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Abstract

Most shape matching methods are either fast but too sim-

plistic to give the desired performance or promising as far

as performance is concerned but computationally demand-

ing. In this paper, we present a very simple and efficient ap-

proach that not only performs almost as good as many state-

of-the-art techniques but also scales up to large databases.

In the proposed approach, each shape is indexed based on a

variety of simple and easily computable features which are

invariant to articulations and rigid transformations. The

features characterize pairwise geometric relationships be-

tween interest points on the shape, thereby providing ro-

bustness to the approach. Shapes are retrieved using an

efficient scheme which does not involve costly operations

like shape-wise alignment or establishing correspondences.

Even for a moderate size database of 1000 shapes, the re-

trieval process is several times faster than most techniques

with similar performance. Extensive experimental results

are presented to illustrate the advantages of our approach

as compared to the best in the field.

1. Introduction

Shapes show a great deal of intra-class variability in-

cluding rotations, translations, articulations, missing por-

tions and other inexplicable deformations which makes the

problem of shape matching quite challenging. Many ex-

isting shape matching algorithms require computationally

demanding matching schemes to account for the variabil-

ity making them not so desirable for large databases. In

contrast, we propose an indexing system for fast and robust

matching and retrieval of shapes.

We model a shape as a collection of landmark points ar-

ranged in a plane (2D) or in 3D space. In our framework,

each shape is characterized by features that are used to in-

dex it to a table. The table is analogous to the inverted page
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table used to index web pages using words/phrases. Given

a test shape, similar ones from a pre-indexed collection are

determined based on its characterizing features.

As we deal with shapes, the only information available

is the underlying geometry. Features are chosen to encode

this geometry as richly as possibly, without compromising

on robustness. A given shape is represented using a col-

lection of feature vectors, each characterizing a geometri-

cal relationship between a pair of landmark points. Given

two points, the following geometrical characteristics are en-

coded in the corresponding feature vector

1. The inner distance [11] between the points (as opposed

to Euclidean which is not articulation invariant),

2. The relative angles between the line segment joining

the two points and tangents to the contour at the points,

3. The contour distance between the points (analogous to

geodesic distance in case of 3D shapes),

4. Distances of the points from the articulation-invariant

center of mass. Articulation-invariant center of mass

is analogous to the standard center of mass with the

added feature of being invariant to articulations.

Clearly, more suitable features can be easily added to this

list to make the representation richer. The feature vectors

are suitably quantized for indexing. The fact that feature

vectors depend only on a few points and are coarsely quan-

tized, provides the necessary robustness required to gener-

alize across large intra-class variability. As shown by the

results, the matching speed and ability to generalize does

not come at the cost of discriminability across shapes.

The richness and robustness provided by the representa-

tion allows the proposed system to have a very simple and

efficient retrieval scheme. Given a test shape, the match-

ing bins in the index table are determined. A single parse

through the matching bins returns the most similar shapes.

This does not require any alignment or correspondences

making it extremely fast and scalable.
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The rest of the paper is organized as follows. Section 2

discusses some of the related works. Section 3 introduces

the indexing framework proposed in the paper. Section 4

describes the indexable shape representation. A detailed de-

scription of the indexing and retrieval algorithms is given in

Section 5. Section 6 presents the results of extensive evalu-

ations done to compare the proposed algorithm with others.

The paper concludes with a summary and discussion.

2. Previous Work

The indexing approach used in the paper is inspired by

the work on fingerprint indexing using minutiae triangles as

features [5]. Unlike the classical geometrical hashing [8],

the triangle-based approach hashes a set of points based

on local invariants (depends only on three minutiae, though

need not be local spatially), which is more robust and leads

to faster retrieval. For fast matching and retrieval of images,

a vocabulary tree based representation is recently proposed

by Nister and Stewenius [16]. Similar to their approach, our

indexing system relies on invariant and robust shape repre-

sentation, to make the retrieval process extremely fast. Os-

ada et al. [18] use shape distributions for fast matching of

3D models. The idea of describing 3D models using dis-

tance between pairs of points and/or their mutual orienta-

tions has also appeared in [17] [6] [7] [12].

Shape context based matching has been the theme of sev-

eral recent works [1] [15] [25] [24] [14] on shape match-

ing. In the classical version [1], each point is character-

ized by the spatial distribution of the other points relative

to it. Similarity computation involves establishing corre-

spondences using bipartite graph matching and thin plate

spline (TPS) based alignment. The shape context frame-

work has since been extended by including 1) statistics of

tangent vectors [15]; 2) figural continuity constraint [24];

and 3) softassign [2] in shape context framework [25], to

suit different requirements of the shape matching problem.

One of its recent extensions by Ling and Jacobs [11] ac-

counts for movement of part structures, by replacing the

Euclidean distance in the classical version by the inner dis-

tance, which is robust to articulations. In addition, the ap-

proach involves a dynamic programming (DP) based match-

ing algorithm which helps it to outperform most previous

methods. Mori et al. [14] show how a shape context-based

pruning approach can be used for fast retrieval of similar

shapes.

There is another body of work for capturing part

structures in which shapes are represented using shock

graphs [23] [22]. The shock graph representation is based

on the singularities of curve evolution process. Sebastian

et al. [20] propose a shock graph based method to han-

dle shape deformations. They find the optimal deformation

path of shock graphs which brings the two graphs (shapes)

into correspondence.

3. Indexing Framework - A Glance

Our focus here is to come up with a fast and efficient

framework for shape indexing and retrieval that performs

robust shape matching. In most approaches, given a query,

it needs to be compared with every shape in the dataset to

return the most similar ones. Comparisons often involve

computationally demanding operations like registration, es-

tablishing correspondence, etc., which are repeated for each

shape in the dataset. Such approaches are not scalable and

the computational load can become prohibitively high to be

useful even for moderate size datasets.

In contrast, we propose a scalable and efficient shape

matching and retrieval scheme. Figure 1 illustrates a pro-

totype of our indexing framework. Here, a shape is rep-

resented using a set of indexable feature vectors which are

appropriately mapped to a hash table. For a shape sk, a bin

i in the hash table stores an entry 〈sk, nki〉, nki > 0 where

nki is the number of feature vectors from shape sk that get

hashed to bin i. The hash table is populated by performing

the operation for each shape in the database. The resulting

table typically has several 2-tuples from different shapes in

each bin. The quantization scheme determines how uni-

formly the entries are distributed across the hash table.

Figure 1. A prototype of the proposed shape indexing framework.

Given a test shape st, its feature vectors are extracted and

its hash table entries 〈st, nti〉, ∀nti > 0 are determined by

mapping the feature vectors to the table. Once this is done,

its similarity with the shapes in the database can be esti-

mated using a single parse through the matching bins. Pars-

ing through the bins that contain a 2-tuple 〈st, nti〉, one can

accumulate the similarity of the query simultaneously with

all the shapes in the database. In such a retrieval scheme,

the processing time depends only on the number of 2-tuples

〈st, nti〉 and the number of database entries in the match-

ing bins. Quite clearly, the more uniformly distributed the

hash table is, the less is the average time required to pro-

cess a query. Typically, the processing time increases much

slowly as compared to the database size. The details of the



algorithm are described later in Section 5.

4. Shape Representation

Given the indexing scheme, we need suitable features

that integrate seamlessly with the framework. The features

should not only be indexable but also invariant to deforma-

tions like rigid transformations and articulations. This en-

sures that the single pass retrieval algorithm can directly be

used to return the most similar shapes. The choice of fea-

tures affects both the generalizability and discriminability

of the approach. Therefore, we look for features that de-

pend only on a few points on the shape and also take the

global shape into account. The dependence on only a few

points ensures robustness while their relative configuration

with respect to the global shape provides discriminability.

4.1. Pairwise Geometrical Features

Following these guidelines, each shape is characterized

by a set of feature vectors where each vector encodes pair-

wise geometrical relationship between a pair of points on

the shape. Each vector consists of the following features

that are robust to rigid transformations and articulations.

4.1.1 Inner Distance

The Euclidean distance between two points is invariant

to rigid transformations but even small articulations can

change the distance for a subset of point-pairs on the shape.

Therefore, we use the inner distance (ID) [11] which is ro-

bust to articulations of part structures. The inner distance

between two points is the length of the shortest path within

the silhouette of the shape. Figure 2 illustrates the advan-

tage of inner distance over the standard Euclidean one.

Computation of inner distance involves forming a graph

with landmark points on the shape forming the nodes. Two

nodes in this graph are connected if there is a straight line

path between the corresponding points which is completely

inside the shape contour. The corresponding edge weight is

the Euclidean distance between the two. From this graph,

any standard shortest path algorithm can be used to compute

the inner-distance for all the unconnected nodes.

It is worthwhile to note that as desired, the inner distance

encodes the global shape to a certain extent, without being

overly sensitive to global deformations.

Figure 2. Inner distance and Relative angles.

4.1.2 Relative Angles

Relative angles (A1 and A2) encode the angular relation-

ship between a pair of points. Absolute orientation of the

line segment connecting the points is not invariant to rota-

tions. Therefore, relative orientation of the connecting line

segment with respect to the incident tangents at each end

point is used. When using the inner distance, this becomes

the relative orientation of the first segment of the path cor-

responding to the inner distance (Figure 2). The angles can

be computed easily during inner distance computation. Like

inner distance, relative angles do take the global shape into

account without compromising on robustness.

4.1.3 Contour Distance

The contour distance (CD) is analogous to geodesic dis-

tance for 3D shapes. For 2D silhouettes, the contour dis-

tance between two points is simply the length of the contour

between the two points. It captures the relative positions of

the two points with respect to the entire shape contour.

The distance is robust to both articulations and contour

length preserving deformations. It complements inner dis-

tance in characterizing the relative location of the point pair

with respect to the entire shape. Figure 3 shows the con-

tour distance between two points of an object across several

deformations. Though the contour distance may seem sen-

sitive to missing points and outliers, we observe that quan-

tization during indexing phase makes it reasonably robust.

Figure 3. Insensitivity of contour distance to length-preserving de-

formations.

4.1.4 Articulation-invariant Center of Mass

The features described so far depend on the entire shape,

but none of them captures much information about the rel-

ative placement of various point pairs in the shape. Though

robust, such a representation may not be able to provide

desired level of discriminability. To encode the relative

placement, one can use the distance of the points and the

line segment joining them from the center of mass as addi-

tional features. Clearly, these features are not invariant to

articulations as the center of mass can change appreciably

with articulations. Therefore, we propose an articulation-

insensitive alternative to the traditional center of mass.

Here, we first describe how the location of articulation

invariant center of mass is determined followed by the fea-

tures derived from it. Determining such a point directly is



not easy. The proposed approach first transforms a given

shape to an articulation-invariant space. All objects related

by articulations of their part structures get transformed to

the same shape in the new space. This essentially means

that the distances between the transformed points are invari-

ant to articulations. In other words, the Euclidean distances

between transformed points should be the same as the inner

distances in the original space.

The transformation is done using multi-dimensional

scaling (MDS) [3]. MDS essentially places the points in

a new Euclidean space such that the inter-point distances

are as close as possible to the given inner distances in a col-

lective manner. We use the classical MDS as opposed to

other more accurate but iterative algorithms for efficiency.

The transformation computation involves spectral decom-

position of inner product matrix B, which is related to the

(squared) inner-distance matrix Dn×n as follows

B = −
1

2
JDJ

J = I −
1

n
11

T

11×n = [1, 1, · · · , 1]T (1)

The matrix B is symmetric, positive semidefinite and can

be expressed as

B = V ΛV T

Λ = diag(λ1, λ2, ....., λn) (2)

The required transformed coordinates in m dimensional

output space can be obtained by

Xn×m = Vn×mΛ
1

2

m×m (3)

Figure 4 shows the result of performing MDS on a few

shapes. Here m is taken to be two for visualization. The ap-

proximation improves with the dimensionality of the output

space. As expected, the transformed shapes look quite sim-

ilar across articulations. The desired articulation-invariant

center of mass is the center of mass of the transformed

shape. Unlike in the original space, the center of mass of

the transformed shapes are almost coincident.

Given the articulation-invariant center of mass of a

shape, we derive features which capture the relative posi-

tioning of the point pairs. For each point pair, distances

(D1, D2, D3) of the points and the line segment joining

them from the estimated center of mass are computed. This

is done in the transformed space itself as the distances in the

transformed space are insensitive to articulations.

4.2. Bag of Features

Given a shape, the pairwise geometrical features are

computed for each pair of landmark points on the shape.
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Figure 4. Articulation-invariant center of mass. Row 1: Original

shapes, Row 2: Transformed shapes after MDS, Row 3: (left plot)

Center of mass distribution of the original shapes, (right plot) Cen-

ter of mass distribution of the transformed shapes.

Here, each point pair is characterized by a 7 dimensional

feature vector, comprising of the features described above.

More suitable features can be added for richer representa-

tion. The distance based features in the vector are made

robust to variations in scale by normalizing each with their

medians. The collection of such feature vectors for all pairs

of landmark points characterize the shape.

It is worthwhile to note that though the various features

are not entirely uncorrelated, they capture different charac-

teristics of the shape. Even experiments show that each one

of them contributes to the good performance of the system.

5. Indexing and Retrieval of Shapes

In this section, we describe how the proposed represen-

tation is used for shape indexing and retrieval. A shape is

indexed by hashing each of its feature vectors to the index

table. This requires discretization of the space of feature

vectors. Here, we quantize each dimension of the vector

independently using a suitably chosen number of levels for

each. Suppose {f1, f2, . . . , f7} denotes the 7 dimensional

feature vector. The number of levels assigned to each fea-

ture are empirically chosen based on the robustness of the

feature. If the number of quantization levels for feature fi is

given by 2Ni , then Ni bits are required to represent the fea-

ture. So each feature vector consisting of 7 features is repre-

sented using N = N1 + · · ·+ N7 number of bits. There are

2N possible combinations of the feature vectors and hence

any vector belongs to one of the 0, 1, 2, . . . , (2N − 1) bins

in the hash table. Table 1 shows the number of bits assigned

to each feature in our system.



Table 1. Number of quantization bits for the used features.

ID A1 A2 CD D1 D2 D3

4 2 2 4 2 2 2

The quantization boundaries for each feature are chosen

such that there are almost same number of entries in each

level. This is done by using a set of training shapes which

are representative of the database. In addition to being the

basic requirement of an indexing system, quantization pro-

vides robustness to the variations in the actual values of the

features across different instances of the same shape.

5.1. Indexing

Figure 1 illustrates the overall indexing procedure. The

steps in the indexing are described below in detail.

1. For each shape in the database, landmark points are

extracted from the shape contour. Though one can

choose these points judicially, we simply pick points

uniformly on the shape contours in all our experiments.

2. For each pair of landmark points, features are com-

puted as described in Section 4. This results in a col-

lection of feature vectors for each shape. If there are n
landmark points, we have

(

n

2

)

feature vectors.

3. Each feature vector is quantized using the proposed

quantization scheme.

4. The quantized feature vectors are mapped on to the ap-

propriate bins in the hash table. The ith bin contains 2-

tuples of the form 〈sk, nki〉 ∀nki > 0, where sk is the

kth shape in the database and nki denotes the number

of feature vectors of shape sk that hash to bin i.

5.2. Retrieval

Given a query shape, the aim is to retrieve the similar

shapes in the database as efficiently as possible. Figure 5 il-

lustrates the retrieval phase using a flow chart. The different

steps involved in the retrieval phase are enumerated below.

1. Feature vectors for the query shape st are extracted in

a manner similar to the one used for indexing.

2. Each vector is quantized using the same quantization

steps as used for the shapes enrolled in the database.

3. Hashing each feature vector to the index table results

in a list of matching bins M = {i|nti > 0}, where nti

is the number of query feature vectors which hash to

bin i. In general, the number of matching bins is much

less than the total number of bins in the hash table.

4. The distance D(t, k) of the query st with each shape

sk in the database is initialized to zero.

Figure 5. Retrieval Algorithm.

5. Now we parse through the list M and update the dis-

tance of the query with each enrolled shape at every

step using the following distance metric

D(t, k) = D(t, k) +
1

2

(nti − nki)
2

nti + nki

(4)

where the shape sk has an entry 〈sk, nki〉 in the ith

matching bin. If there is no such entry for a shape sp in

the bin, npi is taken to be zero. The choice of distance

metric is inspired by the standard χ2 statistic.

6. If during parsing, the distance for any particular shape

in the database exceeds a pre-specified threshold, then

that shape is discarded from further computation.

7. At the end of the parse, we get a list of shapes from the

database which are most similar to the query shape.

5.3. Computational Complexity

The computational complexity of the indexing phase de-

pends on the complexity of feature extraction. For a shape

with n landmarks, the inner distance computation is of com-

plexity O(n3). Computation of relative angles and contour

distances take O(n). Calculation of articulation invariant



center of mass is O(n2) while deriving features based on it

take O(n). Therefore, indexing a shape takes O(n3). Note

that indexing can be done off-line so that query processing

time is not affected. For fairness, all running times reported

in the paper include the time spent in indexing.

As in the indexing phase, for a query shape with n land-

marks, feature extraction and hashing is O(n3). Hashing

results in m ≪
(

n

2

)

matching bins. Suppose each bin

has p ≪ N entries, where N is the number of shapes in

the database, we need to perform O(pm) distance updates

(Equation 4). This does not take into account the fact that a

lot of shapes are discarded during retrieval which would fur-

ther reduce the query processing time. It is difficult to put a

bound on how large m and p can be. In the worst case, m
can be as large as

(

n

2

)

and p as large as N , but that does not

happen in practice. With suitable quantization, p increases

much slower than N . Moreover, if elimination of dissimi-

lar shapes during retrieval process is taken into account, the

complexity of the process depends on the number of those

database shapes which are somewhat similar to the query.

These attributes make the system quite scalable.

6. Experiments

In this section, we report the results of empirical evalua-

tion of the proposed system. The performance of the system

is compared with many state-of-the art matching algorithms

on standard datasets. In addition, we highlight the compu-

tational advantages of our indexing approach. Just to give

an idea, our system requires only a few minutes (includ-

ing indexing) to process 1000 queries with a database of

size 1000. In comparison most existing systems will prob-

ably take order(s) of magnitude longer time to do the same

task. In all the experiments, we take 100 uniformly sampled

points on the shape contour as landmarks.

6.1. MPEG7 Shape Dataset

As our focus is to show the efficiency of the proposed

system along with its accuracy, we first test it on the

MPEG7 CE-Shape-1 [10] dataset, which is the probably the

largest benchmark used for evaluating shape matching al-

gorithms. The dataset consists of 1400 silhouettes with 20
images each for 70 different objects. Figure 6 shows a few

images from the dataset. The standard test for this dataset is

the Bullseye test. It is a leave-one-out kind of test where 40
most similar shapes are determined for every query shape.

The final score is given by the ratio of the number of correct

hits to the best possible number of hits (20 × 1400).

Table 2 compares the performance and computation time

of the proposed approach with many algorithms reported in

the literature. The proposed approach takes several order

of magnitudes less time than other approaches. (The sys-

tem runs on a regular desktop and is implemented in MAT-

Figure 6. Example shapes from MPEG7 CE Shape 1 dataset.

LAB.) The run-times reported for other algorithms are di-

rectly taken from the respective references and may vary

slightly due to differences in machine configurations. The

accuracy achieved shows that the speed does not come at

the cost of robustness. Inner distance shape context (IDSC)

with Dynamic Programming (DP) based matching is the

only one that performs better, but is much slower that the

proposed indexing approach. Interestingly, even the IDSC

approach performs worse than the proposed scheme when

using shape context distance [1] instead of DP.

Table 2. Performance comparison on MPEG7 dataset. Dsc: shape

context distance. DP: dynamic programming based matching.

Algorithm Score Computation Time

CSS [13] 75.44%
Visual Parts [9] [10] 76.45%

Curve Edit[21] 78.17% 1s × 1400C2

(50 segments)

Gen. Models[25] 80.03% 0.2s × 1400C2

SC + Dsc [11] 64.59%
SC + TPS [1] 76.51% 0.2s × 1400C2

IDSC + Dsc [11] 68.83%
IDSC + DP [11] 85.40% 0.31s× 1400C2

Proposed 81.8% 10 minutes

6.2. Articulation Database

The features used in our framework were chosen so as

to support articulation-invariant matching. Therefore, it is

important to evaluate the performance of the system on a

dataset which explicitly deals with large articulations. Here

we use the articulation dataset introduced in [11] which con-

sists of 8 objects with 5 shapes each (Figure 7).

We use the same test scheme as in [11]. For each shape,

4 most similar shapes are selected and the number of correct

hits for ranks 1, 2, 3 and 4 are calculated. Table 3 summa-

rizes the results obtained. The proposed approach competes

well with the other approaches. It is noteworthy that unlike

other approaches, our scheme does not require any align-

ment or dynamic programming-based matching for comput-

ing similarity with each shape in the dataset.



Figure 7. Articulation database

Table 3. Retrieval result on the articulation dataset.

Algorithm Rank 1 Rank 2 Rank 3 Rank 4

SC + DP [11] 20/40 10/40 11/40 5/40
IDSC + DP [11] 40/40 34/40 35/40 27/40

Proposed 40/40 38/40 33/40 20/40

6.3. Kimia Dataset 1 and 2

Kimia dataset 1 [22] consists of 25 shapes from 5 cat-

egories. The experiment is run in a leave-one-out pattern.

Similar to the articulation dataset, the performance is mea-

sured by accumulating the correct matches at ranks 1, 2 and

3. The best one can get at any rank is 25. Table 4 compares

the results obtained with other approaches.

Kimia dataset 2 [20] is a larger version of dataset 1. It

consists of 99 silhouettes from 9 categories. The perfor-

mance is measured by examining the correct matches at top

10 ranks for each query. The best one can get for each rank

is 99. Table 5 summarizes the results obtained. In addition

to being extremely efficient, the proposed approach com-

pares favorably with many existing algorithms.

Table 4. Retrieval result on Kimia 1 dataset.
Algorithm Rank 1 Rank 2 Rank 3

Sharvit et al. [22] 23/25 21/25 20/25
Gdalyahu et al. [4] 25/25 21/25 19/25
Belongie et al. [1] 25/25 24/25 22/25
IDSC + DP [11] 25/25 24/25 25/25

Proposed 25/25 25/25 23/25

6.4. Gait-based Human Identification

Gait-based human identification techniques use se-

quences of human silhouettes to characterize a gait. The

various silhouettes present in a sequence are essentially the

result of articulations of body parts. This motivates us to

verify the usefulness of our matching framework for this

task. First we perform an experiment to evaluate the abil-

ity of our algorithm to handle 3D articulations involved in

Table 5. Retrieval result on Kimia 2 dataset.

SC Gen. [25] Shock IDSC Our

[1] Models Edit [20] + DP [11] Method

1 97 99 99 99 99

2 91 97 99 99 97

3 88 99 99 99 98

4 85 98 98 98 96

5 84 96 98 98 97

6 77 96 97 97 97

7 75 94 96 97 96

8 66 83 95 98 91

9 56 75 93 94 83

10 37 48 82 79 75

Figure 8. A few silhouettes from the USF gait database. The two

rows show silhouettes for two different subjects.

walking. We take 5 consecutive frames from 10 gait se-

quences of different individuals from USF dataset [19] (Fig-

ure 8) and compute the similarity of each silhouette with

every other silhouette. Figure 9 (left) shows the similarity

matrix obtained. Darker the similarity matrix is, more sim-

ilar the two silhouettes are. Ideally the matrix should be

5 × 5 block diagonal. The result shows the possible use-

fulness of our approach for the task of gait-based human

identification, more so because such an application involves

large databases for which one needs a scalable and efficient

retrieval scheme. We also perform an identification exper-

iment using the USF data. Each gallery sequence is char-

acterized by indexing its first 10 silhouettes. The similarity

of a probe sequence with a gallery sequence is determined

by simply combining the similarities of all its silhouettes

with the gallery ones. Figure 9 (right) shows the Cumula-

tive Match Curve (CMC) obtained in the experiment with

41 gallery sequences (one per subject) and 41 probes. The

performance is quite encouraging even though no temporal

information is used in measuring the similarity.

7. Summary and Discussion

We presented an efficient and robust approach for fast

matching and retrieval of shapes. The following attributes

of the approach contribute towards its robustness and hence

graceful degradation of performance in the presence of
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Figure 9. Left: Similarity matrix obtained in matching gait silhou-

ettes. Right: CMC obtained in the gait-based identification.

noise, outliers and other deformations: 1) Pair-wise geo-

metric feature based representation, 2) feature quantization,

and 3) invariance of features to rigid transformations and ar-

ticulations of part structures. Rich and robust feature repre-

sentation is important even for retrieval process. This helps

to achieve robust matching using an extremely simple al-

gorithm not involving any correspondence matching as re-

quired by most state-of-the-art techniques. In most existing

techniques, the alignment process has to be repeated for ev-

ery shape in the database for retrieval, making them much

slower than the proposed scheme. As dissimilar shapes are

eliminated very early during our retrieval process, little ef-

fort is wasted in comparing a query to the database shapes

which are very different, making the system scalable.
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