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Abstract

This paper introduces a variational formulation for im-

age denoising based on a quadratic function over kernels of

variable bandwidth. These kernels are scale adaptive and

reflect spatial and photometric similarities between pixels.

The bandwidth of the kernels is observation-dependent to-

wards improving the accuracy of the reconstruction process

and is constrained to be locally smooth. We analyze the evo-

lution of the noise model form the RAW space to the RGB

one, by propagating it over the image formation process.

The experimental results demonstrate that the use of a vari-

able bandwidth approach and an image intensity dependent

noise variance ensures better restoration quality.

1. Introduction

Denoising is still an open problem in image processing.

Its great challenge is dealing with rich content like texture.

Traditional techniques rely on a simple noise model like

the additive white Gaussian noise with constant variance

(AWGN), and often assume constant scale. Both assump-

tions are quite unrealistic and often violated in practice, in

particular when observing natural images with various con-

tent.

State of the art techniques in image enhancement re-

fer to local methods, image decomposition in orthogonal

spaces, partial differential equations as well as complex

mathematical models. Filters and morphological operators

are the most prominent local approaches [17, 25, 27, 2, 3]

and exploit homogeneity of the image through convolution.

Global methods represent images through a set of invert-

ible transformations of an orthogonal basis [20, 7, 16] or

a specific designed dictionary [8]. Then noise is removed

through the modification of the coefficients with limited im-

portance in the reconstruction process.

Partial differential equations methods incorporate more

structure in the denoising process where the noise-free im-

ages correspond to the steady state solution of the PDE.

Global approaches based on the minimization of objective

functions and in particular the total variation [22, 24, 14]

are efficient tools in the image enhancement field. Never-

theless, these approaches are based on a local smoothness

hypothesis and fail to preserve texture. In order to address

this problem, separating structure from texture is the most

prominent technique to deal with such limitation and has

gained significant attention in the past years [1, 26, 21]. In

spite of their performance, these methods fail to separate

noise from texture. In fact, like noise, texture is an oscil-

latory pattern. Furthermore, these models are complex and

rely on a data fidelity term that cannot be computed directly

and can be only approximated.

In this paper, we propose a variational formulation where

the regularization term is based on the weighted laplacian of

the image. The underlying image model introduces linear

relations between pixels with interactions that are governed

by weights reflecting photometric similarities and geomet-

ric distances. The level of interaction is spatially varying

through a variable bandwidth spatial kernel that adapts the

regularization neighborhood to the texture scale. Parallel to

that, we demonstrate that the noise model is different from

the AWGN and its explicit recovery requires knowledge of

the entire image conversion chain. To overcome this lim-

itation, we learn the variation of noise through calibration

patterns formed with homogeneous square patches and use

this model towards more realistic denoising.

The paper is organized as the following: the second sec-

tion is devoted to the introduction of denoising model. Next,

we discuss the propagation of a linear noise model through

the image conversion chain leading to a more realistic noise

assumption. In section 4, we address the problem of image

denoising in the RGB space. Discussion and conclusions

are part of the last section.

2. Variational Image Denoising

Total variation minimization has been a dominant for-

mulation for image denoising. One can find in the literature

several variants of the original model with respect to the

data fidelity and the regularization components. Variational

formulation of the NLmean and the bilateral filter [15] was
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recently introduced, but the minimized functional are not

convex. In [9], a tractable quadratic formulation was pro-

posed that is based on the assumption that the underlying

image model is piecewise constant for similar pixels. Scale

selection has not been considered in these methods. In this

section we will introduce a new regularization functional

that addresses this limitation.

2.1. Model Introduction

Let us assume that the neighborhood of a pixel x is the

entire image domain Ω. This implies that all pixels of the

image domain can be used to reconstruct the original signal

at a given pixel. The reconstruction is performed through

the minimization of an energy function composed of a reg-

ularization term and a fidelity to data constraint. The regu-

larization term is defined as:

Ereg(I) =

Z

Ω

„»

1

Z(x)

Z

Ω

w(x,y)I(y)dy

–

− I(x)

«2

dx (1)

Where, w(x,y) are symmetric weights that reflect the

similarity between neighboring pixels and Z(x) =
∫

Ω
w(x,y)dy is a normalization factor. The regulariza-

tion term that we consider in the present model corresponds

to the integration over the image domain of the squared

weighted laplacian in each pixel. This model suggests that a

pixel can be approximated by a linear combination of other

image pixels and we think that such model is more accu-

rate then a piecewise constant one. A similar regularization

form was recently considered in [6] without any local con-

straints in the context of image deblurring.

The definition of similarity refers to photometric resem-

blance and spatial vicinity between pixels. The weight ex-

pression considered in our paper is

w(x,y) = exp

 

−
d(f(x), f(y))2

2σ2

ph

!

exp

„

−
‖x − y‖2

2σ2
s

«

(2)

The first term d(f(x), f(y)), where f is the noisy observed

image, reflects the photometric distance between the con-

tent observed in these pixels. One possible expression for

this term is the L2 distance between patches centered at x

and y. The choice of this distance is motivated by its ro-

bustness to noise. The second term represents the geomet-

ric Euclidean distance between them in the image domain.

The parameters σph and σs are variables that determine the

bandwidth of the photometric kernel and the spatial one. We

will focus in the following section on the importance of the

selection of the spatial bandwidth.

As far as the fidelity constraint is concerned it insures

that the restored image is close to the observed one. The in-

troduction of a constraint on the residual image is a popular

tool [19, 10] to satisfy such a demand.
Z

Ω

(f(x) − I(x))2 dx = σ
2

n (3)

where σn is the noise standard deviation, f is the observed

image and I is the restored one. Such a constraint has to

be satisfied during the reconstruction process. It can be ex-

pressed in the form of a distance between reconstruction

and observation leading to the following objective function

E(I) = λ

∫

Ω

(f(x) − I(x))
2
dx

+

∫

Ω

([

1

Z(x)

∫

Ω

w(x,y)I(y)dy

]

− I(x)

)2

dx

(4)

with λ being a coefficient that determines the importance of

the fidelity to data component in the energy.

The energy function is quadratic, thus convex and reaches a

unique minimum. Starting from the initial condition I0 =
f , we perform a gradient descent as follows

It+1 = It − dt∇E (5)

where the derivative of the objective function with respect

to the image is;

∇E = 2

Z

Ω

„Z

Ω

w(z,y)

Z(z)
I(y)dy − I(z)

«

w(z, x)

Z(z)
dz

+2

„

I(x)−

Z

Ω

w(x,y)

Z(x)
I(y)dy

«

+ 2λ(I(x) − f(x))

(6)

In order to enforce the constraint obtained from the assump-

tion on the noise model, an iterative process is used that al-

ternates between the two conditions. Starting from a fixed

value λ = λ0, and when the energy reaches its minimum

we have:

2λ(I − f) + ∇Ereg = 0 (7)

where ∇Ereg refers to the first two terms in the energy gra-

dient expression (6). Then we can write

2λ(I − f)T (I − f) + (I − f)T∇Ereg = 0. (8)

Knowing that (I − f)T (I − f) = σ2
n , λ can be updated

according to:

λ =
(f − I)T∇Ereg

2σ2
n

(9)

Once λ is updated, we restart the minimization process with

the new value of λ until convergence.

2.2. Bandwidth Selection

Our model involves weights that reflect the similarity be-

tween pixels and the interaction between them during the

process of image denoising. The selection of the spatial

bandwidth is crucial in the regularization process. In [12],

it has been proven that the choice of the convolution ker-

nel bandwidth is important for the accuracy of the intensity

estimation in the case of the NLmean algorithm [5]. The in-

crease of the kernel size reduces the variance of the estima-

tor while increasing its bias. The spatial kernel bandwidth



needs to be adapted to each pixel in the image in order to ob-

tain an optimal balance between precision and good match

to the actual pixel intensity. Therefore, minimizing the cost

function (4) with respect to a pixel dependent spatial band-

width σs(x) results in a more adapted selection. Under the

assumption that image content at the very local scale is co-

herent, one can also consider that the spatial bandwidth is

also regular and smooth. Therefore, the use of a smooth-

ness term (the L2 norm of the gradient of σs(x)) during the

estimation of the bandwidth σs(x) is a natural choice. Thus

we aim to minimize the following objective function:

E(I, σs) =

λ

Z

Ω

(f(x) − I(x))2 dx + µ

Z

Ω

‖∇σs(x)‖2
dx

+

Z

Ω

„»

1

Z(x)

Z

Ω

w(x,y, σs(x))I(y)dy

–

− I(x)

«2

dx

(10)

The minimum of this cost function is computed using the

steepest gradient descent according to

σt+1
s = σt

s − dt
∂E

∂σs(x)
(11)

with the derivatives of the objective function being given by

∂E

∂σs(x)
= 2µ∆σs+

2

„

1

Z(x)

Z

Ω

w(x,y)I(y)dy− I(x)

«

G(x)

(12)

with G(x) being,

=
∂

∂σs(x)

»

1

Z(x)

Z

Ω

w(x,y, σs)I(y)dy − I(x)

–

=

ˆR

Ω
‖x − y‖2

w(x,y)I(y)dy
˜ ˆR

Ω
w(x,y, σs)dy

˜

σ3
s

ˆR

Ω
w(x,y, σs)dy

˜2

−

ˆR

Ω
w(x,y)I(y)dy

˜ ˆR

Ω
‖x − y‖2

w(x,y, σs)dy
˜

σ3
s

ˆR

Ω
w(x,y, σs)dy

˜2

(13)

Image denoising and bandwidth selection are addressed in

an iterative fashion through alternating the spatial band-

width update and minimization of the cost function (4). An

example of bandwidth selection is shown in [Fig.(1)] where

a certain qualitative interpretation regarding the behavior of

the process can be extracted. Scale selection in edges and

texture regions corresponds to lower values than smooth ho-

mogeneous regions, which is a natural outcome.

2.3. Experimental Validation

One can now use the theoretical framework introduced in

the previous section for image enhancement. This method

is based on a total variation minimization with a regular-

ization function based on variable bandwidth kernel. To-

ward objective validation of our method, we have used nat-

ural images corrupted by a synthetic Gaussian noise σn =

(a) (b)
Figure 1. (a) Original image (b) the bandwidth value associated to

it

{10, 20}. We compared our approach to well known filter-

ing techniques such as unsupervised based patch regulariza-

tion [12], the bilateral filter [25], the Non Local Mean ap-

proach [5], the total variation (TV) [24] and the anisotropic

diffusion (AD) [23] using an edge stopping function of the

type (1 + |∇I|
2
/K2)−1. The parameters of the considered

methods were adjusted to get a good balance between tex-

ture preserving and noise suppression as well as the highest

possible Peak Signal to Noise Ratio (PSNR) values. As Far

as our method is concerned, we restricted the neighborhood

size to a 15 × 15 window instead of the whole image do-

main to decrease computation time. The initial value of λ is

0.02. The photometric bandwidth σph is fixed according to

the noise level ( σph=15 for σn=20 and σph=8 for σn=10).
Regarding quantitative validation, we used the PSNR cri-

terion defined by

PSNR = 10log10

2552

MSE
MSE =

1

|Ω|

X

x∈Ω

(I0(x) − I(x))2

where I0 is the noise-free ideal image and I its estimation

by the denoising process.

In table [1], we present experimental validation results

for the different methods on a set of images corrupted by ad-

ditive Gaussian noise. PSNR values show that our restora-

tion method as well as the one proposed in [12] outperforms

all the other ones. These two methods are based on a vari-

able spatial bandwidth. Therefore, one can conclude that a

better estimation of intensity is closely related to the better

selection of bandwidth.

Concerning subjective evaluation criteria, we consider

the whole aspect of the image in terms of noise suppres-

sion and small details preservation. Visual comparison re-

sults of denoising [Fig.(2), (3)] show that in spite of the

high value of PSNR, the method proposed in [12] fails to

preserve small details. One can see in the residual image

[Fig.(3)] that our residual component is close to the Gaus-

sian noise and free of image details contrarily to the other

method. In [Fig.(4)] we can see another result of restora-

tion where the variable bandwidth NLmean method results

in an oversmoothed image while we keep some amount of

noise in our denoised image. Thus, the selection of one of

these two methods is dependent on the use of the resulting

images.

Despite the promising results obtained from our ap-



Barbara Boat Fingerprint House Lena Baboon Peppers

our Method 30.46 29.94 27.65 32.34 32.12 26.02 30.67

KB06 [12] 30.37 30.12 28.16 32.90 32.64 26.29 30.59

NLmean 28.78 28.92 26.45 30.86 31.13 25.18 29.05

TV 26.18 27.72 26.08 28.43 28.45 25.18 28.51

AD 26.45 28.06 24.81 29.41 29.27 23.68 -

Bilateral 26.75 27.82 24.12 29.18 29.28 24.95 28.88

Table 1. PSNR values for denoised images (The PSNR of the image corrupted by Gaussian noise of std=20 is equal to 22.15)

(a) (b) (c)
Figure 2. (a) Noisy image corrupted by white noise (b) restored

image using KB06 [12] (c) restored one using our method

(a) (b)
Figure 3. The difference between the noisy image and the restored

one (a) using KB06 [12] (b) using our Method

(a) (b) (c)
Figure 4. (a) Original image (b) restored image using KB06 [12]

(c) restored one using our method

proach, one has to address a major limitation that is the

noise model selection. Gaussian additive noise models with

fixed variance are often considered in the literature for the

RGB space. In the next section, we aim to study the noise

model evolution during the conversion from the RAW im-

age, composed of Bayer pattern, to the final RGB one.

3. Noise Properties in RGB Image

Our approach is motivated by the fact that in the RAW

space one can see a dependency between the noise model

and the observation. In the image denoising literature, most

of the approaches rely on the assumption of an additive

white noise with fixed standard deviation. Our aim is to

demonstrate that such an assumption is far from being real-

istic and also to consider a noise model that is adequate for

natural images.

The RAW image is the one obtained from the impact of

light photons on the camera sensor. This image is corrupted

by noise due to three perturbation sources [28], the pho-

ton noise, the dark noise and the spatial noise. The photon

noise refers to the fluctuation of the number of photons that

reach the pixel. The Noise variance is a linear function of

the photons number and thus linear with the pixel intensity.

The dark noise is generated by the leakage current and in-

dependent of the pixel intensity. The spatial noise is related

to the fact that pixels are not perfectly similar and behave

in a different way. This component has a quadratic depen-

dency on the pixel intensity. Under all these considerations,

the noise model can be approximated with a Gaussian noise

with variance

σ2
n(I) = αI2 + βI + γ (14)

The conversion of the RAW values to the RGB space is

obtained through a processing chain. Such a procedure

consists of three major steps; (i) white balance correction,

(ii) interpolation/demosaicing, (iii) color adjustment and

Gamma correction.

Noise Propagation & White Balance

Such a process consists in multiplying each pixel in the

Bayer pattern by a constant coefficient to homogenize inten-

sity in gray regions. The output image noted wI is defined

as

wIR = αrIR, wIG = αgIG, wIB = αbIB (15)

It is important to note that before white balance, the vari-

ance does only depend on pixel intensity and not on pixel

color. In other words, a green pixel, a red or a blue one will

have the same noise variance as long as their intensity is the

same. After white balance this is no longer the case and we

have the following relation.

σn(wIc)
2 = α

2

cσn(Ic)
2

where c ∈ {R, G, B} (16)



Noise Propagation & Demosaicing

The demosaicing step consists in recovering the missing

color information for each pixel [13, 4]. If we consider the

example of a green pixel, one has to find the corresponding

red and blue intensities. A very basic way is to perform a

linear interpolation using neighboring pixels.

dIR(x, y) =
wIR(x − 1, y) + wIR(x + 1, y)

2

dIB(x, y) =
wIB(x, y − 1) + wIB(x, y + 1)

2

(17)

where dI is the new obtained image after interpolation. In

this particular case and if we suppose that wIR(x− 1, y) ≈
wIR(x + 1, y) we have

σ2
n(dIR(x, y)) ≈

σ2
n(wIR(x − 1, y))

2
(18)

One can notice from expression (18) that the variance of

an interpolated pixel is the half of the variance of a pixel

whose intensity was measured by the sensor. This example

shows that the noise variance depends on the pixel’s inten-

sity, color and position.

Noise Propagation & Color

The color transformation is applied to the image in order to

obtain a color rendering close to the photographed scene.

This transformation is linear and has the following form

MC · dI = cI,

dI = (dIR, dIG, dIB)T
, cI = (cIR, cIG, cIB)T

(19)

where MC is 3×3 color matrix transformation and dI is the

intensity vector after demosaicing. The covariance matrix

associated to the noise after this transformation is

σ2
n(cI) = MC · Σ2

n(dI) · MCT (20)

Where Σ2
n(dI) is the diagonal matrix with σ2

n(dIR),
σ2

n(dIG), σ2
n(dIB) being its coefficients.

This expression suggests that color transformation intro-

duces interchannel correlation between noise components.

The final processing step is the Gamma correction to map

the histogram of the image and enhance the contrast mainly

in dark regions. This transformation is a non linear opera-

tion which makes noise modeling more complex.

Through our description of a very basic image conver-

sion chain, we were able to demonstrate that the noise

model differs significantly from the commonly used white

Gaussian noise with a fixed variance. So, there is a strong

interest in performing the process on the RAW space where

explicit, reasonable and realistic models can be considered.

Nevertheless, in some situations one does not have access

to these information and has only the RGB image with no

knowledge of the transformation process.

(a) (b)
Figure 5. (a) Macbeth Color Checkers (b) Curve corresponding to

the evolution of standard deviation of the noise with respect to the

intensity for each channel Red, Green and Blue

4. Denoising RGB Images

Noise model estimation from images has been an open

problem for the past two decades. Two techniques are

mostly present in the literature, the use of theoretical mod-

els (like white noise) which is dominant and the inference

of the model from the images [18, 11]. For example in [18],

the authors introduce a method to estimate the noise model

and its variation with pixel intensity. This model relies on

a learning step using many camera response functions. We

propose an alternative approach that assumes a rather weak

calibration stage of the camera. The process consists in

shooting a calibration pattern (Macbeth Color Checkers),

an image that consists of rectangular homogeneous regions

with various colors and intensities. Then, for each calibra-

tion patch we associate a noise variance. This variance can

be approximated by the image variance inside the patch.

The calibration image [Fig.(5)] is composed of 24 patches

corresponding to 24 different intensities for each channel.

An interpolation is performed to derive the missing noise

variance relative to all possible intensity values in the range

[0..255]. We can see the obtained empirical curve that rep-

resents the variation of noise variance for each channel for

the Canon 10D digital camera in [Fig.(5)]. It is important

to point out that our noise estimation method requires only

knowledge about shooting conditions which makes it more

flexible with respect to the camera model.

Such empirical and non-parametric noise models can

now be used to provide a constraint in the image reconstruc-

tion process.

Ereg(I, σs) = µ

Z

Ω

‖∇σs(x)‖2
dx

+

Z

Ω

„»

1

Z(x)

Z

Ω

w(x,y, σs(x))I(y)dy

–

− I(x)

«2

dx

(21)

subject to the constraint

∫

Γ(GLi)

(f(x) − GLi)
2dx = σ2

n(GLi)

Where GLi is the gray level that ranges between {0..255}
and Γ(GLi) is the level line of the image I associated to

the intensity GLi. The update of the parameters λi is then



(a) (b) (c)
Figure 7. Difference between the noisy image and the restored one

using (a) our method with fixed noise variance σ2
n = 4 (b) Image

restored using the NLmean algorithm (c) Image restored using our

method with variable noise variance

performed according to

λi =

∫

x∈Γ(GLi)
(f(x) − GLi)∇Ereg(x)dx

2σ2
n(GLi)

(22)

One can notice here that the fidelity to data term is different

for each intensity. Furthermore, it is inversely proportional

to the noise standard deviation, which means that each level

line in the image is processed in a different manner accord-

ing to the corresponding noise intensity.

4.1. Validation

In order to evaluate the performance of our method, we

have considered several examples of noisy image patches

relative to different cameras. We compared the quality of

the restoration provided by the NLmean algorithm and our

algorithm in case of variable noise variance and fixed noise

variance. The parameters of each method were set to sup-

press the maximum amount of noise while preserving de-

tails and texture. For RGB images, we must point out that

each channel is denoised separately using the same parame-

ters for the three channels. Nevertheless, in the case of vari-

able noise variance, we considered a different noise curve

for each channel. In figure [Fig.(6), (7)], we can see that for

the denoising approaches based on a fixed noise parameter

the white texture is oversmoothed and this is shown by the

details present in the residual image. Our proposed method

relies on a variable data term coefficient, where we use a

high fidelity term in the white region and a small one in

the dark regions. This behavior is implied by equation (22)

where the value of λi is inversely proportional to the noise

standard deviation. The same conclusion holds for the ex-

ample shown in figure [Fig.(8),(9)] with a different Camera

(Nikon D70). We notice that with variable noise variance

the texture is preserved in the light colored regions. This

confirms that a better denoising must take into account the

evolution of noise with image intensity.

5. Discussion

In this paper we have proposed a novel technique for im-

age denoising. Our main contribution consists of defining a

(a) (b) (c)
Figure 9. Difference between the noisy image and the restored one

using (a) our method with fixed noise variance σ2
n = 5 (b) Image

restored using the NLmean algorithm (c) Image restored using our

method with variable noise variance

more realistic image model, an automatic bandwidth selec-

tion process and more realistic noise assumptions. We have

demonstrated the potentials of the method on synthetic and

real noise. Our method has outperformed most of the exist-

ing state of the art methods.
Better bandwidth selection is a critical step in our ap-

proach. The process incurs a bias due to the initial condition
for the bandwidth selection. Therefore, we aim to introduce
some notions of classification between texture and flat re-
gions. Such classification could be either used to improve
the initial conditions on the bandwidth selection or intro-
duce a more appropriate objective function component that
takes into account this classification. As far as it concerns
the image model, we have considered linear interpolation.
The use of non-linear models would increase complexity
but in some sense could improve the model performance
in particular when modeling complex structures like micro-
texture. A future step will be the use of image adapted dic-
tionaries towards better definition of the photometric dis-
tance between pixels.
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