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Abstract

Object-based segmentation is a challenging topic. Most
of the previous algorithms focused on segmenting a sin-
gle or a small set of objects. In this paper, the multi-
ple class object-based segmentation is achieved using the
appearance and bag of keypoints models integrated over
mean-shift patches. We also propose a novel affine invari-
ant descriptor to model the spatial relationship of keypoints
and apply the Elliptical Fourier Descriptor to describe the
global shapes. The algorithm is computationally efficient
and has been tested for three real datasets using less train-
ing samples. Our algorithm provides better results than
other studies reported in the literature.

1. Introduction

Region based segmentation, such as K-means, mean-
shift [4], graph cut [23] and normalized cut [23], has been
successfully applied in many applications. These methods
treat image segmentation as a clustering or optimal group-
ing problem based on the low-level features. However, they
only utilize the bottom-up information which makes it dif-
ficult to guarantee meaningful segmentation results. Re-
cently, top-down prior knowledge has been combined with
bottom-up features to improve the object-based segmenta-
tion results.

The pictorial structures model was proposed in [6] for
visual object recognition. Kumar et al. [13] presented the
OBJ CUT algorithm which applied the pictorial structure
(PS) model and Markov Random Field (MRF) to segment
objects from background. Borenstein et al [1] constructed a
Bayesian model to integrate top-down and bottom-up infor-
mation with the shape priors obtained from multiple scale
segmentation. Orbanz et al [21] applied a nonparametric
Bayesian model for image segmentation and used MRF as
smoothing constraints. Levin et al. [16] integrated bottom-
up and top-down cues into CRF and the training was per-
formed jointly.

As the number of classes increases, these specific mod-
els become complex both for training and parameter tuning.
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Winn [28] obtained good segmentation results with a sim-
pler model using boosting on image appearance (texton his-
tograms). Spatial weighting [18] and spatial pyramid [14]
were used to improve the accuracy of the bag of keypoints
model [25]. Robinovich [22] proposed to treat the segmen-
tation as optimal grouping problem and develop a model
order selection schema to find the most stable segmenta-
tion from a number of possible segmentations. All these
methods suggest that a general framework can be suitable
to perform multiple class object-based segmentation too.

In this paper, using an idea similar to [11, 27], where the
patches are used for outdoor scene labeling and video-cut,
the segmentation problem is treated as an optimal grouping
of patches in the image. A small group of pixels (patches)
are labeled together to increase the robustness and decrease
the running time. The traditional mean-shift algorithm [4]
is used to combine image appearance [28] with the bag of
keypoints model [25] for segmentation. We also propose a
novel affine invariant representation of spatial co-occurence
of keypoints. The global shapes of objects are modeled us-
ing Elliptical Fourier Descriptor (EFD). All these features
are combined in a unified framework to segment objects
from a large number of classes. The contributions of this
paper are:

e the appearance model and bag of keypoints are sim-
ple but surprisingly successful methods for generic ob-
ject recognition. We demonstrate that for segmenta-
tion these two methods can be linked together over
mean-shift patches to provide successful segmentation
results too;

o the spatial relationship among the keypoints, which is
disregarded in the traditional bag of keypoints model,
are modeled using a novel and simple affine invariant
descriptor;

e the algorithm we propose is much faster for both train-
ing and testing;

e the experimental results using three real datasets
demonstrate that our algorithm provides satisfactory
results.
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Figure 1. The graphic model of the segmentation framework.

In Section 2 we introduce the unified feature represen-
tation model. In Section 3 and Section 4, we describe our
training method and the segmentation algorithm. Section 5
provides the experimental results and Section 6 concludes
the paper.

2. Unified Feature Representation Model

In Figure 1, we represent the general model of our algo-
rithm. The pixels P in the image are segmented using mean-
shift algorithm to generate patches M. For each patch, the
image appearance is represented with texton histogram T.
Multiple hypothesis are generated based on appearance and
refined by top-down information: through the bag of key-
points histogram K, the spatial correlation S (spatial keyton
histogram) and the global shape G (EFD). The final label L
is assigned to each patch considering all the cues.

2.1. Mean-Shift Texton Histogram

In order to generate the mean-shift texton histogram, we
first apply the five-dimensional mean-shift segmentation us-
ing two dimension for x, y coordinates and three dimen-
sions for Luwv color [4]. The parameters for all the datasets
have spatial radius 2hs; + 1 = 7 and color radius 2h, = 7.
The kernel we used is Epanechnikov kernel.

Texture and color are computed from the image through
a set of linear filters using a modified MR filter bank [26].
The feature vector is composed of two LoG filter responses
on the L channel (¢ = 2,4), six one-dimensional Gaussian
filter responses on the L, u and v channel (¢ = 2,4) and
the maximum bar and edge responses on six different di-
rections between 0 and 57/6 and three different variances
(o = 1,2,4). In total, each image pixel is represented by a
10 dimensional feature vector. All the filter responses ob-
tained from the training set are put together and clustered
using K -means to build the texton library.

For the traditional histogram-based segmentation, the
windowed texton histogram is used to model the image ap-
pearance of the training set. Instead, we computed the tex-
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Figure 2. A mean-shift patch and a 31 * 31 square patch and their
corresponding texton histograms. See text.

ton histograms for each mean-shift patch separately

h(i) = count(T(j) = i) (1)

JEM

where M denotes the mean-shift patch, ¢ is the ith element
of the texton histogram, T'(j) returns the texton assigned to
pixel j. The advantages of applying the texton histogram
over mean-shift patches are:

e mean-shift patches take the edges into the considera-
tion;

e the number of mean-shift patches is much smaller,
which decrease the complexity for training and clas-
sification;

e visually similar and spatially close pixels are grouped
together and given the same label, which is a more nat-
ural approach than arbitrary square windows;

e mean-shift patches provide a natural link between the
appearance and the bag of keypoints model.

Although this method may still mislabel a whole mean-
shift patch based on appearance, we will show that the top-
down information in our framework helps to correct these
types of errors.

In Figure 2, an example is shown where mean-shift
patches provide more distinctive information than an ar-
bitrary square window. The original image (top-left) is
processed with mean-shift (top-right). The single mean-
shift patch (middle-left) is represented by texton histogram
(bottom-left), where a 31 x 31 square window (middle-right)
has a completely different texton histogram (bottom-right).
The classification based on these two texton histograms la-
beled the mean-shift patch as airplane, but the square win-
dow patch as sky.



Figure 3. An illustration of spatial keyton histogram,where we
only show r = 1,2, and 3 in relative distance and § = 0, 7, 7 and
3% The yellow region is the 10th(2%4+2,r = 3and 6 = Z) bin
(10, Q) of the coordinate system with the position of the center ¢

as the origin.

2.2. Spatial Keyton Histogram

Given a training image, the Harris corner detector is ap-
plied on the gray-level image to detect the interesting points.
Affine invariant features are extracted from the neighbor-
hood of the detected points. We choose the 20 dimensional
moment invariants [9] as keypoint descriptors because of
their low dimensionality and satisfactory performance. Al-
though SIFT features [17] are shown to be superior to other
local descriptors for recognition [19], it did not provide bet-
ter results in our segmentation experiments. This observa-
tion is also shown in [20, p.81] for Fergus et al. dataset [7].

The descriptors of all the keypoints in the training set are
put together and K-means clustering is used to build the
dictionary of the cluster centers. Similar to the definition
of textons, we call the cluster centers of keypoints as "key-
tons”. Each object in the training image is represented by a
histogram, h(i), of the keytons calculated from the keyton
dictionary. Each keypoint is assigned to its closest keyton
based on the Euclidean distance

h(i) = Z count(O(j) = i) 2)

where O denotes the set of keypoints of a given object in
the image. The O(j) returns the keyton assigned to the ith
keypoint.

Although bag of keypoints model, which we call the key-
ton histogram, has been successfully used for object classi-
fication in many applications [25, 18], it has been shown
that recognition accuracy is increased by considering the
spatial correlation of keypoints [15, 18]. We propose a
novel spatial keyton histogram to model the spatial config-
uration of keypoints.

The Figure 3 shows a set of keypoints which belong to
three different keytons, noted as [J, A and ¢. For each key-
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Figure 4. Two spatial keyton histograms h(4, j) with three keytons
0, A and ¢ denoting the 1st, 2nd and 3rd keyton. Affine trans-
formations are performed on the keypoints belong to each keyton
separately in the upper-left to produce the upper-right configura-
tion. Nine h(%, j) are shown for each of the two configurations.

point in the image, we separate the image plane into co-
centered circles using this keypoint position as the origin.
In general, the range of 7 is from 1 to 5 in relative distance,
and 6 has four values. Assume the ith keyton has N; key-
points, then the spatial keyton histogram A (i, j) is defined
as the average of the jth keytons spatial distribution relative
to all the keypoints of the ith keyton. It can be calculated
as

R L
i) =5 >, D, count(j) 3)

" m=1 jebin(k,m)

where k denotes the kth bin of h(%, j) and it is defined from
r=1andf = 0tor = 5and § = 37/2, a total of
20 values. The bin(k,m) is the kth bin of the coordinate
system with mth keypoint as the origin (refer to Figure 3).
A four-tap Gaussian smoothing filter is used to postprocess
the histograms. The proposed spatial keyton histogram is
quasi affine invariant.

In Figure 4, we show two sets of data where each key-
ton has the same number of keypoints but different spatial
configurations (upper part of Figure 4). They can not be
separated by the bag of keypoints model, but have differ-
ent spatial keyton histograms (lower part of Figure 4). For
each configuration, note that the affine invariant is shown
in h(1,1), h(2,2), h(3,3) and the different spatial rela-
tionships between 0J; A and O, { are captured in h(1,2),
h(2,1) and h(1,3), h(3, 1) in bottom-left and bottom-right
of Figure 4.



2.3. Global Shape Model

The global shape model is the top-down constraint used
to group the image patches into real objects. The pictorial
structure model and PCA was used to encode the appear-
ance and represent the shape in a joint density for object
recognition [7]. In stead of using complex shape model, the
Elliptic Fourier Descriptor (EFD), which was shown to be
successful in [3], is chosen to model the global shape of the
objects. There are several reasons to use EFD:

o the EFD has a simple histogram-like representation. In

our algorithm we use the first 32 (4 * 8) coefficients;

e the normalized EFD is invariant to rotation, translation

and scaling;

e the close contour reconstructed from EFD is always

closed.

EFD is the Fourier expansion of the chain coding. As-
sume we have M points on the close contour. Following the
approach of Kuhl and Giardina [12], the EFD coefficients of
the nth harmonic are:
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where s;, S = Z;g) Asj, As; = \/(Ax:)” + (Ay),
A.Ti = (IZ — .Z‘i_l), Ayz = (yz — yi—l) . The AIi and
Ay; are the changes in the x and y projection of the chain
code at the ¢th contour point.

Figure 5 shows the 32 EFD coefficients for six images.
It was found that the first 4 « 8 EFD coefficients already
contain enough information for separating the objects into
different classes.

3. Training Procedure

The training set contains images which were manually
segmented into different objects. All the features of the
training images are put together and K -means are used to
generate the texton library. The exact value of K will be
given in the experimental section. The mean-shift patches
are generated from each training image. The texton his-
tograms are calculated for each patch and saved in the train-
ing texton histogram dictionary. In our model each his-
togram corresponds to one mean-shift patch.

Figure 5. Examples of the Elliptical Fourier Descriptors (EFD).
The contour is superimposed on original image.

The training images are transformed into gray-level and
the Harris corner detector is applied to detect the keypoints.
The moment invariants are extracted and a keyton library is
constructed using K -means. For each training image, the
keyton histogram is computed to record the frequency of
occurrence of each keyton. In order to save space and com-
putation time, we are using a more compact way to record
the spatial keyton histogram.

Assume we have n = 1...N training images and each
image contains keypoints from k£ = 1...M,, keytons. The
spatial keyton histogram h(i, j) of each training image con-
tains M, * M, histograms. For all training images, we get

N
> M, * M, histograms. All the histograms are clustered
n=1

using K -means with K equal to 50 and the clustering cen-
ters are recorded. For each training image, we assign each
histogram of h(i, j) into its closest clustering center. The
number of the histograms for the nth training image is de-
creased from M, * M, to 50. This compact spatial key-
ton histogram represents the patterns of spatial arrangement
among keypoints in the training image.

The last step for training is the shape modeling using
EFD. For each training image, we extract the contours of
the object from the masks and represent each contour us-
ing the first 32 EFD coefficients. Note that the shape train-
ing based on EFD is optional because only certain type of
objects have discriminative contour information. Cars, air-
planes, and tigers, etc. have distinct contour shape but this
is not the case for sky, water, etc. After the EFD coeffi-



cients of all the exemplars contours are calculated, a simple
agglomerative clustering is applied over EFD descriptors to
find the clustering centers for each class of objects.

4. Segmentation Algorithm and Testing

In this section we will explain the segmentation algo-
rithm and testing procedure shown in Algorithm 1. The T,
K, S, G represent the four training dictionaries: texton, key-
ton, compact spatial keyton, and EFD shape descriptors (re-
fer to Figure 1). Given a test image, each detected keypoint
is assigned to a mean-shift patch based on its spatial coor-
dinates. Because some keypoints may locate on the borders
of the patches, we inflate each patch with four pixels. For
each mean-shift patch j, the label(j) is the final label of
this patch. The p*(label(5) = I|1), p*(label(j) = I]I) and
p®(label(j) = I|I) are used to describe the likelihoods given
label [ based on texton, keyton and compact spatial keyton
histogram similarities with the three dictionaries T, K, S.
For abbreviation we write them as p(4,1), p*(4,1), p*(4,1)
and define a set fv = {t, k, s}.

For classification we are using the nonlinear support vec-
tor machine (SVM) with a Mercer kernel [8]. Using the
training dictionaries T, K and S, we train a svmlf Y for each
class [.The SVM decision function in kernel formulation is

svml Zylozz k(z,2;)+b (@)

where « is the Mercer kernel defined as x(hi,hs) =
exp(—Lx?(h1, hg)). The z; € {T,K,S}, y; € {-1,+1}
are the training samples and their labels. The «; and b are
the learned weights and learned threshold. The 7 is the
mean value of x? distances between 100 pairs randomly se-
lected training histograms. The 2 distance is

1~ (hu(t (1)
ot =53 e ©

where h; is the histogram of test patch and hs is a mem-
ber of {T, K, S} with P denoting the dimension. Multiple
object labels are assigned to the jth test patch with proba-
bilities calculated using the positive raw output of (5)

sumi” (3" ()
Sy som] ! (5 ()

where /() is the histogram of test patch j.

Based on texton histogram, the appearance likelihood
p'(j,1) for each patch j is calculated first. Then multiple
hypotheses are generated using the keypoints located in set
J' (please refer to Algorithm 1 for definition). The like-
lihoods p*(4,1) and p*(j,1) are computed using (7). This
procedure form a loop until all the hypotheses are scored.

(5,0 = (7

Input: Given a test image x and the training histogram dic-
tionaries T, K, S and possible G. The number of classes is L,
l=1,..L.
e Apply Harris corner detector and extract the moment invari-
ant descriptors from the gray level image.

e Calculate the mean-shift patches and represent the likeli-
hoods of each patch as p*(4,1), p*(4,1) and p*(j, 1) where
j = 1...J, the number of patches in image z is J.

e Forj=1...J
— Build texton histogram s¢*(5).

— Forl = 1...L: calculate sum} (5¢‘(5)) using (5) and
the negative outputs of sum are forced to be 0.

— For | = 1...L: if svm}(5'()) > 0, use (7) to
calculate appearance likelihood p* (4, 1).
e Forl=1...L
— Record the patches satisfied p £(5,1) > 0 as set J',

generate hypothesis H (I) = U M (5).

— Collect all the keypoints inside H(I) and compute
the keyton histogram and compact spatial keyton his-
togram " (1), 2°(1).

— Using (5), calculate sumy (5" (1)) and sum; (s°(1)).
— For all patches j € J', compute p* (4, 1) and p*(4,1)
using (7).
e Forj=1...J

label(j) = arg maxlog (p' (. 1) 9" (5, 1) * " (j.1)

e For certain objects which have distinctive contours, the re-
sult is refined by minimizing the cost function ®(R(C))
"+ min (X (> (1), K79 1))

[f dzdy
R(C)

(svm') " + (sum”)”

where sum’ = sum? (»*(1)) and sum” = svm; (3¢°(1)).
The (1) and h9€C (1) are the testing and training EFD
shape descriptor, respectively. The negative outputs of sum
are forced to be 0.

Algorithm 1. Segmentation algorithm and testing procedure.

The final label(j) for each mean-shift patch j is decided by
maximizing the sum of the log likelihoods.

Some segmented objects can be refined using EFD shape
descriptors. This step is completely unsupervised. Only if
the proposed objects contain distinctive contours, which are
known in the training stage, the EFD descriptors are ap-
plied for shape matching. This is implemented by mini-
mizing the cost function ®(R(C')) where C is the envelop
of all the patches labeled as [ and R(C) is the region in-
side the contour. The denominator is used to avoid trivial
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Figure 6. A testing example. (a) The original test image. (b) The mean-shift segmentation results. (c¢) The object labeling using appearance
only. Different colors corresponding to different objects. (d) — (g) Four hypothesis for car, building, chair and cow. The brighter intensity
means higher probability. (h) The object labeling which maximizes the sum of the log likelihood. (7) The refined segmentation result
using the global shape of the car. (j) The hand-draw segmentation by a human.

solutions. The cost function can be calculated by simply
flipping the labels of those object patches which change the
object’s global shape from outside towards the center of the
image. Because only a small number of the object patches
will change the global contour, it actually runs very fast.

Figure 6 shows one complete procedure of segmentation.
We generate several hypotheses and marked each patch by
maximizing the likelihoods obtains from appearance and
keypoints. The final result is refined using global shape
information. We also show in Figure 65 the hand-drawn
segmentation result rendered by a human.

5. Experiments

We used real images to test our algorithm on three dif-
ferent datasets:

e our MHMS 11 which is composed of images taken
from Caltech101 [5], COREL [2] and Google search;

e the Sowerby 7 dataset [10], [24];
e the MSRC 21 dataset [24].

All the datasets contain multiple objects with different
viewpoints, illuminations and scales. For all the experi-
ments we chose only 40% of the images for training and
the remaining 60% for testing. For the Sowerby image
database, in order to get enough sampling from the objects
that only shown in part of the images, such as car and road
marking, we manually selected the training images that do
contain these objects.

MHMS 11: This dataset contains 100 color images of
192 x 128 and eleven different classes. We use mean-shift
segmentation with minimum region size of 100. The di-
mension of the texton library and keyton library is 11 x 50
and 11 = 100. The segmentation accuracy of each class is
shown in Table 1. The overall pixelwise segmentation ac-
curacy is 86.0%. For class plane, car, tiger and zebra in this

Plane | Car | Tiger | Zebra Grass Road
732 | 739 | 90.1 88.6 94.5 93.4
Water | Sky | Forest | Rock | Building | Overall
727 | 88.1 | 89.3 78.2 71.9 88.9

Table 1. The segmentation accuracy for MHMS 11 database.

dataset, global shape prior is applied and found to be useful.
It increases the segmentation accuracy by 2.7%.

Sowerby 7: This dataset [10] contains 104 color images
of 96 x 64 and seven different classes. We use mean-shift
segmentation with minimum region size of 40 because of
the smaller image size. The dimension of the texton library
and keyton library is 750 and 7+100. The overall pixelwise
segmentation accuracy we obtained is 88.9%. Compared
with the results reported in [10] 89.5%, and [24] 88.6%,
where the highest percentage is obtained using about half
for training and context depended information. We have
only used 40% images for training and did not consider con-
text information.

MSRC 21: This is one of the most complete multiple
object database for segmentation. This dataset contains 592
color images of 320 x 213 and twenty-one objects. We use
mean-shift segmentation with minimum region size of 150.
The dimension of the texton library and keyton library is
21 % 50 and 21 * 100. The overall pixelwise segmentation
accuracy we obtained is 75.1%, which is higher than the ac-
curacy reported in the literature [24] 72.7%. Our algorithm
also provides higher segmentation accuracy for 18 classes
out of 21 classes than [24], which are marked in grey in Ta-
ble 2. When the segmented objects contain car, airplane,
tree, face or sign, EFD shape descriptors are used to refine
the labeling. However, because of the inter-class variability
of this database, especially in some cases there exist mul-
tiple objects which belong to the same class in one image,
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Boat|17.4 3.5 36 1115 (19.8 31 125 21 1.1 324

Table 2. The confusion matrix for the MSRC dataset with row labels as inferred class and column as ground true class.

global shape prior doesn’t provide big improvement. Figure
7 provides some segmentation results.

One of the major advantages of our method is the speed.
As each mean-shift patch is labeled once, we save the time.
A 320 x 213 image can be processed less than 1 minute with
a P3 1.5G Hz processor with 1G RAM using the MATLAB
implementation. It can be much faster using C++.

6. Conclusions

It is worth analyzing why this simple framework works
well for multiple class object segmentation. From our re-
search we conclude that interleaved recognition and seg-
mentation might increase the accuracy for both tasks.
Mean-shift patches provide a natural link between recog-
nition and segmentation with the reduction of the compu-
tational time as a valuable side benefit. The keyton his-
togram, coupled with the spatial keyton histogram, gained
benefits from the bottom-up appearance information. How-
ever, mean-shift segmentation itself can provide errors. It is
also possible that the proposed method make mistakes for
visually similar objects. The ambiguity of sharing features
between different classes makes the generic object segmen-
tation a very difficult problem.

In this paper, we have presented a simple but effec-
tive segmentation framework for performing multiple class
object-based segmentation. We have also proposed a novel
and simple model to represent the keypoint spatial configu-
rations called spatial keyton histogram. The EFD shape de-
scriptor was applied to refine the final segmentation results
for certain type of objects. We demonstrate that our method
provides good results for multiple class segmentation using

real datasets.
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