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Abstract

Many high resolution images exhibit chromatic aberra-
tion (CA), where the color channels appear shifted. Unfor-
tunately, merely compensating for these shifts is sometimes
inadequate, because the intensities are modified by other
effects such as spatially-varying defocus and (surprisingly)
in-camera sharpening. In this paper, we start from the basic
principles of image formation to characterize CA, and show
how its effects can be substantially reduced. We also show
results of CA correction on a number of high-resolution im-
ages taken with different cameras.

1. Introduction
The popularity of digital photography is spurred by low-

ering costs and higher sensor resolution. Unfortunately, the
increase in sensor resolution (larger sensor size) is often not
accompanied by increase in the quality of the optics. As
a result, aberrations such as chromatic aberration (CA) are
more pronounced in higher resolution cameras with rela-
tively inexpensive lenses. Sample close-up cropped views
are shown in Figure 1. Note the slight relative shifts in the
color channels as seen on the top row. Observe also the
under- and over-shooting at the edges (ringing), especially
for the first example. Merely compensating for the color
shifts would not be adequate in these cases. In the third ex-
ample, the purple artifacts are also known as purple fring-
ing.

Such artifacts are unacceptable in professional photogra-
phy; digital photos are typically touched up manually using
software such as Adobe R© PhotoShop. Other applications
such as PTLens R© use a lookup table of precomputed pa-
rameters to reduce the artifacts. (It is not clear how these
applications correct for CA, but it is possible that they use
constant radial magnification and/or linear color transfor-
mation, since the number of degrees of freedom available to
the user is typically limited to just two or three.) From the
computer vision perspective, understanding how these arti-
facts occur and how they can be automatically reduced is
important for maximizing the amount of useful visual data

Figure 1. Effect of chromatic aberration. In all cases, the image
center is to the right of the cropped images. The graphs on the top
row are the color intensity profiles along the middle scanline.

for analysis (e.g., segmentation, edge detection).
Techniques have been proposed to reduce the effect of

CA. Classical techniques rely on optimal lens design [9]
or special hardware to recover the aberration coefficients
through wavefront measurements (e.g., using a diffraction
grating and scanning electron microscope or some form of
interferometer [2]). Others rely on primarily software solu-
tions; one such technique involves precalibrating the color
channels for optimal focus, magnification, and shift [11].
However, producing a CA-free image subsequently requires
taking three separate images, each using the optimal set-
tings for a different color channel.

Boult and Wolberg [1], on the other hand, use only a sin-
gle image; they warp the red and green color channels to the
blue channel. This is accomplished by fitting edge displace-
ments with cubic splines, with blue edges as the reference.
However, they do not account for the attendant relative de-
focus and intensity distortion (under- and over-shooting) ef-
fects. In addition, because the computed displacement maps
do not explicitly model the image formation process, it is
not clear if the extracted maps can be used to directly cor-
rect a different image taken by the same camera. This is
because the extracted maps are highly dependent on the rel-
ative density and distribution of the edges.

In this paper, we focus on how we can undo most of the
effects of chromatic aberration from a single image. Before
we present our approach, we first review a few important
concepts in optics. More detailed descriptions of optical
concepts can be found in references such as [9, 10, 12].
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Figure 2. Illustration of field curvature. Rays coming from points
from the same distance from the lens but at differing distances
from the optic axis are focussed at different distances from the
lens.

2. Optical concepts

Optical aberrations are categorized as monochromatic or
chromatic. The mathematical treatment of geometrical im-
agery, now known as aberration theory, was first described
by Seidel in 1856. There are five primary monochro-
matic (Seidel) aberrations: distortion (the familiar barrel
or pincushion distortion), spherical aberration, coma, astig-
matism, and field curvature. Chromatic aberrations are
caused by the refractive index of the lens being wavelength-
dependent, and can be separated into longitudinal and lat-
eral components. By chromatic aberration (CA), we refer
to the combination of longitudinal and lateral aberrations.
In this paper, we focus on CA. The effect of CA is tightly
coupled with the notions of field curvature and astigmatism.

2.1. Field curvature and astigmatism

The ideal imaging surface is flat (i.e., having a flat field)
and coincident with the sensor surface. In reality, for a typ-
ical camera, the off-axis parts of the image are closer to the
lens than the on-axis parts (Figure 2). In the absence of all
other aberrations, the curved image surface is known as the
Petzval surface.

In an optical system, a plane containing the optical axis is
called the tangential or meridional plane. The sagittal plane
is orthogonal to the tangential plane and intersects the tan-
gential plane along the chief (or primary) ray of the object.
Astigmatism refers to the phenomenon where rays coming
from the object focus in two lines on different surfaces, as
shown in Figure 3. One focussed line corresponds to the
tangential rays while the other corresponds to the sagittal
rays. The “best” image of the object is considered to be at a
location halfway between these two surfaces; this location
yields what is called the circle of least confusion.

The combination of field curvature and astigmatism pro-
duces a more complex “best” imaging surface, which we
refer to as the focal surface. In our paper, we attempt to
recover the relative focal surface using the green channel
as reference. We chose green as the reference due to its
implicit higher reliability, since the number of green sam-
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Figure 3. Illustration of astigmatism.
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Figure 4. Illustration of longitudinal and lateral chromatic aberra-
tion (only the red and blue rays are shown here).

ples in a raw Bayer mosaic image (for single CCD sensors)
are twice those for red and blue. We have also observed
from images taken with five different high-resolution cam-
eras that the green channel tends to be the sharpest.

2.2. Chromatic and spherical aberrations

The lens properties vary with wavelength because the in-
dex of refraction is wavelength-dependent. In addition to
the monochromatic (Seidel) aberrations, chromatic aberra-
tion contains wavelength dependent shifts in focus. These
shifts can be decomposed into longitudinal chromatic aber-
ration (shifts along the optical axis) and lateral chromatic
aberration (shifts perpendicular to the optical axis). Lat-
eral chromatic aberration, otherwise known as transverse
chromatic aberration, combines with spherical aberration
(which is a function of aperture radius) to determine the im-
age height of a colored ray. This combined effect is called
spherochromatic aberration (SCA) or Gauss error [8]. In
this paper, for simplicity, by CA, we are actually referring
to the combination of conventional CA and spherical aber-
ration. Figure 4 illustrates the occurrence of CA.

3. Our approach
The imaging pipeline we use in our analysis is shown in

Figure 5. The pipeline consists of optical, sampling, and
post-processing stages, in that order. Note that the other op-
tical effects such as radial distortion and vignetting, which
can be estimated independently, are outside the scope of this
work. Rs, Gs, Bs are incident continuous scene colors and
RI , GI , BI are the observed discrete image colors. There
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Figure 5. Simplified imaging pipeline.

are three parts to the pipeline: optics, pixel sampling, and
in-camera post-processing. We made a number of assump-
tions in our work to simplify our analysis. First, we assume
that the effects of demosaicking (i.e., the process of raw-
to-color conversion) is relatively small. We ignored the in-
camera color transformation used for white balancing, and
assume that the image aspect ratio is one.

3.1. Optics

Chromatic aberration (CA) results in each color chan-
nel having its own focal surface being deviated from the
ideal flat field. We model the focal surface as 3D surface
that is radially symmetric, so it is sufficient to recast the
lateral and longitudinal shift functions along the radial di-
rection (dLat(r) and dLong(r), respectively). We also as-
sume that the focal surface is smooth. We model these de-
viations induced by dLat(r) and dLong(r) as radially de-
pendent magnification (convolution kernel HMag) and de-
focusing (convolution kernel HDefocus), respectively, i.e.,
HCA = HMag ∗ HDefocus. If the incoming light distribu-
tion is Ms, the light distribution that impinges on the sensor
is thus

M = Ms ∗ HCA. (1)

HCA is implemented in two stages:

1. Magnification: We warp the image using the ra-
dial function (x′, y′)T = (x, y)T(a0 + a1r(x, y) +
a2r

2(x, y) + a3r
3(x, y)), where r(x, y) =

√
x2 + y2

is the radius relative to some center (cx, cy). We use
four parameters a0, a1, a2, and a3 to characterize
radially-varying magnification.

2. Defocus: HDefocus is of the form of a pillbox shown
in Figure 6, and it is characterized using a single pa-
rameter ρ that specifies the size of its support. Since
the kernel is discrete, we compute weights based on
whether the position is wholly inside the pillbox, par-
tially inside, or wholly outside. The weights are nor-
malized to sum to one. We characterize the radial dis-
tribution of ρ by ρ(r) = ρ0 + ρ1r + ρ2r

2, with r be-
ing the distance of the pixel to center (cx, cy) (same as
magnification center).

Please note that because the effect of CA is spatially-
varying, it is easier to analyze and implement in the spatial
domain rather than frequency domain.
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Figure 6. Defocus kernel (pillbox). w is the weight distribution
over (x, y), such that the sum over the spatial support (radius ρ) is
one.
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Figure 7. Link between defocus parameter ρ and SHS parameters
σ and λ.

In our analysis, we need to invert these processes. Fortu-
nately, the magnification stage can be easily inverted. How-
ever, without good priors, undoing the defocus effect is
impossible if high-frequency components are present. We
“undo” defocus using a sharpening filter given by (5), but
with a major modification—we suppress ringing (character-
istic of a typical sharpening operation) by restricting values
to within the local minimum and maximum original intensi-
ties. In other words, if the sharpened value is below the local
minimum, we replace it with the local minimum; similarly,
we take the local maximum if the sharpened value exceeds
it. We call this operation sharpening with halo suppression
(SHS).

In order to maintain the same number of degrees of free-
dom in the forward and inverse process of CA, we em-
pirically link defocus parameter ρ with SHS parameters σ
and λ. We do this by running simulations of defocusing a
checkerboard pattern and minimizing the reconstruction er-
ror using the SHS filter. The graphs illustrating this link are
shown in Figure 7.

3.2. Pixel sampling

The pixel sampling analysis follows that in [5]. Assume
the sensor to be a rectangular array of rectangular sensing
elements (pixels), and that each pixel has uniform quantum
efficiency over its area. In spatial domain, the averaging
function is a box:

HBox(x, y, wx, wy) = Rect2

(
x

wx
,

y

wy

)
, (2)



where wx and wy are the pixel length and width, respec-
tively, and Rect2() is the 2D rectangular function. Sup-
pose the pixel spacings are dx and dy along the x- and y-
directions, respectively, with (φx, φy) being the phase shift
of the grid relative to the optic center. The sampling func-
tion is then

HSample(x, y, dx, dy, φx, φy) =
1

dxdy
Shah2

(
1
dx

(x − φx),
1
dy

(y − φy)
)

, (3)

where Shah2() is the 2D Shah function (also known as the
sampling or replicating function).

If Ms is the continuous image formed on the image
plane, its discrete version Md is

Md = (Ms ∗ HBox) · HSample = Θ(Ms). (4)

As can be seen later (Section 3.4), we need to invert
this process, i.e., approximate a continuous signal Φ(X)
given its discrete counterpart X . However, the pixel sam-
pling process results in a bandlimited signal, which is the
best we can theoretically reconstruct. In our implementa-
tion, we approximate Φ(X) through super-sampling by a
factor of three the input resolution of X and using bicu-
bic interpolation to compute in-between values. This choice
of approximation is motivated by speed and memory foot-
print considerations. To “sample” back to the original input
resolution, we apply Θ(·) to the super-sampled image with
wx = wy = 3, dx = dy = 3, and φx = φy = 0.

3.3. In-camera post-processing

Single CCD-based cameras use optical and electrical
low-pass filters to reduce aliasing caused by the mosaic ar-
ray in front of the sensor. For a given CCD size and pixel
pitch, the anti-aliasing filter design has a significant impact
on the reduced sharpness of the image [7]. Many digital
cameras, by default, apply some amount of internal sharp-
ening in an attempt to counteract the reduced sharpness.
However, this sometimes has the effect of significantly en-
hancing jaggies, noise, and other artifacts such as ringing.
Figure 8 shows the effect of in-camera sharpening for the
Canon PowerShot SD500, which allows the user to select a
less sharpening effect. (Most lower-end consumer cameras
do not have the “less-sharp” option.)

We model the in-camera sharpening using a separable
unsharp mask1 HSharp:

HSharp = H1 + λ(H1 − Hσ), (5)

1The seemingly unintuitive name “unsharp mask” used
for sharpening has its origins in the printing industry; see
www.normankoren.com/PWP contrast masking.html for a more de-
tailed explanation.

Figure 8. Examples of in-camera sharpening (Canon PowerShot
SD500). The full image resolution is 3072 × 2304; only subim-
ages of 160 × 100 and color intensity profiles at a particular edge
location are shown here. Notice the significant ringing for the de-
fault setting (left); even the less-sharp setting has some ringing
(right).

(a) (b) (c)
Figure 9. Result of undoing the effect of sharpening: (a) original
defocused, (b) sharpened using (5), and (c) unsharpened using (7).
In this simulation, an ideal checkerboard pattern was used with
defocusing parameter ρ = 0.5 and sharpening (and inverse sharp-
ening) parameters σ = 2.0 and λ = 0.7.

where H1 is a kernel with one at the center and zero every-
where else, Hσ is a Gaussian blur kernel with parameter σ,
and λ is the amount of high-frequency contribution. Note
that this particular parameterization of the unsharp mask has
two degrees of freedom. If the observed discrete image is
MI , we have

MI = Md ∗ HSharp. (6)

We use the second-order approximation to invert the ef-
fect of sharpening, i.e.,

H−1
Sharp ≈ H1 − λ(H1 − Hσ) + λ2(H1 − Hσ)2. (7)

This is a form of blurring. Figure 9 shows profiles of a 2D
edge (which is part of a 2D checkerboard pattern). Notice
that the original (leftmost) and “unsharpened” (rightmost)
profiles are very similar. This approximation works well
for λ < 1; λ ≥ 1 results in some residual over- and under-
shooting.

There is also the effect of demosaicking, which has two
effects: zippering (when colors are misestimated, typically
at color boundaries, resulting in speckle noise), and blurring
(due to interpolation). The algorithms used for demosaick-
ing can vary significantly, with the type of interpolation



ranging from bilinear to median [3] to gradient-sensitive
(e.g., [4]). In this work, we assume that the effect of de-
mosaicking is minor compared to all the other effects, and
that there is net sharpening as a result of in-camera post-
processing.

In our implementation, the width of HSharp and H−1
Sharp

is (2�3σ� + 1) pixels, with �x� being the ceiling of x.

3.4. Putting everything together

From (1), (4), and (6), the discrete output color channels
are related to their respective continuous inputs by

RI = Θ(Rs ∗ HCA,R) ∗ HSharp

GI = Θ(Gs ∗ HCA,G) ∗ HSharp (8)
BI = Θ(Bs ∗ HCA,B) ∗ HSharp.

Suppose we are able to reasonably undo the in-camera
sharpening and approximate the continuous (bandlimited)
signal Φ(X) from its discrete counterpart X . Then, we have

Φ(RI ∗ H−1
Sharp) = Rs ∗ HCA,R

Φ(GI ∗ H−1
Sharp) = Gs ∗ HCA,G (9)

Φ(BI ∗ H−1
Sharp) = Bs ∗ HCA,B .

Unfortunately, unless we know the exact scene color distri-
bution, there is ambiguity of Rs, Gs, Bs up to some radial
functions of magnification and defocusing. There is also
an ambiguity associated with H−1

Sharp. Since our goal is to
minimize the effect of CA, we can set one of the color chan-
nels as the reference and assume it to have a flat field. As
mentioned in Section 2.1, we chose green as the reference.

With the use of the green channel as the flat field refer-
ence, we have

Φ(RI ∗ H−1
Sharp) ∗ H−1

CA,RG = R′
s

Φ(GI ∗ H−1
Sharp) = G′

s (10)

Φ(BI ∗ H−1
Sharp) ∗ H−1

CA,BG = B′
s,

with G′
s = Gs ∗ HCA,G, R′

s = Rs ∗ HCA,G, B′
s =

Bs ∗HCA,G, HCA,RG = H−1
CA,G ∗HCA,R, and HCA,BG =

H−1
CA,G ∗ HCA,B .
To remove the ambiguity associated with H−1

Sharp in (9),
we estimate it from the image independently of CA us-
ing the technique described in Section 3.6. Given H−1

Sharp

and the constraint that R′
s = G′

s = B′
s in regions where

similarly strong edges exist in all three color bands (Sec-
tion 3.5), we can approximate H−1

CA,RG and H−1
CA,BG by

minimizing

||Φ(RI ∗ H−1
Sharp) ∗ H−1

CA,RG − Φ(GI ∗ H−1
Sharp)||2E (11)

and

||Φ(BI ∗H−1
Sharp) ∗H−1

CA,BG −Φ(GI ∗H−1
Sharp)||2E , (12)

respectively2. The subscript E in || · ||E is used to indicate
computation over the edge regions. Since H−1

Sharp is known,
we can rewrite (11) and (12) as

||Φ(R′
I) ∗ H−1

CA,RG − Φ(G′
I)||2E (13)

and
||Φ(B′

I) ∗ H−1
CA,BG − Φ(G′

I)||2E , (14)

respectively, with R′
I = RI ∗ H−1

Sharp, G′
I = GI ∗ H−1

Sharp,
and B′

I = BI ∗ H−1
Sharp.

Recall that RI , GI , BI are the input discrete image color
distributions and that we wish to find an optimal transfor-
mation for RI and BI to minimize the effects of CA. Once
H−1

CA,RG and H−1
CA,BG are found, the desired transformed

RI and BI over the entire image are

R′′
I = Θ(Φ(R′

I) ∗ H−1
CA,RG) ∗ HSharp (15)

and
B′′

I = Θ(Φ(B′
I) ∗ H−1

CA,BG) ∗ HSharp. (16)

If there is no in-camera sharpening, (15) and (16) reduce
to R′′

I = Θ(Φ(RI) ∗ H−1
CA,RG) and B′′

I = Θ(Φ(BI) ∗
H−1

CA,BG), respectively. Note that for each color channel
(R, B), the number of unknowns to be computed is nine
(four to characterize radially-varying magnification, two for
the radial center, and three to characterize radially-varying
defocus; see Section 3.1).

We first used Levenberg-Marquardt (L-M) to optimize
(13) and (14), and surprisingly it did not work well. It
turns out that the increments used to estimate local gradients
were too small to make a measurable change in the objective
functions, and L-M stalled in many occasions. We instead
used the Nelder-Mead simplex method [6] and specified a
reasonable set of starting points. This simplex method is
based on evaluating a function at the vertices of a simplex,
then iteratively shrinking the simplex as better points are
found until some desired bound is obtained.

Even though the green channel is the reference channel,
it may contain ringing effects. We removed most of such
occurrences by replacing GI with (GI ∗H−1

Sharp)∗HSharp.
Note that here H−1

Sharp ∗ HSharp is not identity because
HSharp is implemented as sharpening with halo suppres-
sion (SHS, see Section 3.1).

3.5. Finding strong color edges

Our algorithm relies on being able to locate strong color
edges that are in very close proximity to each other. We ap-
ply the difference-of-Gaussians (DOG) filter over the three

2There is one implementation detail: before we run the optimization for
BI , we compensate for the global intensity scale and bias of GI relative
to BI over the edge regions. (We do not want to modify BI , as that would
modify its CA characteristics.) The process is repeated for RI .



Figure 10. Result of extracting colocated strong color edges. Left:
original color image (3008 × 2000), right: detected edge pixels.

color channels independently. The strong edges are found
by using a high threshold, and isolated edge pixels (those
without any 4-connected neighbors) are removed. The local
gradients allow us to estimate the normals at the edge pixels.
For each edge pixel in a color band, there must be nearby
(within 2 pixels) edge pixels in the other color bands; other-
wise it is rejected. An example of extracted strong colocated
color edges is shown to the right of Figure 10.

3.6. Estimating H−1
sharp

We use the results of Section 3.5 to estimate the two pa-
rameters λ and σ for H−1

sharp. More specifically, we use
areas within 11 pixels of these edges (using the edge loca-
tions in the green channel as reference locations). Then,
we define the cost of ringing at the vicinity of these edges
along their normal directions. To reduce the amount of re-
sampling, we analyze along either the horizontal or vertical
direction, depending on which is closer (in angles) to the
normal direction.

Given the intensity profile as shown in Figure 11 and set-
ting ε = 2 pixels and ξ = 9 pixels in all our experiments,
we compute (µleft, σleft) and (µright, σright). We define
the penalty as Ering = (σleft + σright)/ |µleft − µright|.
Here we wish to maximize the difference between the left
and right parts of the signal while minimizing their vari-
ances. The former ensures we do not oversmooth, while the
latter acts to suppress signal variation due to ringing. We
estimate the optimal values of λ and σ in (7) by minimizing
the sum of the penalties over all the edge points and over all
three color channels. The Nelder-Mead simplex algorithm
is used for parameter estimation.

A typical result is shown in Figure 12. We simulate
the sharpening by applying Hsharpen (no halo suppression)
with σ = 2.75 and λ = 0.75. Starting with the original
image in (a), we arrive at the simulated in-camera sharp-
ened input (b). Notice the ringing in the intensity profile.
Using (b) as input to our estimator, we arrive at H−1

sharpen

with σ = 3.5 and λ = 0.35. While these numbers may
seem quite different from the ground truth, the resulting re-
constructed image and profile shown in (c) are very similar
to the original (a). The original has been reasonably well
recovered.
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Figure 11. Defining the cost of under- and over-shooting. Given
the 1D profile of the detected edge I(x), we subdivide the curve
into three parts: the left [−ξ − ε,−ε], the middle [−ε, ε], and the
right [ε, ξ + ε]. The location of the edge is set to x = 0 here. The
mean and standard deviation of I(x) in the left part are µleft and
σleft, respectively. µright and σright are similarly defined for the
right part of I(x).

(a) (b) (c)
Figure 12. Result of estimating H−1

Sharp. The resolution of each
image is 250 × 250. The intensity profiles along a horizontal
scanline are shown on top. (a) Original image, (b) simulating in-
camera sharpening using HSharp with σ = 2.75 and λ = 0.75
(notice the ringing effect in the profile), (c) after applying esti-
mated H−1

Sharp with σ = 3.5 and λ = 0.35. H−1
Sharp was es-

timated from (b). Notice the considerable similarity between (a)
and (c).

4. Results

We now show results of using our technique on a num-
ber of different images (Figures 10 and 13). Figure 14 com-
pares our result with that for a version that computes only
a radial shift function (with the same parameters a0, ...a3).
This example shows that while compensating just for the
color shift improves the quality of the image significantly,
more can be done to further reduce the CA-related artifacts.
Our technique was able to significantly reduce the ringing
in the signal in addition to handling the color shift.

For the 3072 × 2048 image in Figure 14, it took about
6 secs to extract the edge image, 2 minutes to recover the
two parameters for H−1

Sharpen, and 13.5 minutes to estimate
the nine other CA-related parameters (associated with mag-
nification, defocussing, and radial center). If only the ra-
dial magnification function (specified by a0, ...a3, cx, and



(a) (b) (c) (d) (e)
Figure 13. Images used in our experiments (in addition to the 3008 × 2000 image in Figure 10). The resolutions are: (a-d) 3072 × 2048,
and (e) 3328 × 4992.

(a) (b) (c)

(d) (e) (f)
Figure 14. Results for checkerboard pattern. The original image
is Figure 13(a), with close-up areas highlighted within red boxes.
(a-c) Close-up views of right box, and (d-f) close-up views of left
box. (a,d) Original image, (b,e) radial shift correction only, (c,f)
our technique. Note that shifting alone cannot compensate for the
in-camera sharpening, while our technique explicitly accounts for
it. The color intensity profiles show that most of the ringing effects
have been removed.

cy; see Section 3.1) is estimated, it took about 30 secs over-
all. We ran our experiments on a Pentium 4 PC with 3.2
GHz CPU and 1 GB RAM. These timings were comparable
with those for the other images reported in this paper (after
scaling for the number of pixels). Surprisingly, the center of
the radial magnification function is very close to the image
center (to within 20 pixels) in all our experiments, which
suggests it is adequate to assume the radial center is coin-
cident with the image center. Thus, in practice, we proba-
bly need only estimate seven instead of nine parameters per
color channel.

The advantage of parameterizing CA is that we can apply
the recovered values to correct other images that are known
to be taken with the same camera under the same settings.
Figure 15 shows the result of applying the recovered param-
eters on another image taken with the same camera. The
amount of time taken was 2.5 minutes.

Three more sets of results are shown in Figure 16. Note
that in these cases, the ringing effect has been significantly
suppressed. Merely compensating for the shifts would have
been unable to account for the ringing.

The image in Figures 13(e) and 17 is huge: its resolution
is 3328× 4992. The lens used is a high-quality (and expen-
sive) one with only about 5◦ vertical field of view. Despite
this, because of the very high resolution, CA is noticeable,

(a) (b)
Figure 15. Result of correcting the image in Figure 13(b) using
parameters recovered from the image in Figure 13(a). (a-b) Close-
ups of before and after pairs. The edges in the corrected image
appear substantially less reddish. In (b), the residual artifact at the
edge of the building is caused by saturation (which our technique
cannot handle properly at present).

Figure 17. Result of correcting a very high resolution image (Fig-
ure 13(e)). From left to right: close-ups of before, after compen-
sating for shift only, and after applying our technique.

though only at relatively moderate levels. In this particular
case, compensating for the shifts only seems adequate.

5. Discussion

As Figure 15(b) and parts of Figure 16 show, our tech-
nique does not handle saturated pixels perfectly. More gen-
erally, it cannot undo operations that resulted in loss of in-
formation due to a variety of processes such as discretiza-
tion (especially at low intensities), clipping (saturation), and
local averaging (cannot totally undo effects of box averag-



Figure 16. Close-ups of original and after applying our technique for three additional high-resolution images (each larger than 3000×2000).
The top row shows the color intensity profiles associated with horizontal scanlines highlighted in the images.

ing or defocusing). However, our technique implicitly han-
dles noise through parameter fitting over a very large num-
ber of pixels.

It is possible that the ringing effects may actually be part
of the scene color distribution. In such cases, our technique
will over-estimate the amount of sharpening required and
hence over-sharpen the image. This may cause visible band-
ing or cartooning effects. More specifically, if the image
has finely textured areas, our technique has the tendency to
blur them while making the more dominant edges stronger.
There is also the artistic perspective—photos that are a bit
sharpened tend to look better. However, while our tech-
nique suppresses significant ringing (which does look un-
desirable), if necessary, it can be forced to under-estimate
the sharpening parameters (not shown in this paper).

If naive techniques for demosaicking are used (e.g., bi-
linear interpolation), it is possible that its effect is no longer
negligible. Unfortunately, accounting for demosaicking
adds considerable complexity to the analysis, as it requires
that the color bands be locally correlated everywhere in
some non-trivial fashion. Currently our technique only reg-
isters the color channels in the vicinity of strong edges.

Our technique does not handle purple fringing properly,
which tends to occur right next to saturated regions and is
only partly caused by CA. Purple fringing is significantly
more complex, being produced by microlenses (lenslets di-
rectly on top of pixels, creating local CA effects). Its effect
is accentuated by blooming3 and clipping.

6. Conclusions
We showed how we can characterize chromatic aberra-

tion (CA) using the basic principles of optics and imaging,
and how we can use this knowledge to correct digital images
with CA. We show that CA is more complicated than just
relative shifting of color channels. Interestingly, in-camera
sharpening contributes to the problem by causing ringing in
the signal, and we explicitly model it as well.

Results show that our new model for representing CA
is a reasonable one. Future topics for investigation include
differentiating between fine detail and ringing artifacts to

3www.dpreview.com/learn/?/Glossary/Optical/chromatic aberration 01.htm

avoid over-estimating the amount of sharpening, capitaliz-
ing on the GPU to reduce computation time, and handling
pixel saturation.
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