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Abstract

Using an imaging system in which the image plane can
be tilted with respect to the optical axis of the lens, the im-
age of a large-scale scene that appears to be a miniature
to human eyes can be captured. This phenomenon suggests
that the image contains information regarding the scale of
the scene and that human vision can extract this informa-
tion and recognize the scene scale from a single image. In
this study, we consider how human vision can perform this
single-view scale estimation. Although it is obvious that the
existence of defocus blur in the image that simulates a shal-
low DOF plays an essential role in the scale estimation, we
propose that this alone is not sufficient to explain the es-
timtation mechanism. By incorporating a few assumptions,
we theoretically show that scale estimation is made possi-
ble when (1) the 3D structure of the scene can be recovered
from the image and furthermore, (2) the structure is com-
bined with the defocus blur. Further, we present a simple
algorithm for scale recognition and demonstrate its work-
ing using a real image.

1. Introduction

Figure 1 shows images of an actual scenery captured by
a special image-capturing method. As shown here, all these
images exhibit a strong defocus blur that (appears to) cor-
responds to their depth of field (DOF); they seem to have
a shallow DOF. Probably owing to the existence of this de-
focus blur, these images appear to the eyes of the viewer
as miniature scenes although the scenes are real. That is,
the viewers (wrongly) recognize the scale of the scene to be
very small.

These images were captured by an imaging system in
which the image plane can be tilted. For example, by using
a tilt lens, the image plane can be tilted with respect to the
optical axis of the lens, as shown in Fig.2. By using this type
of imaging systems for a scene that will be entirely in focus

if an ordinary imaging system is used, a part of the image
can be redndered out of focus. In the images Fig.1, by using
this technique, the defocus blur that would have emerged
if the scenes had been miniatures is artificially reproduced.
There are several photographers [2, 4] who are well-known
for using this technique.

In this paper, we discuss the fact that the human visual
system recognizes the (small) scale of a scene based on only
a single image, such as those in Fig.1. It is obvious with
these images that the apparent defocus blur that simulates
a shallow DOF plays a central role in this recognition pro-
cess. Further, taking into consideration that the DOF is in-
versely proportional to the distance from the camera to the
scene, it seems that the mechanism of the scale recognition
is completely explained. (Since the DOF is proportional to
the lens aperture as well, the knowledge of the lens aper-
ture will also be necessary for the explanation.) However,
a shallow DOF does not necessarily provide an impression
of the scene scale; an example is shown in Fig.3. Unlike
for the images shown in Fig.1, we do not seem to be able
to recognize the scale of the scene. Moreover, the scene in
the right image with a shallower DOF does not appear to
be smaller than the scene in the left image. Therefore, it is
evident that the DOF alone does not enable scale estimation
in the human visual system. In what follows, we consider
the mechanism involved in scene scale estimation.

In Section 2, we analyze the defocus blur generated by
an imaging system with a tilted image plane. Based on the
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Figure 2. A picture of a tilt lens attached to a camera and its optical
diagram.
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Figure 1. Images of real scenes that appear to be miniature scenes, which are captured by an imaging system with a tilted image plane.

Figure 3. Examples of images with shallow depth of field (DOF),
which are synthetically generated using scene depth data [7]. The
right image has shallower DOF than the left image. These do not
give us any impression on the scene scale.

result, in Section 3, we discuss how the scene scale can be
estimated and present an algorithm for scale estimation. In
Section 4, we demonstrate how the algorithm actually func-
tions using one of the images in Fig.1. Section 5 concludes
this paper.

2. Imaging systems and defocus blurs

We start with modelling the defocus blur generated by
a tilted image plane for an infinitely distant scene. Then,
we show that the defocus blur is mostly identical to that
generated by an ordinary imaging system for a planar scene
that is close to the imaging system.

2.1. Defocus blur generated by a tilted image plane

Assume an imaging system as shown in Fig.4 whose fo-
cus is on a planar surface at a certain distance from the lens.
Assume that the image plane is tilted about the x axis (per-
pendicular to the paper) by an angle φwhile maintaining the
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Figure 4. Defocus blur generated in the imaging system with a
tilted image plane.

focus on the planar surface at the image center. As a result,
defocus blur will emerge at off-center (y � 0) image points.
We denote the size of the blur by d at an image height y.
Considering the similarity relation between the two trian-
gles sharing P as the common vertex (the base of one trian-
gle is D and that of the other is approximately d cos φ), we
have

d cos φ
y sin φ

≈ D
v′
. (1)

The approximation (≈) holds when φ is small. We may as-
sume it to be small since the tilt φ of the image plane is
usually small. From this, we have

d ≈ D
tan φ

v′
y. (2)

Strictly, the blur at image points off the paper (i.e., the image
at x � 0) will have shapes different from that of the blur at
x = 0, which is considered here. Since we are interested
only in the order of the blur size and the blur sizes at these
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Figure 5. Defocus blur generated by an ordinary imaging system
for a planar scene

points actually have the same order, we do not consider the
difference in what follows.

2.2. Natural defocus blur of a planar scene

Assume that an ordinary camera with a zero-tilt image
plane captures an image of an oblique planar scene that
makes an angle θ with the lens (and the image plane), as
shown in Fig.5. The focus on the optical axis is assumed
to be on the planar surface at a distance u′ along the optical
axis. In other words, the resulting image of the planar scene
is focused only along the x axis. For the image points off
the x axis, defocus blur emerges since their focal points are
off the image plane due to the tilt of the plane.

For this imaging system, the size d of the defocus blur at
an image height y is given by

d =
D|v − v′|

v
. (3)

By denoting the focal length of the lens as f , from the Gauss
rule, we have

1
u
+

1
v
=

1
u′
+

1
v′
=

1
f
. (4)

From the similarity relation of the two triangles sharing the
optical center O as a common vertex, we have

u − u′

tan θ
· 1

u
=

y
v′
. (5)

The elimination of v and v′ from Eq.(3) using these equa-
tions yields

d = D
tan θ

u′
y. (6)

2.3. Comparison between the two defocus blurs

Comparing Eq.(2), the artificial defocus blur created by
the tilted image plane, with Eq.(6), which provides the nat-
ural blur of the planar scene, it can be seen that both share
the property that d is proportional to the lens diameter D and
the image height y; the only difference is in their proportion
coefficients. In the former, it is tan φ/v′, i.e., the tangent of

the angle of the image plane divided by the distance from
the image plane to the optical center, whereas in the latter it
is tan θ/u′, i.e., the tangent of the angle of the plane divided
by the distance to the plane. From this, we conclude the
following:

Result 1. The natural defocus blur generated by an ordi-
nary imaging system for a tilted planar scene (that is prox-
imal to the imaging system) can be reproduced by the de-
focus blur generated on an image (of an infinitely distant
scene) that is captured using an imaging system with a tilted
image plane.

It should be noted that in the imaging system with the
tilted image plane, the natural blur associated with the DOF
of the scene can coexist, depending on the setup of the
imaging system. In such a case, the final blur is given by
the sum (convolution) of the natural blur and the blur due to
the tilt of the image plane. However, if the image has a deep
DOF, for example, when the scene is sufficiently distant,
then nly the blur due to the tilt of the image plane is found
to exist. This is the case with regard to the images shown
in Fig.1; the scenes are distant from the camera and thus
their DOFs are deep. Therefore, the defocus blur emerging
in these images precisely reproduces the natural blur that
would have been generated for a planar scene. Since the
scenes are approximately planar, the defocus blur simulates
the DOF of these images. It is evident that this is one of
the most important factors in the scale recognition by the
human vision for the images shown in Fig.1.

It should also be noted that, other than the defocus blur,
there is a difference between the images taken using a tilted
image plane and those taken using an ordinary imaging sys-
tem; the former will have a larger magnification ratio in the
tilted direction (i.e., the direction of the y axis). That is, the
image captured by a tilted image plane has a different as-
pect ratio from that of the image captured using an ordinary
imaging system. However, as mentioned earlier, the tilt an-
gle φ of the image plane is usually small; hence, we may
neglect this.

3. Algorithm for estimating scale of a planar
scene

In this section, based on the analysis in the last section,
we discuss the mechanisms for estimating the scale of a
scene from a single image.

3.1. Problem formulation

We begin with the formulation of the problem. Since the
imaging system with a tilted image plane simulates the de-
focus blur of planar scenes, for the moment, we restrict our
attention to planar scenes. As derived in Eq.(6), the defocus
blur d at image height y is proportional to the distance y to



the line in focus (the x axis). By denoting the proportion
coefficient by α ≡ d/y, we have

α

(
=

d
y

)
=

D
u′

tan θ. (7)

We introduce the following assumption.

Assumption 1. The proportion coefficient α can be esti-
mated from the image.

We will discuss the validity of this assumption in the next
section. Under this assumption, α is a known parameter in
Eq.(7), and there are three unknowns on the right hand side
of the equation: the lens diameter D, the plane angle θ, and
the distance u′ from the lens to (a particular point of) the
scene. Since the camera distance u′ is directly related to the
scene scale, it is sufficient to be able to determine u′. Thus,
we consider the determination of u′. However, we have one
equation and three unknowns; hence, it is impossible to de-
termine u′.

Further, we introduce the following assumptions.

Assumption 2. The lens diameter D is known (Or at least
its approximate range is known).

Assumption 3. The angle θ of the plane can be (geomet-
rically) recovered from the image itself (Or equivalently,
some prior knowledge that makes this possible is available).

Assumption 2 might be somewhat too strong an assump-
tion if it implies that its exact value should be known, since
the lens aperture is variable in most imaging systems includ-
ing our eyes; thus, we cannot know this value in advance.
However, it is possible to assume a range of D values in-
stead of a single value.

Regarding Assumption 3, a variety of methods can be
used based on the target image and the prior knowledge
available. We present below a simple method that is based
on classical vision geometry.

3.2. Plane angle estimation: single-view 3D recon-
struction

Since we do not have the camera intrinsics, we must esti-
mate some of them from the image. Considering the nature
of the problem considered here, we may assume that the
focal length (precisely the distance v′ from the lens optical
center to the image plane) is the only unknown parameter
among the camera intrinsics. In other words, we may as-
sume that the skew is 0, the aspect ratio is 1, and the princi-
pal point coincides with the center of the image.

Further, Assumption 3 will be met, for example, when
the vanishing line of the target plane can be identified on
the image and v′ can be estimated as follows. Let l be the
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Figure 6. Geometry of the target plane and its vanishing line.

distance on the image plane from the image center to the
vanishing line. As shown in Fig.6, the geometric relation
between θ, l, and v′ is given as follows:

tan
(
π

2
− θ

)
=

l
v′
, (8)

from which we can determine θ, given l and v′.
By using classical geometry-based methods of computer

vision, the vanishing line of a plane and v′ can be estimated
from a single image in several ways. The vanishing line can
be determined when it directly appears on the image, when
there are more than two pairs of parallel lines on the plane
(the first image of Fig.1), when the structure of texture of
the plane is known (the third image in Fig.1) and so on.

One of the simplest methods to estimate v′ is to use a pair
of parallel lines in the image if they are available. Denot-
ing the vanishing points of the parallel lines by the homo-
geneous image coordinates p1 and p2, the following holds
(Eq.(7.13) in [3]):

p�1 (KK�)−1p2 = 0, (9)

where, in our camera model, K is given as

K =


v′ 0 0
0 v′ 0
0 0 1

 . (10)

From this, we can determine v′. Even if there are no parallel
lines, it could be possible to estimate v′ in a few cases, for
example, by using the textures of the target plane.

We may refer to these problems as the single-view 3D re-
construction. There are many studies in this area. Although
we do not proceed further, the above discussion demon-
strates that the plane angle θ can actually be determined
from the single image, provided some natural prior knowl-
edge is available.

3.3. Scale determination via fusion of defocus blur
and plane angle estimation

When Assumptions 2 and 3 are met, that is, D is known
and θ is estimated from the image, then Eq.(7) enables us to
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Figure 7. The algorithm for scene scale estimation.

calculate the distance u′ from the camera to the scene from
the proportion coefficient α of the defocus blur. Since the
distance u′ is directly related to the scene scale, we have
completed the estimation.

We started with the fact that the images captured using a
tilted image plane provide an impression of the small scale
of the scenes. Thus far, we have considered planar scenes
since the imaging system with a tilted image plane precisely
reproduces the defocus blur of planar scenes, as shown in
the last section. However, it is not plausible that the feasi-
bility of the scale recognition is determined by the planarity
of the target scene. In the case of planar scenes, the scene
scale is determined from the spatial gradient α of the size
of the defocus blur as well as the plane angle θ. Therefore,
by generalizing this result to nonplanar scenes, we conjec-
ture that only when the spatial variations in both the size
of the defocus blur and the scene depth are recovered, the
scene scale can be determined by the combination of these
two factors. Figure 7 shows the flowchart for the algortihm
realizing this conjecture. We believe that this explains why
Fig.3 does not provide any scale impression. That is, there
is no cue for recovering the (relative) depth of the scene;
there are several objects in the scene whose relative depths
cannot be estimated from the image.

3.4. A note on the distinction from DFD

The method of depth from defocus (DFD) calculates the
absolute distances from the lens to the scene points. Hence,
some readers might assume that DFD has already explained
the mechanism of the scale recognition provided that the
same assumptions as those provided above are incorpo-
rated; however, this is not true.

DFD is based on the following equation, which provides
the size d of the defocus blur [6, 8]:

d =
D|u f − v′u + f v′|

f u
, (11)

where D is the lens diameter; u, the distance to the scene
point corresponding to the blurred image point of interest;

v′, the distance from the image plane to the optical center;
f , the (true) focal length of the lens. In DFD, assuming D,
v′, and f to be known, u is determined using the size d of
the defocus blur. Since v′ and f are of the same order, the
additional knowledge of f might not appear to be critical.
However, in DFD, only a small difference between f and
v′ plays an essential role in the determination of the scene
depth. Thus, DFD alone does not explain the mechanism of
the scale recognition.

4. Example of the single view scale estimation

In this section, we demonstrate the scene scale estima-
tion by the method outlined above and examine its validity.
In Assumption 1, we assumed that the proportion coefficient
α can be estimated from the given image alone. Thus, we
start with how this is performed.

4.1. Estimation of the size of the defocus blur from
a single image

The problem of estimating α from the image is, in its
most general (and difficult) form, equivalent to the estima-
tion of the size of the defocus blur at each image point.
Since the scene can be arbitrary, this is obviously an ill-
posed problem that cannot be solved if no prior knowledge
is available. In fact, ordinary DFD methods use multiple im-
ages to estimate the blur. Pentland proposed a method for
estimating the blur from a single image using image edges
[6] (also see [5]). However, this method requires precise
information regarding the pre-blurred edges, which may be
too strong a requirement for our purpose.

By simple inspection, our visual system seems to be able
to estimate the size of the defocus blur from a single image
to some degree of accuracy, if not precisely. The problem
of how human vision system can perform this estimation is
another interesting problem. A possible answer to this is
that the human vision system performs a computation simi-
lar to the image hallucination. Image hallucination recovers
sharp structures of an image from a blurred image by using
prior knowledge such as the appearance of human faces [1]
and primary sketches (e.g., edges) [9]. Several promising
results have been reported. If the pre-blurred images can be
obtained by a similar method, then it is straightforward to
determine the size of the blur by comparing the blurred and
recovered pre-blurred images.

Although this image-hallucination-based approach
seems promising, it is beyond the scope of this paper.
Hence, we introduce here a somewhat strong assumption
on the statistical property of the original image of the
target scene and present a simple method based on this.
By original image we mean a pre-blurred image of the
given blurred image (hence, it is unobserved). For this
original image, we assume that the locally measured power



spectrum is identical over the entire image.
The point spread function (PSF) associated with the de-

focus blur behaves as a low-pass filter. Thus, the power at
high spatial frequencies should have a smaller value for the
blurred portions of the image than for the sharp portions.
Therefore, under the above assumption that the local power
spectrum is identical at every image point, by examining the
power deterioration at high frequencies, we will be able to
determine the size of the defocus blur.

The actual computation is performed in the following
manner. For several sample heights y1, . . . , yn, we calcu-
late the powers of the corresponding local image areas at a
particular frequency and then plot them to obtain a profile of
the power with respect to y. Then, by comparing the profile
with our theoretical model (20), which will be derived in
Appendix A, we estimate α. In order to calculate the power
of a local area at a particular frequency, we use the Gabor
transform, being inspired by the reported fact that a similar
computation is performed in biological vision systems. The
details of the estimation of α are provided in Appendix A.

4.2. Demonstration of the recovery of the scene scale

We use the first image in Fig.1 to test the algorithm; its
size is 910 × 609 pixels. As shown in Fig.7, the algorithm
consists of three parts. The first is to determine the plane
angle θ, the second is to determine the blur factor α, and the
third is to combine their results and determine the absolute
scene depth u′.

First, we determine the plane angle θ. In the image, there
exist two orthogonal pairs of parallel lines. Thus, by using
the lines, we compute v′, identify the vanishing line, and
measure the distance l from the principal point to the van-
ishing line. Subsequently, we calculate θ from Eq.(8).

As shown in Fig.8, we can identify the vanishing points
of the the pairs of the parallel lines as (−12.5, 1.10) and
(0.44, 1.10), respectively. We assume here that the image
center coincides with the principal point (0, 0) and use the
image coordinates such that the vertical side of the image
is length 1. (Note that we want to estimate the plane angle,
which is independent of the scale of the coordinate system.)
The vanishing line is obtained as the line connecting these
two vanishing points. Substituting p1 ≡ [−12.5, 1.10, 1]�
and p2 ≡ [0.44, 1.10, 1]� into Eq.(9), we immediately have
v′ ≈ 2.07. In addition, the distance from the image center to
the vanishing line is measured as l = 1.10. The substitution
of these values into Eq.(8) yields tan θ ≈ 1.87 (θ ≈ 62◦).

We then determine α, the proportion coefficient of the
defocus blur at y. We split the image into multiple horizon-
tal rectangules of 910 × 64, and then calculate the power
(the total sum of Eq.(20)) for each region. The plot in Fig.9
shows the profile of the power variation with respect to y.
The vertical axis represents the normalized power such that
the maximum is normalized to 1, and the horizontal axis

(–12.5, 1.10) (0.44, 1.10)

(0.44, 1.10)

1.0

1.49

l = 1.10

Figure 8. Geometric recovery of v′ and θ. Orthogonal pairs of two
parallel lines are used.

represents the image y coordinates in pixels. The maximum
power is found at the region in focus, or more precisely, the
horizontal line around the 341-th pixel from the top. This
indicates that when the image was captured, the image plane
was tilted about the x axis. On the plot shown in Fig.9, theo-
retical profiles for α = 0.005, 0.01, and 0.02 are shown. By
comparing these with the measured profile, we determine α
to be approximately 0.01.

Substituting the results tan θ = 1.87 and α = 0.01 into
Eq.(7), we have

u′ ≈ 190D. (12)

This result implies that the distance from the lens to the
scene (specifically, a scene point corresponding to the line
in focus) is approximately 200 times the lens diameter. For
example, if we assume the lens diameter to be 3 cm (a con-
siderably large lens), the distance to the scene is 6 m. If
the lens diameter is 0.5 cm, the distance is only 1 m. Con-
sidering together that the distance v′ from the image plane
to the optical center is given as v′ ≈ 2.0 × (image height),
we have no choice other than to recognize the target scene to
be a miniature since the scene must exist about 1 m distance
from the camera.

5. Summary and discussion

Images of distant scenes that are captured using an imag-
ing system with a tilted image plane sometimes appear to
human eyes as miniature scenes. In this paper, we have
discussed the mechanism of this scale recognition, as per-
formed by the human vision system.

We have shown that the defocus blur generated by the
imaging system with a tilted image plane for a distant scene
coincides with the defocus blur generated by an ordinary
imaging system for a planar scene. The analysis presents
a relation among the spatial variation in the size of the de-
focus blur (i.e., α), lens diameter, angle of the target plane,
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Figure 9. Estimation of α. Upper: Illustration of the power mea-
sured at a particular frequency and local image areas. Lower: Mea-
sured power profile at frequency 0.33 [1/pixel] of the image and
the theoretical profiles for α = 0.005, 0.01, and 0.02. Note that the
image coordinates (y ∈ [0 : 609]) are different from those used in
Fig.8. The line in focus is y = 341.

and distance to a scene point. Using this relation, the dis-
tance to a scene point can be determined if the lens diameter
is known in advance and if the size of the defocus blur as
well as the plane angle can be estimated from the given im-
age. There are several studies in this area that report meth-
ods of the plane angle estimation from a single image using
various prior knowledge. We have shown one of the sim-
plest methods. Other methods could also be applied. It
is plausible that the human vision system selectively uses
some of these methods depending on the image. Although
the estimation of the size of the defocus blur is a difficult
problem to formulate, the human vision system seems to be
able to perform this with some degree of accuracy. In this
paper, we present a simple method based on the assumption
that the power spectrum measured at local image areas is
identical at all points on the image.

The main argument in this paper is that the combination
of the shallow DOF and the single-view recovery of the 3D
structure of the scene enables the estimation of the scene
scale. If either of the two is lost, the estimation of the scene
scale is impossible. The existence of the shallow DOF is
necessary but not sufficient; there must be some cues in the
image from which the 3D structure of the scene can be re-
covered (geometrically, in most cases).

We have also shown that for a real image captured by
an imaging system with a tilted image plane, the described
method can compute an approximate value for the scene
scale; precisely, it computes the ratio between the distance

to the scene and the lens diameter. As mentioned before,
although it is difficult to assume an exact value for the lens
diameter, we may assume an approximate range of values
that makes it possible to determine whether the scene is very
close or fairly distant from the camera.

When observing in detail the images that provide the im-
pression of miniature scenes, it is suspected that there are
several other factors that affect the scale recognition, be-
sides the mechanism described in this paper. For example,
colors and kinds of objects existing in the scenes might con-
tribute to the scale recognition. This will be investigated in
future.
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A. Estimation of α

The Gabor kernel is given by

g(x, y; λG, θ, σG) = exp

− x′2 + y′2

2σ2
G

 cos

(
2π

x′

λG

)
, (13)

where

x′ = x cos θ + y sin θ, (14a)

y′ = −x sin θ + y cos θ, (14b)

and λG is the frequency parameter and σG is the Gaussian
factor, which are related by

σG

λG
=

1
π

√
ln 2
2
· 2b + 1

2b − 1
, (15)



where b is the bandwidth. We choose b = 1, which gives
λG ≈ 0.56σG. As for the direction θ of the kernel, we use
12 equally spaced samples from [0 : π]. Then, we calcu-
late the power of some local area at the frequency 1/λG by
calculating the sum of the squares of the responses of the
kernel over the local area and the direction θ.

We assume the PSF of the defocus blur to be an isotropic
Gaussian function, i.e.,

h(x, y;σ) =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
, (16)

where σ expresses the size of the blur. Its Fourier transform
is given by

H(ξ, η;σ) ∝ exp

(
−1

2
σ2(ξ2 + η2)

)
. (17)

Assuming the power of the Gabor response at frequency
1/λG of the pre-blurred (σ = 0) image to be 1 (by applying
normalization), the power of the Gabor response at the same
frequency for the image blurred with the above PSF may be
approximately given as

exp

−1
2
σ2

(
2π
λG

)2
2

. (18)

Therefore, using the result obtained in the previous sec-
tion, we may assume that

σ = αy. (19)

Then, by substituting Eq.(19) into Eq.(18), the ratio of the
power of the Gabor response at image height y to that at
y = 0 may be represented as

exp

−1
2

(
2πα
λG

)2

y2


2

. (20)

In conclusion, under the assumption that the power spec-
trum is identical everywhere (independent of image height
y), the squared Gabor response is given by the square of
Gaussian function with respect to y. Thus, computing the
squared Gabor response at several y’s, we can estimate α by
fitting (20) to them.


