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Abstract

Within a computer vision context color naming is the
action of assigning linguistic color labels to image pixels.
In general, research on color naming applies the following
paradigm: a collection of color chips is labelled with color
names within a well-defined experimental setup by multiple
test subjects. The collected data set is subsequently used to
label RGB values in real-world images with a color name.
Apart from the fact that this collection process is time con-
suming, it is unclear to what extent color naming within a
controlled setup is representative for color naming in real-
world images. Therefore we propose to learn color names
from real-world images. Furthermore, we avoid test sub-
jects by using Google Image to collect a data set. Due to
limitations of Google Image this data set contains a sub-
stantial quantity of wrongly labelled data. The color names
are learned using a PLSA model adapted to this task. Ex-
perimental results show that color names learned from real-
world images significantly outperform color names learned
from labelled color chips on retrieval and classification.

1. Introduction
Color names are linguistic labels that humans attach to

colors. We use them routinely and seemingly without effort

to describe the world around us. They have been primar-

ily studied in the fields of visual psychology, anthropology

and linguistics [1]. Color naming is different from the thor-

oughly explored field of color imaging, where the main goal

is to decide, given an acquisition of an object with a cer-

tain color, if objects in other acquisitions have the same (or

a different) color. Based on physical or statistical models

of reflection and acquisition systems [2, 3, 4] object col-

ors can be described independent of incidental scene events

such as illuminant color and viewing angle. The research

question of color naming is different: given a color mea-

surement, the algorithm should predict with which color

name humans would describe it. It also allows for differ-

ent functionalities, for example within a content based re-

trieval context it allows to steer the search to objects of a

certain color name. The user might query an image search

engine for ”red cars”.The system recognizes the color name

”red”, and orders the retrieved results on ”car” based on

their resemblance to the human usage of ”red’. Apart from

the retrieval task color names are applicable in automatic

content labelling of images, colorblind assistance, and lin-

guistic human-computer interaction [5].

One of the most influential works in color naming is the

linguistic study of Berlin and Kay [6] on basic color terms.

They are defined as those color names in a language which

are applied to diverse classes of objects, whose meaning

is not subsumable under one of the other basic color terms,

and which are used consistently and with consensus by most

speakers of the language. Basic color names were found to

be shared between languages. However the number of basic

terms varies from two in some Aboriginal languages to 12

in Russian. In this paper, we use the 11 basic color terms

of the English language: black, blue, brown, grey, green,

orange, pink, purple, red, white, and yellow.

To use color naming for computer vision a mapping be-

tween the RGB values and color names is required. Gen-

erally this mapping is inferred from a labelled set. Multi-

ple test subjects are asked to label hundreds of color chips

within a well-defined experimental setup [7, 8, 9, 10]. The

colors are to be chosen from a preselected set of color names

(predominantly the set of 11 basic color terms [8, 10] ).

From this labelled set of color chips the mapping from RGB

values to color names is derived. Throughout the paper

we will refer to this methodology of color naming as chip-
based color naming.

We do not wish to cast doubt on the usefulness of chip-

based color naming within the linguistic and color science

fields, however it might be questioned to what extent the

labelling of isolated color chips resembles color naming in

the real-world. Color naming chips under ideal lighting on

a color neutral background greatly differs from the chal-

lenge of color naming in the real-world without a neutral

reference color and with physical variations such as shad-

ing effects and different light sources. Another disadvan-
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black blue brown green grey orange pink purple red white yellow

Figure 1. Google-retrieved examples for color names. The red bounding boxes indicate false positive images. The same images can be

retrieved with various color names, such as the flower image which appears in the red and the yellow set.

tage of chip-based color naming is its inflexibility with re-

spect to changes of the used color name set. This is caused

by the demanding experimental setup necessary for chip-

based color naming. Changing the set by adding for exam-

ple beige, violet or olive, would imply rerunning the exper-

iment for all patches.

We propose an alternative method to color naming. To

overcome, at least to some extent, the limitations of chip-

based color naming, we propose to learn color names from

real-world images. Furthermore, to design a flexible sys-

tem with respect to variations in the color name set, we

propose to automatically learn the color names from im-

ages retrieved from Google image search (see Fig. 1). The

use of image search engines to avoid hand labelling was

pioneered by Fergus et al. [11]. Retrieved images from

Google search are known to contain many false positives.

To learn color names from the Google images we propose to

use Probabilistic Latent Semantic Analysis (PLSA), a gen-

erative model introduced by Hofmann [12] for document

analysis. This model was recently applied to computer vi-

sion by [13], [14], [15]. We model RGB values (words) in

images (documents) with mixtures of color names (topics),

where mixing weights may differ per image but the top-

ics are shared among all images. In conclusion, by learning

color names from real-world images, we aim to derive color

names which are applicable on challenging images typi-

cal in computer vision applications. In addition, since its

knowledge on color names is derived from an image search

engine, the method can easily vary the set of color names.

Our method is closely related with work on finding rela-

tions between words and image regions. Barnard et al. [13]

proposed a method to learn the joint distribution between

words and image regions. The original work which was

limited to nouns was later extended to also include adjec-

tives by Yanai and Barnard [16]. They compute the ”visual-

ness” of adjectives, based on the entropy between adjectives

and image features. The work shows among other adjec-

tives results for color names: several of these are correctly

found to be visual, however the authors also report failure

for some color names. Contrary to this work, we start from

the prior-knowledge that color names are ”visual” and that

they should be learned from the color distributions (and not

for example from texture features), with the aim to improve

the quality of the learned color names.

This paper is organized as follows. In Section 2, the

color name data sets used for training and testing are pre-

sented. In Section 3, several color related issues are dis-

cussed. In Section 4, our approach to learning color names

from images is presented. In Section 5, experimental results

are given, and Section 6 finishes with concluding remarks.

2. Color Name Data Sets

For the purpose of learning color names from real-world

images, a set of labelled images is required. We use

three data sets, two of which were collected specifically for

the work presented here and are made available online at

http://lear.inrialpes.fr/data, we briefly describe them below.

Google color name set: Google image search uses the

image filename and surrounding web page text to retrieve

the images. As color names we choose the 11 basic color

names as indicated in the study of Berlin and Kay [6]. We

used Google Image to retrieve 100 images for each of the

11 color names. For the actual search we added the term

”color”, so for red the query is ”red+color”. Examples for

the 11 color names are given in Fig. 1. Per color name there

are on average 19 false positives, i.e., images which do not

contain the color of the query. Furthermore in many cases

only a small portion, as little as a few percent of the pixels,

represents the color label. Our goal is to arrive at a color

naming system based on the raw results of Google image,

i.e., we used both false and true positives.



Figure 2. Examples for the four classes of the Ebay data set: blue cars, grey shoes, yellow dresses, and brown pottery. For all images masks

with the area corresponding to the color name are hand segmented. One example segmentation per category is given.

Ebay color name set: To test the color names a human-

labelled set of object images is required. We used images

from the auction website Ebay. Users labelled their objects

with a description of the object in text, often including a

color name. We selected four categories of objects: cars,

shoes, dresses, and pottery (see Fig. 2). Of each object cat-

egory 110 images where collected, 10 for each color name.

The images contain several challenges: the reflection prop-

erties of the objects differ from matt reflection of dresses to

highly specular surfaces of cars and pottery. Furthermore,

it comprises both indoor and outdoor scenes. For all im-

ages we hand-segmented the object areas which correspond

to the color name. In the remainder of the article when re-

ferring to Ebay images, only the hand segmented part of the

images is meant, and the background is discarded.

Chip-based color name set: In the experimental Section

we compare our method to a chip-based approach. For this

purpose we use the data set of color named chips of Be-

navente [10], which is available online. The set contains

387 patches which were classified into the 11 basic color

terms by 10 subjects. If desired the color patch could be

assigned to multiple color names. Thus every patch is rep-

resented by its sRGB values (standard default color space)

and a probability distribution over the color names. To ar-

rive at a probability over the color names, z, for all L∗a∗b∗-

bins (we use the same discretization as is applied in our al-

gorithm), we assign to each L∗a∗b∗-bin, w, the probability

of the neighbors according to

P (z |w ) ∝
N∑

i=1

P (z |wi ) gσ
(
|wi − w|LAB

)
(1)

where the wi’s are the L∗a∗b∗-values for the color chips and

N is total number of chips. P (z |wi ) is given for all the

color chips. The distance between the color chips, wi, and

w is computed in L∗a∗b∗-space. For the weighting kernel

we use a Gaussian with σ = 5, which has been optimized

to get the best results on the retrieval task of Section 5.1.

3. Color Considerations

The images are represented in the form of color his-

tograms to the learning algorithm. We consider the images

from the Google and Ebay data sets to be in sRGB for-

mat. Before computing the color histograms these images

are gamma corrected with a correction factor of 2.4. Al-

though images might not be correctly white balanced, we

refrained from applying a color constancy algorithm. This

is motivated by the fact that state-of-the-art color constancy

often gives unsatisfying results [17]. Furthermore, many

Google images lack color calibration information, and reg-

ularly break assumptions on which color constancy algo-

rithms are based. For example many of the images consist

of single colored objects on a background, for which most

color constancy methods fail.

For the color histograms we considered several color

spaces: RGB, HSL, and L∗a∗b∗. HSL is attractive because

of its axis-alignment with photometric variations [7, 18].

Decision on chromatic versus achromatic colors can be

based on luminance and saturation, whereas chromatic col-

ors can be distinguished based on hue and saturation. Yet,

some colors have the same hue but different intensities, e.g.,

orange and brown. To efficiently use HSL the subspace of

the HSL-space in which the color name is located should

be given as extra information. This is opposite to our aim

to automatically learn the color names from Google im-

ages. The L∗a∗b∗ color space instead seems like an ap-

propriate choice, as it is perceptually linear, meaning that

similar differences between L∗a∗b∗ values are considered

about equally important color changes to humans. This is

a desired property because the uniform binning we apply

for histogram construction implicitly assumes a meaningful

distance measure. To compute the L∗a∗b∗ values we as-

sume a D65 white light source. Note that the L∗a∗b∗ color

space is not photometrically invariant. Changes of the in-

tensity influence all three coordinates. By choosing to learn

the color names in the L∗a∗b∗-space we hope that the ”par-

tial” photometric invariance of color names is acquired in

the learning phase. In our experiments we show that within

our context the L∗a∗b∗-space indeed outperforms both the

RGB and HSL-space.



4. Learning Color Names
The learning of the color names is achieved with the

PLSA model [12]. The PLSA model is appropriate since

it allows for multiple ”classes” in the same image, which

is the case in our Google data set. In analogy with its use

in text analysis, where the PLSA model is used to discover

topics in a bag-of-word representation, we here apply it to

discover colors in a bag of pixels representation, where ev-

ery pixel is represented by its L∗a∗b∗ value. In order to

use the PLSA model we discretize the L∗a∗b∗ values into a

finite vocabulary by assigning each value by cubic interpo-

lation to a regular 10 × 20 × 20 grid in the L∗a∗b∗-space1.

An image (document) is then represented by a histogram in-

dicating how many pixels are assigned to each bin (word).

4.1. Generative Models: PLSA and PLSA-bg

In text analysis the PLSA model is used to find a set of

semantic topics in a collection of documents. Here we use

the model to find a set of color names (comparable to the

topics in documents) in a collection of images. The use

of generative models to learn the relation between images

and words was first proposed by Barnard et al. [13]. They

apply Latent Dirichlet Allocation (LDA) to learn relations

between words and image blobs. We start by explaining the

standard PLSA, after which we propose an adapted version

suited to our problem. We follow the terminology of the

text analysis community.

Given a set of documents D = {d1, ..., dN} each de-

scribed in a vocabulary W = {w1, ..., wM}, the words are

taken to be generated by latent topics Z = {z1, ..., zK}. In

the PLSA model the conditional probability of a word w in

a document d is given by:

P (w| d) =
∑
z∈Z

P (w| z)P (z| d) . (2)

Both distributions P (z|d) and P (w|z) are discrete, and can

be estimated using an EM algorithm [12]. This standard

PLSA model does not exploit the labels of the images. The

topics are hoped to converge to the desired color names. As

is pointed out in [19] this is rarely the case. To overcome

this shortcoming we propose an adapted PLSA model.

PLSA-bg: We propose to model an image d as being gener-

ated by two distributions: the foreground distribution which

is determined by its color name label ld and the background

distribution which is shared between all images:

P (w |d, ld = z ) = αdP (w |ld = z )+(1 − αd) P (w |bg ) ,
(3)

where P (w |ld = z ) is the probability that the word is

generated by topic ld. We use the following shorthands:

1The difference in bins is caused by the different domains. The inten-

sity axis ranges from 0 to 100, the chromatic axes range from -100 to 100.

P (w |d, ld = z ) = pwd, P (w |z ) = βwz and P (w |bg ) =
θw. To learn the model we need to estimate the mixing pro-

portion of foreground versus background α, the color name

distributions β, and the background model θ. With each

word in each document we associate a hidden variable with

two states, that indicates whether the word was drawn from

the foreground topic or the background topic. The posterior

on the states is calculated as:

qfg
wd = αdβwz

pwd
(foreground),

qbg
wd = 1 − qfg

wd = (1−αd)θw

pwd
(background).

(4)

By maximizing the complete data log-likelihood

Q =
∑
w,d

cwd

(
qfg
wd log αdβwld + qbg

wd log (1 − αd) θw

)
,

(5)

and given the q’s, we can re-estimate the parameters:

αd =

[∑
w

cwd

]−1 ∑
w

cwdq
fg
wd

= αd

[∑
w

cwd

]−1 ∑
w

cwd

pwd
βwz,

(6)

and after updating pwd with the new α’s:

βwz ∝
∑

d: ld=t

cwdq
fg
wd = βwz

∑
d: ld=t

αd
cwd

pwd
, (7)

θw ∝
∑

d

cwdq
bg
wd = θw

∑
d

(1 − αd)
cwd

pwd
, (8)

where Dt is the set of documents for which label ld is equal

to t, and cwd is the normalized word count per document.

The method can be extended to allow for multiple shared

background topics. However, we found that increasing the

number of background topics did not improve performance.

Predicting color names: We will apply the derived word-

topic distributions to assign color name probability to image

pixel values. Two ways to assign color names to individual
pixels are considered: based only on the pixel value, indi-

cated by PLSA-bg, or by also taking the region of the pixel

into account, abbreviated with PLSA-bg∗. The probability

of a color name given a pixel is

PLSA − bg : P (z |w ) ∝ P (z) P (w |z ) , (9)

where the prior over the color names is taken to be uniform.

The probability of a color name given the region is com-

puted with

PLSA − bg∗ : P (z |w, d ) ∝ P (w |z ) P (z |d ) , (10)

where P (z |d ) is estimated using an EM algorithm by tak-

ing the word topic distribution P (w |z ) fixed. The back-

ground topic is disregarded in this phase, since we know



that the 11 color names describe the whole RGB cube. The

difference between the two methods is that for PLSA-bg∗

first a distribution over the color names given the region is

computed P (z|d). This distribution is subsequently used as

a prior over the color names in the computation of the prob-

ability of a color name given a pixel value and the region.

In the context of scene classification, Quelhas et al. [15]

also consider these two methods to compute the conditional

probability of topics given a word. They found retrieval re-

sults to improve by taking P (z|d) into account.

To arrive at a probability distribution over the color

names for an image region (e.g., the segmentation masks

in the Ebay image set) we use the topic distribution over the

region P (z |d ) described above for PLSA-bg∗. For PLSA-

bg the probability over the color names for a region is com-

puted by a simple summation over all pixels in the region of

the probabilities P (z|w), computed with Eq. 9 using a uni-

form prior. Both PLSA-bg and PLSA-bg∗ will be compared

in the experimental section on their usefulness for retrieving

colored objects and assigning color names to pixels.

5. Experimental Results
In the introduction we argued against learning color

names in a different setup than in which they are applied.

Therefore, we propose a method which learns color names

from real-world images. Furthermore, to arrive at a flexible

method with respect to variations in the color name set we

propose to learn the color names from Google images. In

the experiments the proposed method is compared to a chip-

based method (see Section 2). We evaluate them based on

color object retrieval, and on the assignment of color names

to pixels. Furthermore, we illustrate the flexibility of our

method when changing the set of color names.

To verify our learning approach we compare PLSA-bg

learning with two alternatives. Firstly, a standard PLSA

with 11 topics. With random initialization the topics rarely

coincided with the color names, and the method performed

poorly. A better way to initialize the word-topic distribu-

tions P (w|z) is to average for each topic the empirical dis-

tribution over words of all documents labelled with the class

associated with that topic. Secondly, a linear support vector

machine [20], which is trained on the L∗a∗b∗ histograms of

the Google images. In retrieval we classify the histograms

of the segmented regions, and derive a probability over the

color names from the SVM scores (Section 5.1). For indi-

vidual pixel classification (Section 5.2), the SVM classifies

histograms of individual pixels. 2

5.1. Retrieving Objects by Color

The different approaches to color naming are evaluated

on retrieval of colored objects within each category. For

2Cubic interpolation maps the color value of a pixel to multiple bins.

method RGB HSL L∗a∗b∗

EER 94 93 95

Table 1. Equal error rates on Ebay set of the PLSA-bg∗ method,

learned on Google images based on three different color spaces.

method train-set cars shoes dresses pottery overall

chip-based - 88 93 94 91 92

SVM Google 91 96 96 91 94

PLSA Google 89 95 94 92 93

PLSA-bg∗ Google 91 96 99 93 95

PLSA-bg Google 92 97 99 95 96

PLSA-bg∗ Google+Ebay 92 96 99 95 96

PLSA-bg Google+Ebay 92 97 100 94 96

Table 2. Average equal error rates for retrieval on Ebay images.

example, the car category is queried for ”red cars”. We

query the four categories of the Ebay set (see Section 2)

for the 11 color names. The images are retrieved based on

the probability of the query color given the Ebay images.

For the Ebay images only pixels within the segmentation

masks are considered. To assess the performance we com-

pute the equal error rate (EER) for each query. The average

EER’s over the 11 color names are reported for each cat-

egory in Table 2. The learning of the color names is per-

formed on the weakly labelled Google images, or a com-

bination of the Google and Ebay images. In the case of

the combined Google and Ebay images the Ebay category

which is queried is left out in training.

We first verify our choice of color space. The results for

retrieval based on three color spaces are given in Table 1. As

expected the L∗a∗b∗-space slightly outperforms the other

color spaces. In the remainder of the article only results

based on the L∗a∗b∗-space are reported.

The results of the various color naming methods are

summarized in Table 2. The results support our idea that

learning color names from real-world images is sensible: all

learning methods outperform the chip-based method for all

four categories. Secondly, results show that it is possible to

learn the color names from highly polluted images retrieved

with an image search engine. Thirdly, the proposed adap-

tations of the PLSA model are beneficial: they obtain sig-

nificantly better results than both standard PLSA and SVM.

Extending the training set with the Ebay images did not im-

prove results over training on Google images only.

5.2. Pixelwise Color Name Classification

As a second experiment, the color naming methods are

compared on classification of pixels in the Ebay images. All

pixels within the segmentation masks are assigned to their



(a) (b) (c) (d)

Figure 3. (a) A challenging synthetic image: the RGB values at the border rarely occur in natural images. Results obtained with (b)

PLSA-bg learned on Google images, (c) SVM learned on Google and Ebay, and (d) PLSA-bg learned on Google and Ebay.

method train-set cars shoes dresses pottery overall

chip-based - 39 60 62 50 53

SVM Google 45 61 68 56 62

PLSA Google 48 69 71 62 63

PLSA-bg∗ Google 63 84 89 74 78

PLSA-bg Google 51 71 81 66 67

PLSA-bg∗ Google+Ebay 68 88 93 80 82

PLSA-bg Google+Ebay 53 73 84 71 70

Table 3. Pixel classification in percentages for Ebay images.
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black 78 1 2 19

blue 3 90 4 3

brown 6 67 16 1 8 2

grey 3 5 87 5

green 4 1 1 9 81 4

orange 5 80 2 13

pink 6 1 78 9 2 4

purple 12 1 1 13 4 67 0 2

red 2 4 94

white 12 1 87

yellow 1 1 2 96

Table 4. Confusion matrix for pixel classification based on

PLSA-bg∗ learned on Google and Ebay. The overall classification

rate is 82% as given in Table 3.

most likely color name according to arg maxz P (z |w ).
Only for PLSA-bg∗ we take the surrounding of the pixel

into account: we use arg maxz P (z |w, d ) to classify the

pixel, where the segmentation mask forms the document.

In Table 3 the results are presented. For this task the gain

in learning color names from real-world images is impres-

sive: where the chip-based method classifies only 53% of

the pixels correctly, the PLSA-bg∗ obtains a result of 82%.

Again the proposed method outperforms standard PLSA

and linear SVM. For this task, adding the Ebay images to

the training data improved the overall classification rate for

PLSA-bg∗ from 78% to 82%.

We believe that the difference in performance of PLSA-

bg∗ and PLSA-bg methods in retrieval and pixel classifi-

cation is caused by the fact that the PLSA-bg∗ couples the

topic assignment of pixels within an image. This proved

to be beneficial for pixel classification. On the other hand

when using an image specific topic distribution, the correct

classification of small regions in an image may be hindered

in the presence of a large region of a similar color in the

same image (e.g., a small orange region within a domi-

nantly yellow image). Retrieving this image on the color

name of the small color region (in the example orange) will

result in deteriorated retrieval performance. This explains

the slightly worse retrieval results for PLSA-bg∗. This con-

trasts results in [15], where taking the topic-document dis-

tribution into account proved beneficial for retrieval of man-

made versus landscape images.

To give some insight into the errors made in color nam-

ing we show the confusion matrix of the pixel classifica-

tions based on PLSA-bg∗ in Table 4. Most confusions are

reasonable: confusions between achromatic colors (white-

grey and black-grey), between colors and achromatic colors

(purple-black, purple-grey, brown-grey) or between very

similar colors (red-orange, pink-purple).

In Fig. 3 a challenging image shows that the color names

learned from the Google images alone are still inaccurate

for some highly saturated colors (see Fig. 3b). These colors

occur rarely in natural images, because they require one of

the color channels to be near zero. Color names learned

from the combined set of Google and Ebay images pro-

vide reliable results even for highly saturated colors (see

Fig. 3d).

The PLSA-bg model learned on the Google

and Ebay images is available online at

http://lear.inrialpes.fr/people/vandeweijer/color names.html,

in the form of a 32 × 32 × 32 lookup table which maps



sRGB values to probabilities over color names.

Limitations of Chip-Based Color Naming: For both re-

trieval and pixel classification color names learned from

real-world images outperformed chip-based color naming.

Here we analyze the reasons underlying this difference.

We used the PLSA-bg color naming model learned

on Google and Ebay images to classify the color chips

from [10]. Amazingly, for 77 out of 387 chips (20%) our

method appointed a color name to the chip which was not

matched by any of the test subjects. However, 24 of these

concern disagreement between achromatic colors, primar-

ily caused by grey-labelled chips which were classified by

PLSA-bg as white. For 51 color chips, labelled with chro-

matic color names, our method appointed achromatic color

names. Only in two cases there was disagreement between

chromatic colors (orange-yellow, pink-brown). In conclu-

sion, differences in color naming mainly occur for low sat-

urated colors, which in a laboratory setup on a neutral back-

ground are often considered as chromatic. However, in real-

world images these colors are more often caused by inter-

reflection, or variations of the light source. By learning the

color names from real-world images, slight deviations from

perfect grey are not attributed to chromatic colors. Several

examples of color name assignments for chip-based, PLSA-

bg and PLSA-bg∗ are depicted in Fig. 5. Other than in the

earlier experiment we classify all pixels in the image.

5.3. Flexibility Color Name Data Set

Another drawback of chip-based color naming is the in-

flexibility with respect to changes of the color names set.

An search engine based method is more flexible, since the

collection of data is only several minutes of work. In Fig. 4

we show prototypes of the 11 basic color terms based on the

patches of the chip-based data set. The first row shows the

prototypes computed using the human assigned labels and

the second row the prototypes based on the labels assigned

by our method. The prototype of a color name is computed

by averaging the RGB values of all color chips for which

the color name is the most likely. The learned color names

from Google have a great visual resemblance with the pro-

totypes based on the human labelled color chips.

Next, we give two examples of varied color name sets.

Mojsilovic, in her study on color naming [9], mentions the

use of the color names beige, violet and olive, in addition

to the 11 basic color terms. For these three classes we re-

trieved 100 images each, and re-learned the color names

for the 14 color terms. The prototypes of the three newly

added colors together with a few of the closely related color

names are depicted in the bottom row of Fig.4. The newly

injected color names also influence the position of the old

color names, as can be seen in the slight color shift of the

brown and the pink prototype.

As a second example of flexibility we look into inter-
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pink purple
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Figure 4. First row: prototypes of the 11 basic color terms based on

chip-based color naming. Second row: prototypes of the 11 basic

color terms learned from Google images based on PLSA-bg. Third

row shows results on a varied set of basic color terms (left and mid-

dle group): prototypes of several of the color names learned from

Google images using 14 color names: the 11 basic color terms ex-

tended with beige, olive and violet. Third row (group to the right):

prototypes of the two Russian blues learned from Google images.

linguistic differences in color naming. The Russian lan-

guage is often mentioned as one of the few languages which

has 12 basic color terms. The color term blue is split up in

two: goluboi (goluboĭ), and siniy (siniĭ). We ran the

system on 30 images for both blues, returned by Google

image. Results are given in Fig.4, and correspond with the

fact that goluboi is a light blue and siniy a dark blue. The

example shows internet as a potential source of data for the

examination of linguistic differences in color naming.

6. Discussion and Conclusions

We have presented a new method for color naming. It

breaks with the generally accepted approach to learn color

names from isolated color chips in a laboratory setting. Fur-

thermore, to obtain a method for which it is easy to vary the

set of desired color names, we proposed to learn the color

names from Google image. Results show that within the

context of computer vision the learning of color names from

real-world images is beneficial. The improvement is espe-

cially striking in classification of pixels with color names

where results go up from 53% to 82%. Furthermore, the

flexibility of the method with respect to varying color name

sets has been illustrated.

In a wider context this article can be seen as a case study

for the automatic learning of visual attributes. In recent

years the computer vision community has achieved signif-

icant progress in the field of object and object category

recognition. Now that it is possible to detect objects such

as people, cars, and vases in images, the question arises if

we are able to retrieve small people, striped vases, and red
cars. The scope of these so called visual attributes is vast:

they range from size descriptions, such as large, elongated,

and contorted, to texture descriptions such as striped, reg-

ular, and smooth, further on to color descriptions, such as

red, cyan and pastel. The challenges which arise in the de-

velopment of an automatic color naming system can be seen

as exemplar for the problems which arise for visual attribute



Figure 5. Four examples of pixelwise color name classification. For each example the results of chip-based, PLSA-bg, PLSA-bg∗ are given

successively. Left top: without reference color it is very hard to classify the achromatic colors black, grey and white. As a result the white

car is considered grey by the chip-based method. Right top: although the pixel values are slightly greenish, the mug is human labelled as

being grey. The slight deviation from grey led to the wrong color label green for the chip-based method. Bottom left: Here some blue

pixels were wrongly classified as green, because the 387 color chips sample some areas of the RGB-cube only sparsely. In this example,

PLSA-bg∗ suppresses the small red topic, consequently parts of the strawberries are wrongly considered brown. Bottom right: all methods

correctly classify the dress pixels. The chip-based method appoints chromatic color names to the low saturation background.

learning at a large. The labelling of images with the inex-

haustible set of existing visual attributes will be unfeasible,

and automatic ways to learn them are needed.
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