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Abstract

Recognizing and localizing specular (or mirror-like) sur-

faces from a single image is a great challenge to computer

vision. Unlike other materials, the appearance of a specu-

lar surface changes as function of the surrounding environ-

ment as well as the position of the observer. Even though

the reflection on a specular surface has an intrinsic am-

biguity that might be resolved by high level reasoning, we

argue that we can take advantage of low level features to

recognize specular surfaces. This intuition stems from the

observation that the surrounding scene is highly distorted

when reflected off regions of high curvature or occluding

contours. We call these features static specular flows (SSF).

We show how to characterize SSF and use them for identi-

fying specular surfaces. To evaluate our result we collect a

dataset of 120 images containing specular surfaces. Our al-

gorithm can achieve good performances on this challenging

dataset. Particularly, our results outperform other methods

that follow a more naive approach.

1. Introduction

The ability to perceive and interpret the geometric shape

and semantic meaning of objects is essential for an intel-

ligent visual system. At that end, it is desirable to design

algorithms that allow the identification and classification

of different types of materials and textures from an image.

Even if many techniques have been proposed for generic

texture classification, objects with highly reflective surface

properties such as a polished car, a teapot or bike pipe, pose

great challenges for recognition. One reason is that their

appearance is highly dependent on the object shape, the ap-

pearance of the surrounding scene and the position of the

observer. This gives rise to a extremely difficult represen-

tation problem due to the daunting number of possibilities

that one would need to take into account for the subsequent

modeling step. For instance, Figure 1 shows the same re-

flective surface with different background scenes. The ap-

Figure 1. The figure shows the same reflective surface with dif-

ferent background scenes and under different view points. Notice

that even if the material is the same, the appearance is completely

different in the two cases.

pearance of the two is completely different even if the object

is made of the same material. Typical features and models

proposed in texture classification literature [7, 17, 2] would

most certainly not be able to capture such extreme visual

variability.

It is clear that this recognition problem may be tackled

at several levels. One level would be the one of interpreting

a reflective surface by using high level semantic reasoning

about the scene [8]. For instance, prior knowledge about

the appearance of an urban scene would tell us that the de-

formed buildings within the mirroring sculpture in Figure 1

cannot be real buildings but only reflections.

We argue, however, that there is still much research to

be done at the feature level. We would like to be able to

answer questions such as: can we identify low-level signa-

tures that allow us segment and recognize reflective objects?

As shown by Osadchy et al. [10], specular highlights are

certainly one of those low level signatures. Specular high-

lights, however, are not always detectable and often even

completely absent from the object. Hence, they cannot be

used as a main or unique cue for recognizing specular sur-

faces.

In this work, we introduce a novel feature that we argue

can be successfully used as low-level cue for such a recogni-

tion task. We call this cue static specular flow (SSF). A SSF

cue may be identified in curved reflective surfaces in prox-

1

1-4244-1180-7/07/$25.00 ©2007 IEEE



imity of either occluding contours of the object or regions

where the difference of the two surface principal curvatures

is high. Figure 3-upper panel, shows examples of SSF. In

such regions, the reflected scene is highly deformed, and

produces consistent patterns that can be used as a signature

for specular surfaces. We propose a multi-scale approach

for automatically extracting and characterizing such SSF

cues and show that SSF allows recognizing the presence of

specular object with high classification accuracy.

Our approach requires minimal assumptions about the

surrounding scene and illumination conditions, assumes no

prior knowledge about the shape of the reflective object and

utilizes a single monocular image for the recognition task.

To the best of our knowledge, our work is the first attempt

aimed at recognizing specular objects from natural images

with such a small set of assumptions.

2. Previous Work

Very few works have attempted to classify and recog-

nize reflective materials due to the above-mentioned diffi-

culties. Osadchy et al. [10] propose a recognition scheme

based on specular highlights as a primary source of infor-

mation. In their approach, the geometry of the object re-

quires be known a priori. Highlight features are combined

with other cues, such as multiple views of the object or/and

motion. While this approach has been successful in gen-

eral, real world cases often include situations where high-

lights are absent or multiple views and motion cues are not

available. Dror et al. [3] take advantage of the statistics of

natural scenes to estimate surface reflectance. While their

approach is useful to characterize different material classes,

it requires to build statistics from the whole image, which

in turn might not be possible when the material surface is

not the dominant element in the image. Additionally, as-

sumptions on the object shape are made which limit the

application of these techniques to the general case. Roth

and Black[12] propose a technique for differentiating reflec-

tions from non-reflective textures under the assumption that

they both belong to the same surface element; the hypothe-

sis of moving observer is also required.Work on classifying

moving specular highlights is also presented by[16]. It is

also worth mentioning the work by McHenry and Ponce [9]

which tackles the equally difficult problem of recognizing

transparent surfaces. The authors introduce the interesting

idea of classifying a transparent material by comparing it

with the surrounding background. A similarity measure

based on several cues indicates the presence of the trans-

parent element. This approach, however, cannot be applied

to reflective materials as it is very unlikely for a scene and

its reflection to be available in the same image.

3. Problem Statement
We address the problem of detecting and recognizing

specular or mirror-like surfaces on natural scenes from a

a)

b)

c)

Examples of Static Specular Flow

Natural Image

Figure 2. Upper row: Examples of static specular flow. Lower

row:Regions from a natural scene. (a) local appearance of an edge

patch. (b) local appearance of a curved specular region. (c) region

of approximated uniform appearance.

single image. We wish to do so, by introducing a novel set

of features which provide a low-level signature that allows

discriminating reflective materials from the non-reflective

ones. A specular surface produces a systematic distortion of

the surrounding scene being reflected off its surface. Such

distortion depends on the object shape, the position of the

observer and the appearance of the illuminant as shown by

the differential characterization in Savarese et al. [13]. Re-

search by [14] and [5] suggest that humans take advantage

of such deformations for interpreting the shape of reflective

surfaces. By using the results in [13] and as also noticed

by Weidenbacher et al. [18], it is easy to show that there

are regions within reflective objects that produce a highly

distorted version of the reflected scene. These regions can

be identified in curved reflective surfaces in proximity of ei-

ther occluding contours of the object or regions where the

difference of the two surface principal curvatures is high.

We have called these regions static specular flows (SSF) as

here the reflected scene presents a typical pattern akin to

a flow. Thus, we argue that SSF can be used to provide a

powerful signature for recognizing reflective materials. To

the best of our knowledge, we are the first who use SSF for

recognizing specular surfaces.

The main goal of this paper is to provide tools for extract-

ing SSF from images containing reflective surfaces. The

first step is to extract regions characterized by anisotropic

patterns regardless whether these are SSF or not. Figure 3

shows three regions from a natural scene. Figure 3(a) shows

an anisotropic region where the predominant structure is an

edge. Figure 3(b) shows a SSF. Figure 3(c) is an isotropic



region of approximate uniform intensity. We propose a

multi-scale approach for identifying anisotropic regions and

discriminating them from isotropic textures. Next, we pro-

pose a new descriptor for characterizing SSF and a clas-

sifier that is able to discriminate SSF from anisotropic re-

gions that are not SSF. Finally we show that SSF can be

used for recognizing specular surfaces with high classifica-

tion accuracy. We assess the performance of our approach

with respect to a database comprising images containing re-

flective objects of various shapes, under arbitrary configu-

rations and illumination conditions.

Notice that we do not make assumptions on the object

shape as long as the object is curved enough to produce

SSF. Also, the only hypothesis on the illuminating source

(i.e., the surrounding scene) is that it must contain enough

structure so that a deformed pattern may be identified. For

instance, a scene composed of a homogeneous white back-

ground would not be able to produce any meaningful signal

on the reflective surface. Finally, our approaches uses just a

single image; thus, no additional information such as mov-

ing observers or multiple cameras are necessary.

To motivate more the use of SSF as a cue for recogni-

tion, let’s think of a classifier that is agnostic to those cues.

This naive classifier would use features extracted from the

specular surface and the scene. Since there is an ambigu-

ity between the specular object and the scene, one would

expect that a naive classifier would have close to chance

performance. We will validate this intuition experimentally

later on this paper.

Figure 3. Examples of an orientation map and a thresholded confi-

dence map. From left to right. Original image; aggregated orien-

tation map, the color indicates orientations from −π/2 in blue to

π/2 in red; the thresholded confidence map. We notice that in re-

gions with 1d structure there is agreement on the orientation of the

gradients. Notice that such agreement of orientations is coherent

with the size of the 1D structure. In the other hand neither the wall

nor the pavement have been smoothed and they present disagree-

ment in the orientations as they should. The figure is best viewed

in color and with pdf magnification.

4. Extracting Anisotropic Regions

The goal of Sections 4.1, 4.2 and 4.3 is to extract

anisotropic regions. We believe that the SSF is a special

case of such type of regions. We would like to segment

anisotropic regions where the gradients show agreement

on their orientation, for it is likely to find a SSF on such

regions. One needs to pay special attention while com-

puting the gradients to be able to capture small and large

anisotropic detail simultaneously since we have no assump-

tion on the scale of the specular surface. This might be dif-

ficult to do. Suppose that, the difference of offset of Gaus-

sians are used to compute the gradients, then one might use

bigger variances to capture large scale details. But the large

variance also accounts for some degree of smoothing. The

smoothing makes it difficult to discriminate between the

highly texture regions and anisotropic regions with small

details.

We distinguish two different scales: the scale of the

reflected details and the scale of the anisotropic regions.

Given that there is no assumption on the scene or on the

geometry of the specular object the extraction procedure

must be aware of these scales. We will return to the two-

scale issue in Section 4.2. The recovery of anisotropic re-

gions consists of the following steps: a) Extract the gra-

dient orientation at several scales; b) Compute anisotropic

regions at several scales(confidence map); c) Select scales

of the orientation maps; d) Segment the image. See figure 4

for a scheme of the anisotropic region extraction.

Figure 4. Schematic diagram of the extraction of anisotropic re-

gions. The figure illustrates the proposed procedure to obtain

highly informative regions.

4.1. Extraction of the Orientation of the Flows

We use the eigenvectors of the second moment matrix

to compute the orientation of an image in a way similar to

the work in Blobworld[1]. In [1] the second moment matrix

(2MM) is approximated by 1:

Mσ(x, y) = Gσ(x, y) ∗ (∇I)(∇I)T (1)

where Gσ is a separable binomial approximation of the

Gaussian kernel with variance σ2, I is the image and ∇
is the image gradient. The 2MM is computed using two

scales: the natural scale and the artificial scale. The first is

used to compute the gradients of the image,(∇I). The sec-

ond scale (the variance of Gσ(x, y)) defines the size of the



window used to integrate the gradients at a specific pixel.

We use both scales during the scale selection step.

At each point of the image the 2x2 matrix Mσ(x, y) is

computed. Let λ1 and λ2 be the 2 eigenvectors of Mσ ,

where λ1 > λ2. Then the orientation of the gradients on

the window used to build the 2MM is given by the orienta-

tion of λ1. We compute the orientation at every pixel and

at various window sizes. The output of this process is a

multiscale orientation map.

The relative magnitudes of the eigenvalues of the 2MM

can be used to characterize the structure of the region.

One dominating eigenvalue corresponds to a region with 1d

structure such as edges and flows; two comparably small

eigenvalues correspond to uniform regions and two large

eigenvalues correspond to regions with 2d or corner like

structures. Equation 2 defines our measure of confidence

that a region has 1d structure, where C is the confidence

that the region has a 1d structure. C is computed over the

support of Gσ , which in turn is function of the scale. This

provides some information on the size of the flow, corner

or other structure of the gradients. We use this measure to

build our confidence map.

C =
λ1 − λ2

λ1 + λ2

(2)

4.2. Scale Selection

To compute the confidence we held fixed the natural

scale while we vary the artificial scale. Our confidence mea-

sure collapses when the integration window is bigger than

the subjacent structure on the image. This step prevents the

algorithm from smoothing out regions with high detail but

with coherent orientation. The result is a set of confidence

maps that capture 1d structure at multiple scales.

The multiscale orientation maps are merged into one ag-

gregated orientation map that represents the orientation of

the dominant structure across all scales. We build this ag-

gregated orientation map from our confidence maps. We

initialize the aggregated orientation map with the orien-

tation map computed with the smallest integration scale.

Then for each scale of the confidence maps, we threshold

our confidence map to create a mask for the orientation map

at such scale. Let Ω1...j be the aggregated orientation map

from scale 1 to j, Oj the orientation map at scale j and Cτ

the confidence map after thresholding. For each successive

scale, we do Ω1...j+1 = (Ω1...j ∧ ¬Cj
τ ) ∨ (Oj ∧ Cj

τ ). Fig.

3 is an illustration of the procedure.

Since the confidence map and the orientation map are

computed using the same window size, we can view the

confidence map as a measure of how coherent a region

around a pixel is in terms of having a 1D or flow structure.

If in a bigger scale the confidence for that pixel drops below

the threshold then we should pick the gradient orientation

Figure 5. Comparison of a segmentation based on [4] and our algo-

rithm. From top to bottom: first row, original image. Second row,

shows the segmentation by [4]. We can see that the reflections

on the specular surfaces are segmented into several thin and elon-

gated segments. Third row shows segmentations produced by our

dissimilarity function. Note that the segmented regions are more

consistent. The fourth row, shows regions extracted from our seg-

mentation algorithm. For clarity, on the fourth row we show the

specular labeled regions that the classifier will see. The figure is

best viewed in color and with pdf magnification.

of the previous (smaller) scale.

The multi-scale approach adds non-local information

about how much structured a region is. This non-local infor-

mation avoids smoothing textured regions while smoothing

out the noise from anisotropic regions.

4.3. Graph Based Segmentation

Our segmentation procedure is based on the graph based

segmentation presented in [4], albeit others important meth-

ods [15] could be used. The original algorithm [4] per-

forms segmentation by constructing minimum spanning

trees where the internal dissimilarity of the trees is less

than the inter-tree dissimilarity. The original dissimilarity

measure is the Euclidean distance on RGB space. In our

case this is not the most appropriate dissimilarity measure

since we wish our segmented regions to contain SSF. Ex-

periments show that flow regions would be split in several

small segments if the segmentation were solely based on

pixel appearance.

To remedy this situation, we propose a new empirical

dissimilarity function:

Disij = (|Ci −Cj |)(‖Ai −Aj‖+ β| sin(Oi −Oj)|) (3)

The difference on orientation, appearance and confidence

is used for this dissimilarity function. Dis ij measures the



dissimilarity between pixel i and pixel j . Aj stands for the

appearance of the pixel j . We want the dissimilarity cost

to be big when the orientation of the two adjacent pixels is

orthogonal to each other, hence the term sin(O i − Oj). β
is normalization constant. The sum of both terms is mod-

ulated by the difference on the confidence measure of both

pixels. The outcome of the segmentation is a set regions

with a wide range of sizes and shapes. This is due to the

nature of the segmentation algorithm, which builds regions

by merging pixels.

Figure 4.3 shows the original image, the segmentation

based on appearance, the segmentation based on the Eq. 3

and the segmented regions. Notice that if appearance only

is used each part of the flow are segmented independently.

In order to reduce the computational cost and the com-

plexity of the modeling step, we keep the anisotropic seg-

mented regions only. We do this by intersecting each seg-

mented region with the ”thresholded” confidence map and

keeping the intersection only if there is more than 50% of

overlap.

4.4. Descriptor

In this section we build our feature vector to describe

each anisotropic region. The main issues that we need to

cope with are: i) capturing the flow-like nature of SSF; ii)

making the descriptor independent of the size of the region.

The latter is both an artifact of the segmentation and a con-

sequence of our lack of assumptions about the scene.

We can use classic texture recognition techniques to

solve both problems. Texture recognition techniques [17, 7]

based on models build out of histograms of textons have

been shown to be a powerful discriminative tool. The main

idea is to learn a ‘visual’ vocabulary (or code book) of the

texture categories and model each category as the joint dis-

tribution of these words. Likewise, we learn a ‘visual’ vo-

cabulary of the anisotropic regions and represent each of

them as a histogram of words of such vocabulary.

In the Texture recognition literature a word of the vocab-

ulary is called ‘texton’. A texton is defined as the center

of a cluster on the space of filter responses. We extend the

filter bank used by Leung et al. [7]. Leung’s original filter

bank consists of 48 filters, partitioned as follows: 2nd deriv-

ative of Gaussians at 6 orientations, 3 scales and 2 phases;

8 Laplacian of Gaussian; and 4 Gaussians. The scale of the

filters ranges between σ = 1 to σ = 10. Here we increase

the number of orientation to 18 and add a set of Gabor fil-

ters. The Gabor filters are elongated to capture the periodic

pattern of SSF. The Gabor filter bank consisted of: 18 ori-

entations, 3 scales and 3 wavelengths. The filters responses

form the 282 dimensional feature vector.

We build the descriptor of a region as follows. We begin

by convolving each image with our filter bank. For each

pixel, the outputs of the filter are stacked and clustered us-

ing the standard K-means algorithm. In practice, we sub-

sample each region for efficiency reasons. The centers of

the clusters are the textons. Second, we build a histogram

over the textons by taking the filter responses for each pixel

and computing the closest texton on filter response space.

Finally we normalize the histograms to sum up to one.

Our resulting features have high dimensionality, thus

making the clustering problematic, if the data points are not

sufficient. Thus, it is desirable to reduce the dimensionality

of the feature vector. One way to do so is to use a rotational

invariant filter bank. To achieve a rotational invariant filter

bank, we select the oriented filter responses that have the

same orientation as the local orientation with a tolerance of

30 degrees. The local orientation is computed from patches

extracted from the region. The patches are extracted by fol-

lowing the dominant orientation of the region and sampling

a patches at each step for a fixed number of steps. This

selection process achieves rotational invariance and dimen-

sionality reduction.

5. Classifying SSF

So far we have characterized anisotropic regions whether

these are SSF or not. In this section we describe how to

build models of SSF, and use them for classifying SSF re-

gions versus non-SSF regions.

5.1. Model of the Anisotropic Regions

As described in Sec. 4.4, we represent each anisotropic

region as a histogram over the learned textons. Textons are

learnt from the training set images. We model the class

of SSF anisotropic regions as the set of all the texton his-

tograms that belong to regions that contain SSF. Likewise,

anisotropic regions that do not contain SSF are modeled by

the set of texton histograms from region that do not present

SSF.

5.2. Classifier

We select boosted decision trees as our classifier. Deci-

sion tree (DT) [11] are classifiers that partition the feature

space into cuboids. Although decision trees show issues of

overfitting on noisy data, it is possible to combine several of

these threes, with a low model complexity, into a commit-

tee in order to improve classification performance. Boosting

[6] is a powerful technique for combining such classifiers.

In boosting the classifiers are trained in sequence using a

weighted form of the data. The weights force each new

classifier to focus on ‘difficult’ examples. Given the set of

histograms from SSF and non-SSF anisotropic regions, the

boosted DT learn a linear combination of shallow trees. We

run 100 iterations of boosting and set to two the maximum

depth of each DT.



Configuration 100 200 300 400

OR 80.47% 82.03% 79.77% 81.41%
O 79.00% 77.68% 79.65% 78.62%

ORS 75.08% 77.83% 76.18% 77.34%
RS 72.10% 77.83% 70.88% 71.86%

Naive 56.90% 56.46% 56.11% 53.30%
Table 1. Accuracy comparison of different feature vectors.
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Figure 6. Comparison of a naive classifier and the classifier pro-

posed. The red ROC curve refers to a naive classifier working

on appearance segmented regions and ignoring orientation infor-

mation. The blue curve refers to the performance of a classifier

exploiting the specular flow cues. Notice that the naive classifier

performs close to chance, while ours is much better.

5.3. Training set labeling

We need to build label for our anisotropic regions since

our learning is supervised. To set the ground truth we asked

a human subject to label as SSF all the regions that where

found by the automatic segmentation described in subsec-

tion 4.3. These labels are used in the learning and testing

stages of this work. We also asked the subject to outline,

as best as possible, regions that he perceived as a specular

surface. We allowed the subject to outline multiple regions

per image and there where no restriction on the shape of the

region.

5.4. Testing

In testing we follow a similar procedure as in learning.

For each image we build a compound orientation map from

a set of multiscale orientation and confidence maps. We au-

tomatically segment the image based on its orientation and

appearance. We convolve each image with our filter bank

and use the learnt vocabulary of textons to build a histogram

of textons for each anisotropic region. Finally we proceed

to classify each anisotropic region using the learnt decision

trees. We evaluate the classification result using the labeling

described above.

6. Experiments

6.1. Classification of SSF

In this section we assess the classification accuracy of

SSF and the effects of different configurations of the de-

scriptor over performances. Our dataset consists on 120

images of objects with specular surfaces. The images have

been taken indoors, outdoors at close and far distances. The

size of the images is 640 by 480 pixels. The database is di-

vided in 73 training images and 47 testing images each of

them containing several anisotropic regions to be classified

as SSF versus non-SSF. The total number of anisotropic re-

gions is approximately 5500; our classifier is learned and

tested by using all the anisotropic regions extracted from

the learning and testing images respectively. The first row

of Table 1 shows percentage performances of the classifier.

We use here the descriptor presented in Sec. 4.4 ”as is” with

respect to different sizes of the vocabulary of textons.

Additional questions we would like to answer are: would

performance be affected by the number of filter responses

used to build the descriptor? How is this classifier working

with respect to a more naive classifier which does not use

SSF cues? Since the segmented regions can have arbitrary

size, it might be possible for the representation of big region

to contain specular and non specular code words; given that

the last statement is possible, would the size of the region

play a role on the discriminative power of the learned vo-

cabulary? In the following we address these questions.

At that end, we try different configurations of our feature

vector. The base feature vector that we modify is the one

described on section 4.4. We call this feature vector RO

for being oriented and with reduced dimensionality. O is

a feature vector which has been oriented but all the filter

responses have been retained. We build the O by performing

a circular shift of the filter responses before clustering.They

are aligned according to the local orientation of the patch

from where they were sampled. ORS is similar to OR. The

main difference is that the models are learned from smaller

regions. We do this by splitting the segmented regions into

subregions. The size of the split subregions is proportional

to the size of the original region. If a region is too small it

is left un-split. The naive classifier differs in two points to

our classifier. First, the models are built from regions that

have being segmented using appearance information only.

Second, it ignores any information regarding the anisotropy

of the region or any local orientation.

Table 1 summarizes our findings. First, notice that a

naive classifier can only perform slightly better than chance.

Also, notice there is no sharing of code words on big regions

since both OR and O have better performance than ORS

and RS across vocabulary sizes. As expected, the orienta-

tion of the feature vector and the dimensionality reduction

improves the performance of the classifier. When we re-

duce the dimensionality of the O feature vector (O→OR)

the performance increases. The performance decreases

when we do not use the information of the local orientation

(ORS→RS).

Figure 6 shows the ROCs curves of the naive classifier



100 200 300 400

Error 4.48% 9.42% 11.23% 11.38%
Table 2. Examples of classified images from the control dataset

100 200 300 400

Accuracy 74.39% 88.89% 85.37% 85.19%
Table 3. Accuracy results of the simple classifier of images con-

taining specular surfaces.

and our classifier. The red curve shows the performance of

the naive classifier. Notice that this classifier has close to

chance performance. The blue curve plots the performance

of a classifier using OR as feature vector and a vocabulary

of 400 code words.

Figure 8 shows the ROC curves of a classifier using the

oriented and reduced feature vector (OR) across several vo-

cabulary sizes. A final control experiment is carried on an

independent set of 57 images. In this set there are no spec-

ular objects. The images tend to have a significant number

of edges. The goal of this control experiment is to eval-

uate how well the algorithm performs in the presence of

anisotropic regions (edges) that are non-SSF. Table 2 sum-

marizes the results of this experiment. Figure 9 shows some

examples of classified images from the control dataset.

6.2. Recognition of Specular Objects

In order to assess the value of SSF as cue for recognizing

specular objects we design a simple classifier to recognize

the presence of a specular surface in a image.

We define a positive and negative test sets. The posi-

tive test set consists of 47 images where a specular object is

present. The negative test set consists of 50 images without

any specular object. For each image we define a score. The

score of a positive image is given by ASSF /(ASSF + As);
where, ASSF is the total area occupied by SSF regions

within the specular object and As the area of occupied by

the spe cular object in the image; this ratio gives the percent-

age of SSF detected within the specular object; The score of

a negative image is given by ASSF /(ASSF + AI); where,

ASSF is the total area occupied by SSF regions within the

negative image and AI the area occupied by the image; this

ratio gives the percentage of SSF detected in the negative

image. Given the score Si of a positive or negative image,

we classify it as specular if Si > θ, and as non-specular,

otherwise; θ is some learnt threshold. We learn θ by using a

validation set composed of 30 images taken aside from the

testing set.

The results of the experiment are summarized in table 3

and in figure 7. Notice that SSF appear to be a sound cue

for recognizing specular objects.
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Figure 7. ROC curve illustrating the performance of the classifier

of specular objects.
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Figure 8. Effect of the codebook size on our classifier. ROC curve

illustrating the classification performance using the OR feature

vector across a range of codebooks sizes.

Figure 9. Examples of classified images from the control dataset.

Notice that although there are several edge structures they are clas-

sified as non-specular.

7. Conclusions and future work

We have introduced a novel low-level feature for recog-

nizing reflective objects from natural images. We have

called this feature static specular flow (SSF) and shown that

it can be used as a robust signature for identifying the pres-

ence of specular objects. We have proposed a multi-scale

characterization of SSF and have shown that we can clas-



Figure 10. Recognition results. The classified regions have been

outlined on the images. In blue color we outline the regions that

the classifier and the human subjects have labeled as specular. On

cyan we show the regions that the classifier has labeled as specular

but the human subjects have labeled as non-specular. In red color

we show the regions that the classifier and the human have labeled

as non-specular. In magenta color we show the regions where the

classifier has labeled a region as non-specular while the subjects

have labeled it as a specular region. The columns have been or-

ganized in the following way: The first and third column present

the regions that have been classified by our algorithm as specular

and non-specular, respectively. The second column shows the mis-

classifications according to the human labels of a specular region.

The fourth column shows the misclassifications according to the

human labels of a non-specular region. Note that in the figures in

the first and third row we classify correctly the specular surface

in the presence of a textured background. Also note in the figure

in the second and fifth row that we correctly detect regions on the

occluding contours of the object. One could use those regions to

outline the object. The figure is best viewed in color and with pdf

magnification.

sify SSF regions versus other anisotropic regions with high

accuracy. We have demonstrated that SSF can be used to

accurately discriminate specular objects from non-specular

ones. We have also shown that a naive approach (which

does not take advantage of SSF) would yield a much lower

classification rate.

We have just tap into a set of possible new features that

could be used to characterize specular objects. The issue

of localizing a specular surface given the detected SSF is

subject of our future investigation. Additional work is also

needed in order to integrate SSF with other cues as well as

interpret a reflective surface at different level of abstraction.
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