sufficiently large.
However, this assumption breaks down in low-light con-
ditions, where photon and electron counts become small.
In low-light conditions, photon noise and electronic shot
noise distributions deviate from Gaussian approximation,
and hence the symmetry assumption breaks down. The pro-
posed method is therefore not intended for low-light im-
ages/videos.

Statistical validity of noise distributions For the mea-
sured noise distributions to be statistically valid, a suffi-
ciently large number of samples per intensity level needs
to be collected. One indicator of data sufficiency is the
smoothness of the measured noise profiles. Since noise dis-
tributions are expected to be smooth, a coarse profile sug-
gests inadequate sampling, and more image data is needed
for greater reliability in radiometric calibration.

Future work In this work, we presented a radiometric
calibration technique that takes advantage of the image
noise that normally degrades computer vision algorithms.
Its tolerance of high noise levels and effectiveness without
multiple exposures are its primary benefits over previous
algorithms. Because of these particular advantages, an in-
teresting direction for future work is in employing our tech-
nique in a conjunctive manner with other radiometric cali-
bration methods, to reduce sensitivity to noise and to resolve
solution ambiguity in cases there would otherwise be little
calibration data.
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(a) JVC GR-D230AH (red channel)
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(b) Sony DCR-TRV9E (green channel)
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(c) Sony DSR-PD190P (blue channel)
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(d) PointGrey DragonFly (green channel)
Figure 8. Results of our radiometric calibration method. Left column: comparison of inverse response functions. Middle column: observed
noise profiles and transformed noise profiles. Right column: an image from the corresponding test image sequence. Noise profiles are
displayed at every ten intensity levels for visualization purposes. From top to bottom, the results of different cameras are shown: (a) JVC
GR-D230AH, (b) Sony DCR-TRV9E, (c) Sony DSR-PD190P, and (d) PointGrey DragonFly.


