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Abstract

In this work, we systematically study the problem of
visual event recognition in unconstrained news video se-
quences. We adopt the discriminative kernel-based method
for which video clip similarity plays an important role.
First, we represent a video clip as a bag of orderless de-
scriptors extracted from all of the constituent frames and
apply Earth Mover’s Distance (EMD) to integrate similari-
ties among frames from two clips. Observing that a video
clip is usually comprised of multiple sub-clips correspond-
ing to event evolution over time, we further build a multi-
level temporal pyramid. At each pyramid level, we integrate
the information from different sub-clips with Integer-value-
constrained EMD to explicitly align the sub-clips. By fus-
ing the information from the different pyramid levels, we
develop Temporally Aligned Pyramid Matching (TAPM)
for measuring video similarity. We conduct comprehen-
sive experiments on the Trecvid 2005 corpus, which con-
tains more than 6,800 clips. Our experiments demonstrate
that 1) the TAPM multi-level method clearly outperforms
single-level EMD, and 2) single-level EMD outperforms by
a large margin (43.0% in Mean Average Precision) basic de-
tection methods that use only a single key-frame. Extensive
analysis of the results also reveals an intuitive interpretation
of subclip alignment at different levels.

1. Introduction

Event recognition from visual cues is a challenging task
because of complex motion, cluttered backgrounds, occlu-
sions, as well as geometric and photometric variances of
objects. Previous work on video event recognition can be
roughly classified as either activity recognition or abnormal
event recognition. In model-based approaches to activity
recognition, frequently-used models include HMM [17] and
Dynamic Bayesian Network [16]. The work in [21] mod-
eled each activity with a nominal activity trajectory and one
function space for time warping. For model-based abnor-

mal event recognition, Zhang et al. [22] used a semisuper-
vised adaptive HMM framework. To model the relationship
between different parts or regions, object tracking is usu-
ally performed before model learning [17]. Additionally
these techniques heavily rely on the choice of good mod-
els, which in turn require sufficient training data to learn the
model parameters.

Appearance-based techniques extract spatio-temporal
features in the volumetric regions, which can be densely
sampled or detected by salient region detection algorithms.
For abnormal event recognition, Boiman and Irani [2] pro-
posed to extract an ensemble of densely sampled local video
patches to localize irregular behaviors in videos. For activ-
ity recognition, Ke et al. [10] applied boosting to choose
volumetric features based on optical flow representations.
[5] also used optical flow measurements in spatio-temporal
volumetric regions. Other researchers extracted volumet-
ric features from regions with significant local variations in
both spatial and temporal dimensions [11, 15]. The per-
formance of appearance-based techniques usually depends
on reliable extraction of the spatial-temporal features and/or
the salient regions, which are often based on optical flow or
intensity gradients in the temporal dimension. This makes
the approach sensitive to motion, e.g., the detected interest
regions are often associated with high-motion regions [10].

The extensive works mentioned above have demon-
strated promise for event detection in domains such as sur-
veillance or meeting room video. However, generalization
to less constrained domains like broadcast news or con-
sumer videos has not been demonstrated. Recently, due to
the emerging applications of open-source intelligence and
online video search, the research community has shown
increasing interest in event recognition in broadcast news
videos. Large-Scale Concept Ontology for Multimedia
(LSCOM) [3] [14] has defined 56 event/activity concepts,
covering a broad range of events such as car crash, demon-
stration, riot, running, people marching, shooting, walking,
and so on. These events were selected through a triage
process based on input from a large group of participants
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including video analysts, knowledge representation experts,
and video analytics researchers. Manual annotation of such
event concepts have been completed for a large data set in
TRECVID 2005 [3].

Compared with prior video corpora used in abnormal
event recognition and activity recognition, news videos are
more diverse and challenging, due to the large variations
of scenes and activities. Events in news video may involve
small objects located in arbitrary locations in the image un-
der large camera motions. Therefore, it is difficult to reli-
ably track moving objects in news video, detect the salient
spatio-temporal interest regions, and robustly extract the
spatial-temporal features.

To address the challenges of news video, Ebadollahi et
al. [4] proposed to treat each frame in the video clip as an
observation and apply HMM to model the temporal patterns
of event evolution. Such approaches are distinct from most
of the prior event recognition techniques since they circum-
vent the need for object tracking. In contrast, holistic fea-
tures are used to represent each frame and the focus is on
the modeling of temporal characteristics of events. How-
ever, results shown in [4] did not confirm clear performance
improvement over a simplistic detection method using sta-
tic information in key-frames only. This is perhaps due to
the lack of a large training set required to learn the model
parameters.

In this work, we also adopt static representations for im-
age frames without object tracking or spatio-temporal in-
terest region detection. We propose a non-parametric ap-
proach in order to circumvent the problems of insufficient
training data and to simplify the training process. We inves-
tigate how to efficiently utilize the information from multi-
ple frames as well as the temporal information within each
video clip. To this end, we first represent one video clip as
a bag of features, extracted from all the frames. To han-
dle the temporal shift in different video clips, we apply the
Earth Mover’s Distance (EMD) [18], referred to as single-
level EMD in this work, to measure video clip similarity,
and combine it with SVM kernel classifiers for event de-
tection. Single-level EMD computes the optimal flows be-
tween two sets of frames, yielding the optimal match be-
tween two frame sets, as shown in Fig. 1(a). With different
settings of the feature weights (discussed in Sec. 2), EMD
methods may be used to partially address the duration vari-
ation of events.

We also observe that one video clip is usually comprised
of several sub-clips, which correspond to multiple stages of
event evolution. For example, Fig. 2(a) and Fig. 2(f) show
two news video clips in the “riot” class, both of which con-
sist of distinct stages of fire, smoke, and/or different back-
grounds. Given such multi-stage structures, it makes sense
to extend the single-level EMD mentioned above to multi-
ple scales. Specifically, we propose a Temporally Aligned
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Figure 1. Illustration of matching in single-level EMD (a) and
TAPM (b). For better viewing, please see the color pdf file.

Pyramid Matching (TAPM) framework, in which temporal
matching is performed in a multi-resolution fashion. As
shown in Fig. 1(b), frames in a sub-clip (conceptually cor-
responding to an event stage) are matched to frames in the
same sub-clip in the other video, rather than spread over
multiple sub-clips in Fig. 1(a). Such constraints may seem
to be over-restrictive, but it explicitly utilizes the temporal
information and is experimentally demonstrated to be effec-
tive for improving detection accuracy of several events in
Section 4. Furthermore, there is no prior knowledge about
the number of stages in an event, and videos of the same
event may include a subset of stages only. To address this
problem, we propose to fuse the matching results from mul-
tiple temporal scales, in a way similar to that used in Spatial
Pyramid Matching (SPM) [12] and Pyramid Match Kernel
(PMK) [6] for object recognition. However, it is impor-
tant to note that in TAPM, unlike the fixed block-to-block
matching method used in SPM, the sub-clips at different
temporal locations may be matched as shown in Fig. 2(b),
which will be explained in detail in Section 3.2.

We conduct comprehensive experiments on the large
TRECVID 2005 database, and the experiments demonstrate
that 1) TAPM clearly outperforms single-level EMD and 2)
single-level EMD outperforms basic detection methods that
use only one key-frame. To the best of our knowledge, this
is the first work to systematically study the problem of vi-
sual event recognition in broadcast news video without any
specific parametric model and object tracking.

2. Single-level Earth Mover’s Distance in The
Temporal Domain

EMD has shown promising performance in several dif-
ferent applications, such as content based image retrieval
[9, 18], texture classification and general object recognition
[23]. In this section, we develop a single-level EMD, to
efficiently utilize the information from multiple frames for
event recognition. We will extend this method to multiple
levels in the next section. One video clip P can be rep-
resented as a signature: P = {(p1, wp1), . . . , (pm, wpm)},



where m is the total number of frames, pi is the feature
extracted from the i-th frame, wpi is the weight of the i-
th frame. The weight wpi is used as the total supply of
suppliers or the total capacity of consumer in the EMD
method, with the default value of 1/m 1. pi can be any
feature, such as Grid Color Moment [1] or Gabor Texture
[1]. We also represent another video clip Q as a signature:
Q = {(q1, wq1), . . . , (qn, wqn)}, where n is the total num-
ber of frames, and qi and wqi = 1/n are defined similarly.
The EMD between P and Q can be computed by

D(P, Q) =

∑m
i=1

∑n
j=1 f̂ijdij∑m

i=1

∑n
j=1 f̂ij

(1)

where dij is the ground distance between pi and qj (we use
Euclidian distance as the ground distance in this work 2),
and f̂ij is the optimal flow that can be determined by solving
the following linear programming problem in Eq. (2). f̂ij

can be interpreted as the optimal match among frames from
two video clips, as shown in Fig. 1(a).

f̂ij = arg min
fij

m∑
i=1

n∑
j=1

fijdij

s.t.

m∑
i=1

n∑
j=1

fij = min(
m∑

i=1

wpi ,

n∑
j=1

wqj ); fij ≥ 0;

n∑
j=1

fij ≤ wpi , 1 ≤ i ≤ m;
m∑

i=1

fij ≤ wqj , 1 ≤ j ≤ n. (2)

Since Euclidean distance is a metric and the total weight
of each clip is constrained to be 1, the EMD distance is
therefore a true distance because non-negativity, symmetry
and the triangle inequality holds in this case [18]. Suppose
the total number of frames in two video clips are the same,
i.e., m = n, then the complexity of EMD is O(m3log(m))
[18].

We apply EMD [18] in the temporal dimension to ef-
ficiently handle temporal shifts and different numbers of
frames in different video clips. Fig. 2 (a) and Fig. 2 (f)
show all the frames of the two video clips P (or P 0) and
Q (or Q0) from the “riot” class. Fig. 2(b) shows two rep-
resentive key-frames provided by the TRECVID data set.
The ground distance matrix and the flow matrix between
the frames of P and Q are shown in Fig. 2(c), in which the
brighter pixels indicate that the values at that position are
larger. In Fig. 2(c), we also use the red circles to indicate
the positions of two key-frames. From this, we can see that

1Our experiments demonstrate that EMD with the normalized value
works better than other possible weights, e.g. unit weight 1. The same set-
ting was also used in [9][23]. We note that we may sacrifice event duration
invariance to some extent with this setting.

2While it is also possible to use other distances in EMD, we choose
Euclidian distance because of its simplicity and successful use in [9][23].

the flow (calculated from the EMD process) between these
two key-frames is very small, confirming that a key-frame
based representation is not sufficient for capturing charac-
teristics over multiple frames of the same event class. In
Fig. 2(c), we also use four green circles to highlight that the
neighboring frames from the first stage of P are matched
to distant frames scattered among several different stages of
Q. In other words, temporal information among frames is
not utilized in this single-level EMD method. In the next
section, we will propose a multi-resolution framework to
partially preserve the proximity relations.

For classification, we use a Support Vector Machine
(SVM) because of its good performance [6, 9, 12, 23]. For
a two-class (e.g., “riot” vs. “others” ) case, the decision
function for a test sample P has the following form:

g(P ) =
∑

o

αoyoK(P, Qo) − b, (3)

where K(P, Qo) is the value of a kernel function for the
training sample Qo and the test sample P , yo is the class la-
bel of Qo (+1 or −1), αo is the learnt weight of the training
sample Qo and b is the threshold parameter. The training
samples with weight αo > 0 are called support vectors. We
use the Gaussian function to incorporate EMD distance into
the SVM framework:

K(P, Q) = exp(− 1
A

D(P, Q)). (4)

We set hyper-parameter A to κA0 where the normalization
factor A0 is the mean of the EMD distances between all
training video clips, and the optimal scaling factor κ is em-
pirically decided through cross-validation. While no proof
exists for the positive definiteness of the EMD-kernel, in our
experiments this kernel has always yielded positive definite
Gram matrices. Furthermore, as shown in [9][23], EMD-
kernel works well in content based image retrieval and ob-
ject recognition.

3. Temporally Aligned Pyramid Matching

We observe that one video clip is usually comprised of
several sub-clips, which correspond to event evolution over
multiple stages. For example, from Fig. 2(a) and (f), we
can observe that videos from the “riot” class may consist
of two stages, involving varying scenes of fire and smoke,
and different locations. Recent works such as Spatial Pyra-
mid Matching [12] and Pyramid Match Kernel [6] have
demonstrated that better results may be obtained by fusing
the information from multiple resolutions according to the
pyramid structure in the spatial domain and feature domain
respectively. Inspired by their work, we propose to apply
Temporal-constrained Hierarchical Agglomerative Cluster-
ing (T-HAC) to build a multi-level pyramid in the tempo-
ral domain. According to the multi-level pyramid struc-
ture, each video clip is divided into several sub-clips, which
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Figure 2. Conceptual illustration for Temporally Aligned Pyramid Matching. For better viewing, please see the color pdf file. (a)(f) Frames
from two videos, P and Q, from the “riot” class are segmented into multiple sub-clips. (b) One key-frame for each clip. (c) Ground
distance matrix and continuous-value flow matrix from the single-level EMD alignment process. The red circles indicate the locations of
the key-frames in the corresponding video clips. The green circles highlight the problem that one frame may be matched to multiple frames
that are far apart. (d)(e) The EMD distance matrix between the sub-clips and its corresponding integer-value flow matrices are shown at
level-1 and level-2. In contrast to (c), the first several frames in P can only be matched to frames within a sub-clip of the same border color
in Q, thus temporal proximity is preserved.

may represent an evolution stage of the event. From now
on, we denote the video clip at level-0 (i.e., the original
video clip) as P 0 or P and the sub-clips at level-l as P l

r ,
r = 1, . . . , R = 2l, l = 0, . . . , L − 1 with L as the total
number of levels. For example, as shown in Fig. 2(a) and
(f), four sub-clips at level-2 are denoted as P 2

1 , P 2
2 , P 2

3 and
P 2

4 , which are bounded with solid bounding box, and two
sub-clips at level-1 are denoted as P 1

1 and P 1
2 , which are

bounded with a dashed bounding box.
We also observe that in broadcast news videos, event

stages of two different clips of the same event in general
may not follow a fixed temporal order. To address this prob-
lem, we integrate the information from different sub-clips
with Integer-value-constrained EMD to explicitly align the
orderless sub-clips. Finally, we fuse the information from
different levels of the pyramid, which results in the Tempo-
rally Aligned Pyramid Matching (TAPM).

3.1. Temporal Constrained Hierarchical Agglomer-
ative Clustering

We use Hierarchical Agglomerative Clustering [7] to de-
compose a video into sub-clips. Clusters are constructed by

iteratively combining existing clusters based on their dis-
tances. To incorporate temporal information, we propose
to use Temporal Constrained Hierarchical Agglomerative
Clustering (T-HAC) 3, in which at each step we only merge
neighboring clusters in the temporal dimension. Examples
of the clustering results are also shown in Fig. 2(a) and (f). It
is obvious that T-HAC provides a reasonable pyramid struc-
ture in the temporal dimension. We also note that how to ac-
quire the optimal clustering results is still an open problem,
and other clustering algorithms may be used in our frame-
work.

3.2. Alignment of Different Sub-clips

After we build the pyramid structure in the temporal di-
mension, for two video clips P and Q, we need to com-
pute level-l distance Sl(P, Q) between them. Firstly, we
apply Eq. (1) to compute the EMD distance Dl. Fig. 2 (d)
and (e) (the left-hand-side matrices) show examples for P
and Q at level-1 and level-2 respectively, in which again a
higher intensity represents a higher value between the cor-

3A simple solution for dividing video clips into different stages is to
uniformly partition one clip into several sub-clips.



responding sub-clips. For example, at level-2, we compute
a 4×4 EMD distance matrix with its elements denoted as
D2

rc, the EMD distance between P 2
r and Q2

c , r = 1, . . . , 4
and c = 1, . . . , 4. If we uniformly partition video clips into
the sub-clips, the complexity involved in computing level-
l distance is O((2−lm)3log(2−lm)), which is significantly
lower than the single-level EMD (i.e., l = 0). Therefore,
fusing information from multiple levels does not add a sig-
nificant computational cost to the overall detection method.

If we follow the same strategy as in Spatial Pyramid
Matching [12], which assumes that the corresponding sub-
regions of any scene category are well aligned according to
their position in the images, we can take the sum of the diag-
onal elements of Dl as the level-l distance. However, from
Fig. 2(d), it is obvious that the diagonal elements of Dl are
very large, because the first half stages of P and the last half
stages of Q focus on the fire scene, and the last half stages
of P and the first half stages of Q focus more on smoke and
the nature scene. Thus it is desirable to align the subclips
inversely in the temporal domain. Similar observations can
be found from the EMD distance at level-2 in Fig. 2(e).

To explicitly align the different sub-clips and utilize the
temporal information, we constrain the linear programming
problem in EMD to an integer solution (i.e., Integer Pro-
gramming). Such an integer solution can be conveniently
computed by using standard tools (e.g., simplex method
from Matlab) for Linear Programming, according to the fol-
lowing Theorem 1:

Theorem 1 ([8]) For the Linear Programming problem,

arg min
Frc

R∑
r=1

C∑
c=1

FrcDrc, s.t. 0 ≤ Frc ≤ 1, ∀r, c;

∑
c

Frc = 1, ∀r;
∑

r

Frc = 1, ∀c; and R = C, (5)

it will always have an integer optimum solution when solved
with the simplex method.

More details about the theorem can be found in [8].
We use the integer-value constraint to explicitly enforce
the constraint that neighboring frames from a sub-clip are
mapped to neighboring frames in the same sub-clip in the
other video. Without such an integer-value constraint, one
sub-clip may be matched to several sub-clips, resulting in a
problem that one frame is mapped to multiple distant frames
(as highlighted by the green circles in Fig. 2(c)). Note that
non-integer mappings are still permitted at level-0 so that
soft temporal alignments of frames are still allowed within
a sub-clip. Similar to Eq. (1), level-l distance Sl(P, Q) be-
tween two clips P and Q can be computed from integer-
value flow matrix F l and the distance matrix Dl by

Sl(P, Q) =
∑R

r=1

∑C
c=1 F l

rcD
l
rc∑R

r=1

∑C
c=1 F l

rc

(6)

where R = C = 2l, and F l
rc are 0 or 1.

Again, we take the sub-clips at level-1 as an example.
According to Theorem 1, we set R = C = 2, and ob-
tain a 2×2 integer flow matrix F 1

rc, as shown in Fig. 2(d)
(the right-hand-side matrix). From it, we can find that
two sub-clips of P and Q are correctly aligned (i.e., in-
versely aligned). Similar observations at level-2 can be
found in the right-hand-side matrix of Fig. 2(e), where we
set R = C = 4. In Fig. 2 (a) and (f), the aligned sub-clips
are shown with the same border color.

For each level l, with the level-l distances Sl(P, Q), we
also apply Eq. (4) to compute its kernel matrix. In the train-
ing stage, we train a level-l SVM model for each level l.
In the testing stage, for each test sample P , according to
Eq. (3), we can obtain the decision values g0(P ), g1(P ),
g2(P ) and so on from the SVM models trained at different
levels.

3.3. Fusion of Information from Different Levels

As shown in [12], the best results can be achieved when
multiple resolutions are combined, even when some resolu-
tions do not perform well independently. In this work, we
directly fuse the decision values gl(P ), l = 0, . . . , L − 1
from different level SVM models:

gf (P ) =
L−1∑
l=0

hl

1 + exp(−gl(P ))
, (7)

where hl is the weight for level-l.
In our experiments, we set L = 3. We tried two weights:

1) equal weights, h0 = h1 = h2 = 1, and 2) the weights
suggested in [6, 12], i.e., h0 = h1 = 1, h2 = 2. The exper-
iments demonstrate that the results with equal weights are
comparable to or slightly better than the weights suggested
in [6, 12].

4. Experiments

We conduct experiments over the large TRECVID 2005
video corpus to compare 1) our single-level EMD algo-
rithm, i.e., TAPM at level-0, with the simplistic detector
that uses a key-frame only; 2) multi-level TAPM with the
single-level EMD method. In addition, we also compare
TAPM with temporal pyramid matching without alignment.
We chose the following ten events from the LSCOM lexicon
[3] [14]: Car Crash, Demonstration Or Protest, Election
Campaign Greeting, Exiting Car, Ground Combat, People
Marching, Riot, Running, Shooting and Walking. They are
chosen because 1) these events had relatively higher oc-
currence frequency in the TRECVID data set [14]; 2) in-
tuitively they may be recognized from visual cues. The
number of positive samples for each event class ranges from
54 to 877. We also construct a background class (contain-
ing 3,371 video clips), which does not overlap the above
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Table 1. Average Precision (%) at different levels of TAPM. Note that the results of L0 are from Single-level EMD (SLEMD) and the
results of KF-CS are from the key-frame based algorithm using the concept score features. The last row, referred as Mean AP, is the mean
of APs over ten events.

Event Name KF-CS L0 (SLEMD) L1 L2 L0+L1 L0+L1+L2 L0+L1+L2-d

Car Crash 10.5 39.2 49.2 50.5 49.2 51.1 51.0
Demonstration Or Protest 16.0 21.9 22.7 21.3 23.6 23.6 23.6

Election Campaign Greeting 7.2 12.7 12.2 12.7 13.4 13.9 13.7
Exiting Car 15.6 46.2 49.3 40.2 51.4 50.7 50.1

Ground Combat 38.8 41.9 43.9 43.3 43.9 44.2 44.1
People Marching 19.5 21.4 24.5 24.9 25.7 25.8 25.8

Riot 11.1 19.9 20.8 17.5 22.8 22.7 22.9
Running 78.9 85.7 83.9 85.3 86.6 86.7 86.6
Shooting 9.6 9.9 10.7 8.6 12.2 10.4 9.9
Walking 37.1 50.1 52.1 52.4 51.1 52.4 52.8
Mean AP 24.4 34.9 36.9 35.7 38.0 38.2 38.1

10 events. When training the SVM, the negative samples
for each event comprise the video clips from the other nine
events and the background class. We randomly choose 60%
of the data for training and use the remaining 40% for test-
ing. For a performance metric, we use non-interpolated Av-
erage Precision (AP) [20], which has been used as the of-
ficial performance metric in TRECVID. It corresponds to
the area under the (non-interpolated) recall/precision curve,
and incorporates the effect of recall when AP is computed
over the entire classification result set.

4.1. Data Set Description and Annotation

We provide additional information about the data set and
the selected event classes in this section. The TRECVID
video corpus is probably the largest annotated video bench-
mark data set available to researchers today. Through the
LSCOM effort, 449 semantic concepts have been manually
annotated by a large student group to describe the visual
content in each of the 61,901 subshots. The video data
includes 137 video programs from six broadcast sources
(English, Arabic, and Chinese), covering realistic and di-
verse visual content. Among the annotated concepts, 56 be-
long to the event/activity category, 10 of which are chosen

as our evaluation set in this paper.
The first version of the LSCOM annotation labels (avail-

able at [3]) were obtained by having the human annotators
look at a key-frame for each subshot, in order to improve
throughput in the annotation process. Such a process is ade-
quate for static concepts (e.g., indoor, people), but deficient
for judging event labels. Hence, in this paper, we have con-
ducted further steps to refine the event labels by having an
annotator view all the frames in a shot 4 in order to judge the
presence of the event and obtain the precise start/end bound-
aries of the event. We will make the refined event annota-
tions (3,435 positive clips in total over 10 events) publicly
available. We believe this benchmark set from broadcast
news and our annotation effort nicely complement the ex-
isting video event evaluation sets, which are usually drawn
from the surveillance and meeting room domains.

4.2. Single-level EMD vs. Key-frame based

First, we compare our single-level EMD algorithm to the
key-frame based algorithm that has been frequently used in

4TRECVID merges a subshot shorter than 2 seconds with its previous
subshot to form a shot. We refine the event labels at the shot level.



TRECVID [20]. We consider three low-level global fea-
tures. For the Grid Color Moment (GCM) feature [1], we
extract the first 3 moments of 3 channels of the CIE Luv
color space over 5 × 5 fixed grid partitions, and aggregate
the features into a single 225-dimensional feature vector.
For the Gabor Texture (GT) feature [1], we take 4 scales
and 6 orientations of Gabor transformations and further use
their means and standard deviations, giving a dimension of
48. For the Edge Direction Histogram (EDH) feature [1],
we extract 73 dimensions with 72 bins for edge direction
quantized at 5 degrees and one bin for non-edge points.

In addition to the low-level features, we also include a
mid-level representation, in which each image is mapped to
a vector in a high-dimensional semantic space. Each ele-
ment of the semantic vector represents the confidence score
produced by a semantic concept classifier. Such a mid-
level representation has shown promise for abstracting vi-
sual content [1]. In this paper, we use a 108-dimensional
Concept Score (CS) vector, whose elements are the deci-
sion values of independent SVM classifiers. These SVM
classifiers are independently trained using each of the three
low-level features mentioned above for detecting the 36
LSCOM-lite concepts. 5

While it is possible to use other local features, such as
tf-idf features [19] based on SIFT local descriptors [13],
we use the above global features and scene-level concept
scores because: 1) they can be efficiently extracted over
the large video corpus; 2) they have been shown effective
for detecting several concepts in previous TRECVID exper-
iments [1]; 3) they are suitable for capturing the charac-
teristics of scenes in some events such as Riot, Car Crash,
Exiting Car, and so on. Examples of the dominant scenes
for the “riot” class are shown in Fig. 2, and the experimen-
tal results shown in this section also confirm the potential of
the representations.

The classical key-frame based algorithm [1] for event
recognition only considers information from the key-
frames. Namely, they applied SVM on the kernel ma-
trix computed between the key-frames of every two clips.
The experimental results, shown in Fig. 3, confirm that
the single-level EMD algorithm that considers alignment
among multiple frames achieves much better accuracy than
the key-frame based algorithm. Using the concept score
feature, the relative improvement by the single-level EMD
method can be as high as 273.3% for some concepts, e.g.,
AP for the “car crash” event class increases from 10.5% to
39.2%. The relative improvements of Mean Average Preci-

5The LSCOM-lite lexicon includes the 39 dominant visual concepts
present in broadcast news videos, covering objects (e.g., car, flag), scenes
(e.g., outdoor, waterscape), locations (e.g., office, studio), people (e.g.,
person, crowd, military), events (e.g., people walking or running, people
marching), and programs (e.g., weather, entertainment). Three of them
overlap with our target concepts of events and thus are not used for our
mid-level representations.

sion (MAP), which is the mean of APs over ten events, are
43.0%, 44.6%, 10.8% and 24.2%, using the concept score,
GT, EDH, or GCM features respectively. These numbers
also confirm that the performance from the concept score
feature is significantly better than that using the other three
low-level features. A possible explanation is that concept
scores, fusing the decisions from 108 independent classi-
fiers, effectively integrate information from multiple visual
cues and abstract the low-level features into a robust mid-
level representation. In the following experiments, we only
use the concept score feature.

4.3. Multi-level Matching vs. Single-Level EMD

We conduct experiments to compare TAPM at different
levels using the concept score feature. Table I shows the re-
sults at three individual levels - level-0, level-1 and level-2,
labeled as L0, L1, L2 respectively. Note that TAMP at level-
0 is equivalent to the single-level EMD algorithm. We also
report results using combinations of the first two levels (la-
beled as L0+L1) and all three levels (labeled as L0+L1+L2)
with uniform weights. In addition, we experimented with
non-uniform weights, h0 = h1 = 1, and h2 = 2, which
have been proposed in [6, 12] for fusing multiple scales in
pyramid matching. We label such a combination method as
L0+L1+L2-d.

From Table I, it is obvious that methods fusing infor-
mation from different levels, L0+L1 and L0+L1+L2 gen-
erally outperform the individual levels, demonstrating the
contribution of our multi-level pyramid match algorithm.
When comparing L0+L1+L2 with the level-0 algorithm,
i.e., single-level EMD, the MAP over ten event classes is
increased from 34.9% to 38.2%, equivalent to a 9.5% rel-
ative improvement. Some event classes enjoy large perfor-
mance gains, e.g., the AP for the “car crash” event increases
from 39.2% to 51.1%. In our experiments, L0+L1+L2 with
equal weights is usually comparable to or slightly better
than L0+L1+L2-d.

Table I also shows the contribution from each individual
level. It is intuitive that the transition from the key-frame
based method to the single-level EMD based method (L0)
produces the largest gain (24.4% to 34.9%). Adding in-
formation at level-1 (i.e., L1) helps in detecting almost all
events, with the “car crash” class having the largest gain.
Additional increases in the temporal resolution (i.e., L1 to
L2) result in only marginal performance differences, with
degradation even seen in some events (like “Exiting car”,
“riot” and “shooting”). The possible explanation is that
videos only contain limited stages because the videos in
our experiments are relatively short. So the performance
using finer temporal resolutions is not good. Though our
multi-resolution framework is general, at least for the cur-
rent corpus, it is sufficient to include just the first few levels,
instead of much higher temporal resolutions. This is con-



sistent with the findings reported in prior work using spatial
pyramid matching for object recognition [12].

The results in Table I also indicate that there is no sin-
gle level that is universally optimal for all different events.
Therefore, a fusion approach combining information from
multiple levels in a principled way is the best solution in
practice.

4.4. The Effect of Temporal Alignment

To verify the effect of temporal alignment on detection
performance, we also conducted experiments to evaluate an
alternative method using temporal pyramid match without
temporal alignment at level-1 and level-2. In such a detec-
tion method, sub-clips of one video are matched with sub-
clips of the other video at the same temporal locations in
each level. In other words, only values on the diagonal po-
sitions of the distance matrices shown in Fig. 2 (d) and (e)
are used in computing the distance between two video clips.
The process of finding the optimal flows among sub-clips is
not applied. Our experimental results showed that such sim-
plification significantly degrades the event detection perfor-
mance, with 18.7% and 17.8% reductions in level-1 and
level-2 respectively in terms of MAP over ten events. This
confirms that temporal alignment in each level of the pyra-
mid plays an important role.

5. Contributions and Conclusion

In this work, we study the problem of visual event recog-
nition in unconstrained broadcast news videos. The diverse
content and large variations in news video make it diffi-
cult to apply popular approaches using object tracking or
spatio-temporal appearances. In contrast, we adopt simple
holistic representations for each image frame and focus on
novel temporal matching algorithms. We apply the single-
level EMD method to find optimal frame alignment in the
temporal dimension and thereby compute the similarity be-
tween video clips. We show that the mid-level representa-
tion based on semantic concepts produces a significantly su-
perior accuracy compared to classical image-level features.
We also show that the single-level EMD based temporal
matching method outperforms the key-frame based classifi-
cation method by a large margin. Additionally, we propose
Temporally Aligned Pyramid Matching to further improve
event detection accuracy by fusing information from mul-
tiple temporal resolutions and explicitly utilizing the tem-
poral information. To the best of our knowledge, this work
represents the first systematic study of diverse visual event
recognition in the unconstrained broadcast news domain,
with clear performance improvements.
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