
 

 

 

Abstract 
 

Automatic image annotation has been an active research 

topic due to its great importance in image retrieval and 

management.  However, results of the state-of-the-art 

image annotation methods are often unsatisfactory.  

Despite continuous efforts in inventing new annotation 

algorithms, it would be advantageous to develop a 

dedicated approach that could refine imprecise 

annotations.  In this paper, a novel approach to 

automatically refining the original annotations of images is 

proposed.  For a query image, an existing image annotation 

method is first employed to obtain a set of candidate 

annotations.  Then, the candidate annotations are 

re-ranked and only the top ones are reserved as the final 

annotations.  By formulating the annotation refinement 

process as a Markov process and defining the candidate 

annotations as the states of a Markov chain, a 

content-based image annotation refinement (CIAR) 

algorithm is proposed to re-rank the candidate annotations.  

It leverages both corpus information and the content 

feature of a query image.  Experimental results on a typical 

Corel dataset show not only the validity of the refinement, 

but also the superiority of the proposed algorithm over 

existing ones. 

 

1. Introduction 

As a promising solution to improve many applications, 

including Web image search and desktop photo 

management, image annotation has become a core research 

topic in Content-Based Image Retrieval (CBIR). 
 
 

Most existing image annotation approaches can be 

classified into two categories, classification-based methods 

and probabilistic modeling-based methods.  

Classification-based methods treat keywords (concepts) as 

classes and employ trained classifiers to annotate an input 

image based on classification results. Many representative 
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classifiers have been used, such as the two-dimensional 

multi-resolution hidden Markov models (2D MHMMs) [17], 

support vector machine (SVM) [7][10][25], Bayes Point 

Machine [5], and Mixture Hierarchical Model [3][4]. 

Probabilistic modeling-based methods attempt to infer 

the correlations or joint probabilities between images and 

annotations.  As the pioneering work, Mori et al. proposed a 

method for annotating image grids using co-occurrences in 

1999 [20].  In [8], Duygulu et al. proposed a novel approach 

that treated image annotation as a machine translation 

problem.  A statistic machine translation model was used to 

“translate” textual keywords to visual keywords, i.e. image 

blob tokens obtained by clustering.  Another way of 

capturing co-occurrence information is to introduce latent 

variables to model hidden concepts in images.  The 

representative work includes Gaussian Mixture Model, 

Latent Dirichlet Allocation Model (LDA) and 

correspondence LDA [2].  Inspired by the relevance 

language models, several relevance models have been 

proposed recently, including Cross-Media Relevance 

Model (CMRM) [12], Continuous Relevance Model (CRM) 

[13][16], and Multiple Bernoulli Relevance Model (MBRM) 

[9]. 

Since 2006, motivated by Web search technologies in 

many commercial systems, several search-based image 

annotation methods [18][23][24] have been developed, 

using Web-scale image database and unlimited vocabulary.   

Despite the continuous efforts placed on image 

annotation, results of existing image annotation methods are 

still unsatisfactory.  Alternatively, it would be advantageous 

if a dedicated approach could refine current annotation 

results.
 
 

Jin et al. [14] have done pioneering work on annotation 

refinement using a generic knowledge-based WordNet [19].  

From a small candidate annotation set obtained by an 

annotation method, irrelevant annotations are pruned using 

WordNet.  The basic assumption is that highly correlated 

annotations should be reserved and non-correlated 

annotations should be removed.  We will call this 

assumption “majority should win” in the remainder of this 

paper.  For example, Figure 1(a) has the correct keywords 

“beach, people, sand, desert” and noisy keyword “snow”.  
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Since the correlation between “beach” and “sand” is greater 

than “snow” and “sand” based on WordNet, the noisy 

keyword “snow” will be discarded.  However, experimental 

results show that although the method can remove some 

noisy words, many relevant words are also removed.  As a 

result, the F1 value (see Section 4.1.3) decreases compared 

with the original annotation method.  There are at least two 

main reasons for the unsatisfactory performance.  On the 

one hand, although WordNet contains additional generic 

knowledge about word relationships, it has two limitations.  

One is that it is independent of the dataset and therefore 

does not reflect the characteristics of the specific image 

dataset.  The other limitation is that it cannot deal with the 

annotations that do not exist in the lexicon of WordNet.  On 

the other hand, once the candidate annotations have been 

decided, the annotation refinement process is independent 

of the original query image.  The underlying strategy that 

reserves the majority of correlated candidate annotations 

will be inappropriate for queries with relatively poor initial 

annotation results. 

Recently, Wang et al. [22] proposed a novel annotation 

refinement algorithm to try to resolve the issues in [14].  In 

[22], an algorithm using Random Walk with Restarts (RWR) 

was proposed to re-rank the candidate annotations.  The 

algorithm not only uses the corpus information by defining a 

co-occurrence-based similarity, but also leverages the 

ranking and confidence information of original annotations.  

However, although Wang’s work resolved the 

aforementioned first issue in [14], it was still implicitly 

based on the assumption majority should win and the 

refinement process was still independent of the original 

query image.  Therefore, the algorithm is sensitive to the 

size of candidate annotation set.  That is, if the size is too 

small, the refinement process will be less useful; while if the 

size is too large, there might be other noisy candidate 

annotations that will let the assumption majority should win 

fail.  For example, Figure 1(b) has the correct keyword 

“people, snow” and noisy keywords “beach, sand, desert”.  

According to the assumption majority should win in [14] 

and [22], correct keyword “snow” will be discarded, while 

all noisy keywords will be reserved.  Therefore, being 

independent of the content feature of the query image, 

existing annotation refinement algorithms [14][22] will 

obtain the same results for Figure 1(a) and (b), in which the 

refined results of Figure 1(b) will be incorrect. 

In this paper, a novel content-based image annotation 

refinement (CIAR) algorithm is proposed.  For a query 

image, an existing image annotation method is first 

employed to obtain a set of candidate annotations.  Then, 

the annotations are refined by re-ranking the candidate 

annotations and reserving the top ones.  In this work, the 

annotation refinement process is formulated as a Markov 

process and the candidate annotations are defined as the 

states of a Markov chain.  To solve the aforementioned 

issues in [14] and [22], a query-biased Markov chain 

(QBMC) with a query-biased transition matrix (QBTM) is 

dynamically constructed based on the query image, using 

both content feature of the query image and corpus 

information.  Since QBMC is particularly constructed for 

the query image using all the corpus information, the 

refinement results of Figure 1(a) and (b) will be different 

and more relevant to each image.  Therefore, our proposed 

annotation refinement algorithm not only is free of the first 

issue in [14], but also resolves the second issue in [14] and 

[22] to some extent. 

The rest of the paper is organized as follows.  Section 2 

presents Markov process formulation of annotation 

refinement process.  Section 3 describes the content-based 

image annotation refinement algorithm in detail.  Extensive 

experimental results are shown in Section 4.  We conclude 

in Section 5. 

2. Formulating refinement process as a 

Markov process 

This section provides some insights into existing image 

annotation refinement algorithms by re-formulating them as 

Markov processes, and describes the proposed 

content-based image annotation refinement idea.   

2.1. Image annotation refinement problem 

Assume that the original query image is Iq, and there are 

totally N
+
 keywords in the lexicon space Ω.  Also assume 

that N candidate annotations {wi |wi∈Ω, i=1,…,N} out of N
+ 

could be obtained using a certain annotation algorithm.  

From the statistical view, the aim of image annotation 

refinement is to refine the conditional probability p(wi|Iq) so 

that more accurate annotations will have higher 

probabilities.  As a result, the annotations with highest 

probabilities could be reserved as the final annotations. 

2.2. Insights into existing refinement algorithms 

Let us define the candidate annotations {wi |wi∈Ω, 

i=1,…,N} as the states of a first-order homogeneous 

Markov chain.  Let p(wi|wj) be the one-step transition 

                 

(a) beach people sand desert snow         (b) beach people sand desert snow 

Figure 1: Two examples of image annotations including both 

correct and noisy keywords.  

According to the assumption “majority should win”, the two 

images will have the same refinement results without 

considering the image content. 



 

 

probability from wj to wi, and let P be the transition matrix 

of this Markov chain.  Then we can explain the previous 

annotation refinement works [14][22] in terms of Markov 

random process with different kinds of transition 

probabilities. 

Let us first look at the WordNet-based method (WNM) 

[14].  Its basic assumption is that highly correlated 

annotations should be reserved and non-correlated 

annotations should be removed, which can be described as 

follows: 

1

( | ) ( | )
N

i q i j

j

p w I p w wα
=

∑�                           (1) 

where p(wi|wj) is calculated by the semantic similarity of wi 

and wj in WordNet.  α is a normalization constant. 

From Equation 1 we can see that, in WNM, p(wi|Iq) 

merely reflects the assumption majority should win.  The 

annotation probability p(wi|Iq) of a state wi is independent of 

annotation probabilities of other states.  Moreover, the right 

hand side of Equation 1 is independent of query image Iq, 

which makes the content feature of Iq ignored in the whole 

refinement process. 

In the Random Walk with Restarts Model (RWRM) [22], 

Wang et al. utilize the corpus or training set information to 

calculate p(wi|wj).  The description equation of RWRM can 

be given as follows: 

( 1) ( )
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where pv(wi) is the confidence information of wi obtained 

once the candidate annotations are identified.  c is a constant 

that represents the probability of restarting the random walk 

process.  p
(t)

(wi|Iq) is the probability that the annotation is in 

the state wi at time t.  p(wi|Iq) is defined as the stationary 

probability of state wi in this Markov chain, given by the 

following formula: 
( )( | ) lim ( | )t

i q i q
t

p w I p w I
→∞

=                        (3) 

Although RWRM tries to utilize the confidence 

information of the initial annotation method in the 

refinement process, the refinement process is still 

independent of Iq and is also based on the assumption 

majority should win, since pv(wi) has been fixed before 

refining.  Therefore, the performance of RWRM is mainly 

decided by two factors: the assumption majority should win 

and the performance of initial annotation method.  On the 

one hand, because of the assumption majority should win, 

the algorithm is sensitive to the size of candidate annotation 

set.  That is, if the size is too small, the refinement process 

will be less useful; while if the size is too large, there might 

be other noisy candidate annotations that will let the 

assumption majority should win fail.  On the other hand, the 

algorithm is restricted by the performance of initial 

annotation method. 

2.3. The idea to refine image annotation based on 

content analysis 

To fully utilize the correlations between different labels, 

we assume that each label in lexicon is related with other 

labels given a query image, described as follows: 

1
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with constrains: 
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and 
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where p(wi|wj, Iq) is the probability of wi being an annotation 

of Iq given that wj is already an annotation of Iq. 

Let us define {wi |wi∈Ω, i=1,…,N
+
} as the states of a 

first-order homogeneous Markov chain.  Equation 4 is just 

the transition formulation of this Markov chain, and p(wi|wj, 

Iq) corresponds to the one-step transition probability from 

wj to wi. 

Using a certain annotation algorithm, N candidate 

annotations {wi |wi∈Ω, i=1,…,N} out of N
+ 

could be 

obtained first.  By merging all other N
+
-N labels wi 

(i=N+1,…,N
+
) to be one state in the Markov chain, denoted 

as wN+1, the Markov chain with N
+ 
states can be simplified to 

be a chain with N+1 states, described as follows: 
1

1
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In Equation 7, for i, j∈[1,N], p(wi|wj, Iq) represents the 

probability of wi being an annotation of Iq when wj is already 

an annotation of Iq.  For j∈[1,N], p(wN+1|wj, Iq) is the 

probability of Iq annotated by other labels not in the 

candidate set, when wj is already an annotation of Iq. 

Let us compare Equation 7 with Equation 1 and 2.  One 

significant difference is that the transition probability from 

wj to wi is denoted as p(wi|wj, Iq), instead of p(wi|wj).  

Therefore, we can see that the content feature of query 

image is important information for the refinement process, 

which is inappropriate to be ignored.  The transition matrix 

P will be named as query-biased transition matrix (QBTM).  

The Markov chain described in Equation 4 and 7 will be 

named as query-biased Markov chain (QBMC). 

Therefore, we propose to utilize the constructed 

query-biased Markov chain (QBMC) to solve the image 

annotation refinement problem.  Different from existing 

algorithms, QBMC is constructed based on both candidate 

annotations and content features of the query image.  That is, 

transition probabilities between any states are influenced by 

the query image Iq, and the constructed Markov chains are 



 

 

different for different query images, even for the same 

candidate annotation set. 

In this Markov model based formulation, the conditional 

probability of wi is decided by all labels’ conditional 

probabilities p(wj|Iq), which are all needed to be refined 

further.  Therefore, we can rewrite Equation 7 as an iterative 

process as follows: 
1

( 1) (

1

( | ) ( | , ) ( | ) [1, 1])
N

t t
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j
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Based on this formulation, a content-based image 

annotation refinement (CIAR) algorithm is proposed and 

will be described in detail in the next section. 

3. Content-based image annotation 

refinement algorithm 

Given a query image, content-based image annotation 

starts from a set of candidate annotations obtained by an 

existing image annotation algorithm.  Then, the 

query-biased transition probability matrix (QBTM) is 

constructed for the query image using both the content 

feature of the query image and the corpus information.  

Thereafter, the content-based image annotation refinement 

algorithm (CIAR) is used to re-rank the candidate 

annotations.  Finally, the top ranked annotations will be 

reserved as the final annotations. 

3.1. Candidate annotation identification 

Most existing image annotation algorithms can serve for 

identifying a set of candidate annotations for the query 

image.  The Cross-Media Relevance Model (CMRM) [12], 

which was also used in [22], is chosen because of its 

effectiveness.   

CMRM is based on the relevance model [15] proposed 

for information retrieval.  It assumes that regions in an 

image can be described using a vocabulary of blobs.  The 

blobs are generated by clustering the visual features of 

several regions.  For details of CMRM please refer to [12]. 

3.2. Query-biased transition matrix (QBTM) 

We first design a similarity measure between annotations 

named as “query-biased co-occurrence similarity” (QBCS).  

Then, we construct the aforementioned query-biased 

transition matrix (QBTM) from QBCS. 

Let sim(wi,wj) be the QBCS between two candidate 

annotations wi and wj (i,j∈[1,N]).  Besides counting the 

co-occurrence number of the two annotations, we also 

utilize the similarity information between the query image 

and the images annotated by both of wi and wj in training set.  

sim(wi,wj) can be calculated by the following formula: 

( , ) ( , )
ij

i j q

J T

sim w w sim J I
∈

= ∑                         (9) 

where sim(J,Iq) denotes the visual similarity between the 

query image Iq and a training image J.  Tij is the image set 

annotated by both wi and wj in training set.  There are 

several ways to compute sim(J,Iq).  An image J can be 

represented by a global feature vector g or l region-based 

feature vectors ri (i∈[1,l]).  For global feature, sim(J,Iq) can 

be obtained as follows: 

11
( , ) exp{ ( ) ( )}

2 | |

T

q q q
k k
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π

−= − − Σ −
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    (10) 

where g and gq are the global feature vectors of J and Iq, k is 

the dimension of feature vector, and ∑ is a diagonal matrix 

with the diagonal elements being the variances of each 

feature dimension in the training set. 

For region-based features, motivated by the work of [16], 

we use the following formula to calculate the similarity 

between two images: 

1

11
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where nA and nB are the numbers of regions of Iq and J.  ra 

and rb are the a
th

 region feature vector of Iq and the b
th

 region 

feature vector of J. 

Since all the candidate annotations are identified from the 

training set, for a candidate annotation wi, there will always 

be some images annotated with it.  Hence, sim(wi,wi) and 

1

( , )
N

i j

i

sim w w
=

∑  are both positive. 

Based on QBCS, the (N+1)×(N+1) query-biased 

transition matrix (QBTM) P is defined as follows: 
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where β is given as follows: 

[1, ] 1
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N

k j

j N k

sim w wβ ε
∈ =
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where ε is a constant satisfying 0<ε<<1. 

We have the following lemmas about the proposed 

QBTM P: 

Lemma 1: The query-biased transition matrix (QBTM) 

P is non-negative and row-stochastic. 

Proof: (Please refer to the appendix.) 

Therefore, P meets the requirements of a transition 

probability matrix.  

Lemma 2: The query-biased transition matrix (QBTM) 

P is aperiodic and irreducible. 

Proof: (Please refer to the appendix.) 



 

 

3.3. Content-based image annotation refinement 

algorithm (CIAR) 

Let r
(t)

 be the probability vector of all N+1 states wi (i∈
[1,N+1]) at time t.  It is an (N+1)×1 vector with its ith 

element equal to p
(t)

(wi|Iq).  Therefore, we can rewrite 

Equation 8 as follows: 
( 1) ( )t T tr P r+ =                               (14) 

Our goal is to calculate the stationary probability vector 

r
S
 of the query-biased Markov chain, in which the ith 

element denotes the probability of annotating Iq with wi: 

p(wi|Iq).  Therefore, we need to prove that the iteration of 

Equation 14 can converge to one and only r
S
. 

Before proving this, let us recall some basic facts about 

Markov process [6]. 

1) An irreducible, aperiodic, finite, and homogeneous 

Markov chain is ergodic. 

2) An ergodic Markov chain has one and only stationary 

probability vector, which is just the principle eigenvector of 

its transition matrix. 

Based on above facts of Markov chains and lemmas 

aforementioned in Section 3.2, we have the following 

theorem: 

Theorem 1: The proposed query-biased Markov chain 

with query-biased transition matrix P has one and only 

stationary probability vector r
S
.  And, r

S
 is the principle 

eigenvector of P. 

Proof: (Please refer to the appendix.) 

Based on Theorem 1, we can obtain r
S
 by calculating the 

principle eigenvector of P.  When the number of states N is 

large, we can also use power method [11] to calculate r
S
.  

The ith element of r
S
 is just p(wi|Iq), the probability that wi is 

the final annotation of Iq. 

Once p(wi|Iq) (i ∈ [1,N]) is obtained, the top m 

annotations with highest probabilities can be chosen as the 

final annotations. 

4. Experimental results 

4.1. Experimental design 

To evaluate the proposed algorithm, three annotation 

refinement methods were compared: WordNet-based 

method (WNM) [14], Random Walk with Restarts model 

(RWRM) [22], and the proposed content-based image 

annotation refinement (CIAR) algorithm.  Since the three 

image annotation refinement algorithms are all based on an 

existing image annotation algorithm, to be fair, all of them 

use Cross-Media Relevance Model (CMRM) [12] as the 

initial annotation algorithm. 

4.1.1 Data set 

The proposed algorithms were evaluated on Corel dataset 

from [8].  Corel dataset is a basic comparative dataset for 

recent research work in image annotation.  There are 5,000 

images from 50 Stock Photo CDs in this dataset.  Each CD 

includes 100 images on the same topic.  Segmentation using 

normalized cuts [21] followed by quantization ensures that 

there are 1 to 10 blobs for each image.  Each image is 

annotated with 1 to 5 words and there are 374 words and 

500 blobs in the dataset.  Details of the above process are 

described in [8].  

4.1.2 Parameter selection 

We divided the dataset into 3 parts – with 4,000 training 

set images, 500 evaluation set images and 500 testing set 

images.  The evaluation set is used to find optimal system 

parameters.  After fixing the parameters, we merged the 

4,000 training set images and 500 validation set images to 

make a new training set.  This corresponds to the training set 

of 4,500 images and the test set of 500 images used in [8].  

We use the same parameter settings as [12] when we 

implement the CMRM algorithm.  There are several 

similarity measures compared in WNM [14] and the JCN 

measure is proved to be the best one.  The hybrid of these 

measures is orthogonal to our framework and we choose the 

JCN measure when we implement WNM method.  In 

RWRM, the restart parameter c is empirically set to be 0.3 

according to [22]. 

4.1.3 Evaluation measures 

F1 value was used as the performance measure.  It is 

defined as: 2×Precision×Recall / (Precision+Recall).  

Recall of a word wi is defined as the number of images 

correctly annotated with wi divided by the number of images 

that have wi in the ground truth annotation.  Precision of wi 

is defined as the number of correctly annotated images 

divided by the total number of images annotated with wi.  F1 

value is averaged over the subset of the 49 words with best 

performance as in [14] and [22]. 

4.2. Experimental results and analysis 

Figure 2 shows the comparison results of different 

algorithms with the size of the candidate annotations N and 

the number of the final annotations m both evaluated.  With 

N fixed in each sub-image in Figure 2, results of different m 

(from 1 to N) are shown. 

Since the candidate annotations of WNW, RWRM, 

CIAR and CMRM for each test image are alike, their 

performances tend to be consistent when m is approaching 

to N.  Several conclusions could be drawn from Figure 2. 

First, WNW performs worst among the three annotation 

refinement algorithms, and has apparently worse 

performance than the original annotation algorithm CMRM, 

which is consistent with the results of [22].  There are 

mainly two reasons for the poor performance of WNM.  The 

first reason is that the similarities between annotations only 

depend on WordNet, which may be not proper for image 

annotation refinement problem.  There are 49 out of 374 

words of the Corel dataset that either do not exist in 
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(a) N = 5 
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                                                 (b) N = 6 
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(c) N = 7 
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                                                 (d) N = 8 

Figure 2: Performance comparison of different algorithms 
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Figure 3: Performance comparison of different algorithms with m fixed to be 2 

WordNet lexicon or have zero similarity with all other 

words using the JCN measure.  Moreover, the similarity 

defined using WordNet is sometimes not appropriate for the 

annotation refinement problem.  For example, “mountain” 

and “sky” usually appear in a scenery photo together, while 

“tree” and “flag” seldom simultaneously appear in an image.  

However, with the JCN measure, the similarities of the 

above two pairs of words are 0.061 and 0.148 respectively, 

which is unreasonable.  The second reason is due to the 

assumption majority should win.  It is risky or misleading 

when the majority of the candidate annotations are noisy 

words.  Therefore, by leveraging the information of corpus 

or training set, both RWRM and CIAR consistently 

outperform WNM to large extent. 

Second, although RWRM greatly outperform WNM, it is 

only slightly better than CMRM.  The main limitation of 

RWRM is its independence of the original query image and 

the content information of training set.  The ignorance of 

content information will result in the same problem as 

WNM, when the majority of the candidate annotations are 

noisy words. 

Third, CIAR greatly outperforms other algorithms.  The 

formulation of Markov process for annotation refinement 

and the dependency of content information of the original 

query image guarantee its effectiveness in the image 

annotation refinement problem. 

Finally, unlike the curves of other algorithms, which 

reach their peaks when m reaches N, the curve of CIAR 

reaches its peak when m is 4 for each N from 5 to 8.  It is 

consistent with the fact that the average ground truth 

annotations in the testing set is just about 4.  It is also a 

reflection of the properness of CIAR. 



 

 

Images 

  
 

Image ID 108019 109012 163068 

CMRM Annotations grass, albatross, wings, cat water, sky, tree, people tree, water, sky, grass 

CIAR Annotations 

(N＝10, m=4) 
grass, cat, tiger, forest tree, water, people, snow birds, tree, grass, water 

Figure 4: Sample annotations before and after refinement using CIAR. 

Figure 3 shows the results in a different view, in which N 

is changed along the horizontal with m fixed to be 2.  Notice 

that if m is fixed, the performance of CMRM is independent 

of N, since CMRM is the original annotation method 

without further refinement.  From Figure 3, another two 

conclusions could be drawn. 

First, the performances of both WNM and RWRM are 

decreasing as N is increased.  The main reason is that both of 

the two algorithms are based on the assumption majority 

should win.  Thus, both of WNM and RWRM are sensitive 

to the size of candidate annotation set.  The larger N is, the 

noisier the words may be.  These two algorithms only work 

well when majority annotations are accurate, which is 

difficult to be achieved since the existing annotations are far 

from perfect. 

Second, an increasing trend can be seen on the curve of 

CIAR method, as N is becoming larger.  This is an 

illustration that CIAR method is not based on the 

assumption majority should win, and the increase of 

candidate annotation size cannot deteriorate the 

performance of CIAR, but provide more chances to search 

for related annotations. 

In Figure 4, we provide sample annotations before and 

after refinement using the proposed CIAR algorithm.  They 

show that CIAR algorithm can propagate more accurate 

annotation results compared with the original annotation 

method. 

5. Conclusions 

In this paper, we have presented a novel approach to 

automatically refining the original imprecise annotations of 

a query image.  First, an existing image annotation method 

is employed to retrieve a set of candidate annotations.  Then, 

the candidate annotations are re-ranked and only the top 

ones are reserved as the final annotations.  By formulating 

image annotation refinement process as a Markov process 

and defining the candidate annotations as the states of a 

Markov chain, a content-based image annotation refinement 

(CIAR) algorithm is proposed to re-rank the candidate 

annotations, leveraging both the corpus information and the 

content feature of the query image.  Experimental results 

show not only the validity of the refinement, but also the 

superiority of the proposed algorithm over existing ones.  

Appendix A 

In the appendix, we will prove Theorem 1 mentioned in 

Section 3.3.  The proof of Theorem 1 will be given, after the 

proofs of 3 lemmas. 

Lemma 1:  The query-biased transition matrix (QBTM) 

P is non-negative and row-stochastic. 

Proof: Based on Equation 9 and 12, we know that each 

element in matrix P is non-negative, and sum of each row of 

matrix P is 1.  That means P is a non-negative and 

row-stochastic matrix. 

Lemma 2: The query-biased transition matrix (QBTM) 

P is aperiodic and irreducible. 

Proof: Since all the diagonal elements of matrix P are 

positive (see Section 3.2), according to the periodicity 

theory of Markov chain, the periodicity of each state is 1.  

That is, all the states are aperiodic.  Therefore, the 

query-biased transition matrix P is aperiodic. 

From Equation 7, we can see that, besides the first N 

states representing N candidate labels, we add the (N+1)-th 

state to represent “other possible labels”.  Equation 12 and 

13 show that all the transition probabilities between the first 

N states and the (N+1)-th state are positive.  Therefore, all 

the N+1 states in the proposed Markov chain are connected, 

which means that the transition matrix P is irreducible. 

Lemma 3: If the transition matrix P of a finite and 

homogeneous Markov chain MC is aperiodic, and 

irreducible, then iterative calculation r
(t+1)

=P
T
r

(t)
 converge 

to the principle eigenvector of P. (Assume r
(0)

 is a positive 

and normalized vector.) 

Proof: Lemma 3 can be proved based on the following 



 

 

basic facts about Markov process [6]: 

1) An irreducible, aperiodic, finite and homogeneous 

Markov chain is ergodic. 

2) An ergodic Markov chain has one and only stationary 

probability vector, which is just the principle eigenvector of 

transition matrix. 

Theorem 1: The proposed query-biased Markov chain 

with query-biased transition matrix P has one and only 

stationary probability vector r
S
.  And, r

S
 is the principle 

eigenvector of P. 

Proof: According to lemma 1 and 2, P is an aperiodic and 

irreducible transition probability matrix.  According to 

lemma 3, we know that the iterative calculation r=P
T
r 

converge to the principle eigenvector of P, which completes 

the proof.   
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