
Multi-label image segmentation via max-sum solver∗

Banislav Mičušı́k
Pattern Recognition and Image Processing Group,
Inst. of Computer Aided Automation, Vienna

University of Technology, Austria
micusik@prip.tuwien.ac.at

Tomáš Pajdla
Center for Machine Perception,

Dpt. of Cybernetics, Czech Technical
University, Czech Republic
pajdla@cmp.felk.cvut.cz

Abstract

We formulate single-image multi-label segmentation into
regions coherent in texture and color as a MAX-SUM prob-
lem for which efficient linear programming based solvers
have recently appeared. By handling more than two la-
bels, we go beyond widespread binary segmentation meth-
ods, e.g., MIN-CUT or normalized cut based approaches.
We show that the MAX-SUM solver is a very powerful tool
for obtaining the MAP estimate of a Markov random field
(MRF). We build the MRF on superpixels to speed up the
segmentation while preserving color and texture. We pro-
pose new quality functions for setting the MRF, exploiting
priors from small representative image seeds, provided ei-
ther manually or automatically. We show that the proposed
automatic segmentation method outperforms previous tech-
niques in terms of the Global Consistency Error evaluated
on the Berkeley segmentation database.

1. Introduction
The image segmentation procedure assigns a label from a

given discrete set to each image pixel following some crite-

ria. The segmentation process can be formulated as an opti-

mization task that optimizes the criteria function consisting

of an image fitness and a prior on likely segmentations.

Depending on the prior, the segmentation can follow se-

mantic, shape, texture, color, etc., cues. To obtain a se-
mantically correct segmentation, the priors have to be learnt

in advance, e.g. from a manually labeled training database,
to capture the mutual relation of object pixels and appear-

ance [3, 19, 18, 9]. Contrary to that, a texture or/and color

coherent segmentation can be achieved by learning the pri-

ors directly from an input sequence [21, 8] or just from a

single image either with user interaction [14, 2, 1] or with-

∗Research of B.Mičušı́k has been supported by FWF-P17189-N04

SESAME and FP6-IST-507752 MUSCLE and research of T. Pajdla by

FP6-IST-027787 DIRAC and MSM6840770038 DMCM III grants.

Figure 1. Automatic single-image multi-label (in this case 8 labels)

segmentation respecting texture and color cues using the proposed

method.

out [17, 5, 12].

In this paper we focus on automatic single-image multi-

label segmentation into regions coherent in texture and

color, see Fig. 1. We rely on the priors learnt directly from

the image being segmented. The method based on MAX-

SUM formulation groups pixels having similar texture and

color properties into non-overlapping segments. Such seg-

mentation is very useful, e.g., it allows possibly further clas-
sification and merging the segments respecting some se-

mantic cues, or in stereo matching algorithms it can help

to restrict the search area of possible point matches.

By handling more than two labels we go beyond

widespread binary segmentation methods, e.g., MIN-
CUT [1, 2, 18, 8, 12] or normalized cut [17, 5] based frame-

works. The MIN-CUT has become a standard algorithm

in many computer vision problems because of its speed

and accuracy. However, the MIN-CUT still solves only bi-

nary segmentation and a multi-label segmentation has to be

done indirectly. The MAX-SUM solver [20] permits more

labels to be defined allowing the multi-label segmentation

to be done directly in a global manner while still keep-

ing the processing time within reasonable bounds. There

1

1-4244-1180-7/07/$25.00 ©2007 IEEE

are other attempts to solve the labeling problem on the

MRF using, e.g., second order cone programming [9], se-
quential tree-reweighted max-product message passing [7]

or belief propagation methods [22]. However, neither of

the algorithms, nor the MAX-SUM, solve the problem of

the multi-label MAP of the MRF exactly as it is NP-hard.

Various approximations are taken into account to reach a

good suboptimal solution. Moreover, the belief propaga-

tion algorithms sometimes do not even converge for cyclic

graphs [22] which we are interested in.

The main contribution of the paper is solving a single-

image multi-label segmentation problem by the recently in-

troduced MAX-SUM solver [20] while taking into account

superpixels [4] and proposed priors composed of texture

and color cues. We also propose an automatic positioning of

seeds fromwhich the priors are learnt allowing images to be

segmented fully automatically. Alternatively the equivalent

MAX-PROD based solver [7] can be used.

The MAX-SUM problem and symbols used are defined in

Sec. 2. Then, structure and setting of weights of the MRF

are stated in Sec. 3 using priors from shifted seeds explained

in Sec. 4. Experimental evaluation of the method and the

conclusion are given in Sec. 5 and 6, respectively.

2. The MAX-SUM problem
The MAX-SUM (labeling) problem of the second order

is defined as maximizing a sum of bivariate functions of

discrete variables. The solution of a MAX-SUM problem

corresponds to finding a configuration of a Gibbs distribu-

tion with maximal probability. It is equivalent to finding a

maximum posterior (MAP) configuration of an MRF with

discrete variables [20].

We assume an MRF, i.e. graph G = 〈T , E〉, consisting of
a discrete set T of objects (in the literature also called sites,

locations) and a set E ⊆
(
|T |
2

)
of pairs of those objects.

Each object t ∈ T is assigned a label xt ∈ X where X is
a discrete set. A labeling is a mapping that assigns a single
label to each object, represented by a |T |-tuple x ∈ X |T |

with components xt.

An instance of the MAX-SUM problem is denoted by the

triplet (G,X ,g), where the elements gt(xt) and gtt′(xt, xt′)
of g are called qualities. The quality of a labeling x is de-

fined as

F (x |g) =
∑

t

gt(xt) +
∑
{t,t′}

gtt′(xt, xt′). (1)

Solving the MAX-SUM problemmeans finding the set of op-

timal labellings

LG,X (g) = argmax
x∈X |T |

F (x |g). (2)

Fig. 2 depicts the symbols and the problem in a more in-

tuitive way on a simple grid graph. Recently, a very ef-

object t with nodesxt

object t′

edges with g
tt′

(xt, x
t′

)

gt(xt =1)
gt(xt =2)

gt(xt =3)

Figure 2. A 3×4 grid graph G for |X | = 3 labels with symbols

explained in the text. A labeling L from Eq. (2) is shown by a red
thick subgraph. Image provided by courtesy of T.Werner [20].

ficient algorithms for solving this problem through lin-

ear programming relaxation and its Lagrangian dual, orig-

inally proposed by Schlesinger in 1976 [15], has been re-

viewed [16, 20].

3. Graph construction
Generally, the most difficult problem and art connected

to segmentation methods is to encode all possible priors

about objects being segmented, e.g., texture, color, shape,
appearance, etc., into a graph, resp. an MRF, while keeping
the problem tractable. In this paper, we focus on defining

such priors which lead to partitioning an image into texture

and color coherent regions as Fig. 1 shows.

3.1. Graph entities
We build a graph on a pre-segmented image, i.e. on su-

perpixels, assuming that the area of superpixels is small to

leave more flexibility for the MAX-SUM solver. The aim

is to merge locally together pixels having similar color ig-

noring at this stage any texture cues. The use of superpix-

els significantly reduces the number of nodes in the graph

while still preserving texture information. Simply reducing

the image size used bymany approaches to avoid large com-

plexity leads to losing details and high texture frequencies.

In this paper, we use a very fast method [4] giving us, by

appropriate setting of parameters, regions 10 pxl large on

average. However, any other segmentation method giving

small segments consistent in color can be used.

The graph entities are the following. The superpixels

represent objects, i.e. the set T , in the graph and edges, i.e.
the set E , are established between each two neighboring su-
perpixels respecting the 8-point neighborhood. The number

of sites (labels)K is a constant given as a parameter.

The graph entities, i.e. each edge gtt′(xt, xt′) and each
object node gt(xt) is set according to the smoothness and
data term respectively, described in the following sec-

tions. After building and setting the graph, the MAX-SUM

solver [6] is run to obtain a particular label xt for each su-

(a) (b) (c)

Figure 3. Effect of various types of smoothness terms on the fi-

nal segmentation of the leopard image in Fig. 1 demonstrated on a

segment corresponding to a leopard itself. (a) Ising prior, (b) color

gradient, (c) the proposed term.

perpixel t.

3.2. Smoothness term
The smoothness term, defined by gtt′(xt, xt′), controls

the mutual bond of neighboring superpixels. A basic setting

of this term is via the Ising prior penalizing neighbors not

having same labels, i.e.

gtt′(xt, xt′)

{
0 if xt = xt′ ,

−1 if xt �= xt′ .
(3)

It tends to keep segments smooth but does not take into

account any information on pixel color or intensity, see

Fig. 3 (a).

Another, and more popular, measure is based on the

color gradient computed between neighboring pixels,

gtt′(xt, xt′) = exp
(
α‖ut − ut′‖

2
)
− 1, (4)

where ut is a 3-element color vector of the t-th superpixel
and α < 0 is a tuning parameter. However, this measure
does not take into account texture information and can be

even worse than the Ising prior. For instance, assume a tex-

ture consisting of black spots on light background, e.g. a
texture of leopard skin in Fig. 1. Even though the pixels on

the black spot/background boundary belong to the same tex-

ture, the smoothness term penalizes them due to high con-

trast and tends to separate them. Fig. 3 (b) shows this effect,

notice the spareness of the segmented texture.

Another smoothness term was also proposed in [10, 12]

to be defined on a regular pixel grid using a larger neigh-

borhood and a combined color and texture gradient giv-

ing promising results on textures. However, computing the

combined color and texture gradient is very expensive and,

moreover, it cannot be easily used for superpixels not ar-

ranged in a regular grid.

We propose a new smoothness term, a modified Ising

prior based on color neighborhood histograms, outperform-
ing the previous terms, see Fig. 3 (c). As a base we use the

prior learnt from seeds, i.e. small circular image patches,
given either by user input or by a proposed automatic

method described later. Each class (label) is defined by a

few of these seeds, see Fig. 6. The seeds give us strong pri-

ors on neighboring colors. We construct a 2-dimensional

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

Figure 4. Neighborhood histograms for L, a, b channels computed

from superpixels behind the seeds corresponding to the leopard

texture from Fig. 6. Both axes correspond to histogram bins.

color neighborhood histogram for each class and for each

color channel. There are 3×K neighborhood histograms,
i.e. hi

x where x = 1...K forK = |X | number of labels and
i = 1...3 for 3 color channels, computed from the superpix-
els of the seeds. The dimension of each hi

x is n × n, where
n is the number of bins, 64 in our case. An example of
a neighborhood histogram for one label is shown in Fig. 4.

Off-diagonal blobs say that there are some neighboring su-

perpixels with different colors in the texture. To build the

histograms we use soft binning using a Gaussian kernel and

normalize them to sum to 1.

Using the neighborhood histograms, we set the smooth-

ness term as follows,

gtt′(xt, xt′)

{(∏3
i=1 hi

xt
(ui

t, u
i
t′)
)γ

−1 if xt = xt′ ,

−1 if xt �= xt′ ,
(5)

where ui
t is the mean value of all image pixels belonging to

the t-th superpixel in the i-th color channel and γ is a tuning
parameter, 0.05 in our case. We build hi

x for each color

channel separately and then construct the joint probability

of a color pair as the product of color channel histograms.

This construction is justified only when the color channels

are independent like in the Lab color space that we use.

Ideally, if xt �= xt′ in Eq. (5), we should build the neigh-

borhood histograms from superpixel pairs where each su-

perpixel in the pair belongs to a different class. However,

the seeds do not give us such superpixel pairs. Therefore,

we set the quality to−1 to penalize neighbors with different
labels and to keep the segmentation smooth.

The proposed smoothness term in Eq. (5) compensates

for the lack of the gradient-based term in Eq. (4) by com-

bining neighborhood relations learnt from some samples of

textures with the smoothness of the Ising prior, Eq. (3).

3.3. Data term
The data term gt(xt) encodes the quality of assigning

a label x from the set X to an object/superpixel t in the
graph. The quality measures how the superpixel with its

neighborhood suits the learnt particular class models.

There are approaches, often used with MIN-CUT,

to model classes non-parametrically using color his-

tograms [12] or parametrically using Gaussian Mixture

Figure 5. Data term for three classes from Fig. 6.

Models (GMM) on color histograms [1, 18, 8]. However,

none of them takes texturedness directly into account.

We propose a codebook approach to model textures in a

more intuitive way similar to [13], however, here improved

to be usable on superpixels. We use the seeds and superpix-

els in them to learn the codebook of feature vectors (etalons)

for each class x.
LEARNING THE CODEBOOKS. Let the feature vec-
tor from t-th superpixel marked by a label x be fx

t =

[u�
t ,umin�

t ,umax�

t]� where ut is a 3-element color vec-
tor composed of mean values of all pixel colors in the t-th
superpixel and

u
min

t = argmin
uk∈S(t)

‖ut − uk‖
2
, u

max

t = argmax
uk∈S(t)

‖ut − uk‖
2
,

where S(t) ⊂ E defines the neighborhood (of a given
depth) around the t-th superpixel respecting the neighbor-
hood structure E of the whole graph. We use the depth 2,
i.e. for a particular superpixel we search its neighbors and
also the neighbors of the neighbors.

We sequentially process all seeds, i.e. we compute fx
t

for all superpixels in the seeds and perform simple clus-

tering to create code book Bx for each class x = 1...K .
The clustering is done such that before adding a new fea-

ture vector fx
t to the codebook B

x we first compare it with

all already stored vectors j and add it only if the minimum
distance d(j) = ‖fx

t − fx
j ‖ is above a predefined threshold,

i.e. minj=1...|Bx| d(j) > θ. Otherwise, we vote for already
stored vector fx

j∗ , where j∗ = argminj d(j) by increasing a
counter cx

j∗ . The counter c
x
j∗ expresses the number of sam-

ples represented by the etalon vector and is stored together

with Bx.

FILLING THE GRAPH. Given Bx, for each t-th superpixel
in the image we set the data term as follows

gt(x) = −exp

(
α min

j=1...|Bx|

(
β‖ut − fx

j,1:3‖
2+

min
k∈S(t)

‖fx
j,4:6 − uk‖

2 + min
k∈S(t)

‖fx
j,7:9 − uk‖

2
)
/cx

j

)
, (6)

where α, β are parameters fixed in our experiments to
−1200 and 20, respectively. The index notation in fx

j,1:3

means first three elements of fx
j .

Notice the strategy of the comparison in Eq. (6). Unlike

standard approaches, no feature vector is computed for the

t-th superpixel for which the quality gt is being set. Instead,

the feature vector from Bx which best fits to the t-th super-
pixel and its neighborhood is searched for. The standard

Figure 6. Seed positioning. Left: Clustered seeds at positions cho-

sen not to cross texture boundaries. Seeds with same color corre-

spond to the same class/label. Right: A final segmentation through

the MAX-SUM solver into 8 classes.

approaches would compute a feature vector at the t-th su-
perpixel and its neighborhood and then would compare it

to all feature vectors in Bx to find the closest match. How-

ever, this would lead to poor performance at the superpixels

which are close to boundaries between textures because fea-

ture vectors would be computed from neighborhoods con-

taining more then one texture. Such feature vectors would

not match any codebook vector because the codebook vec-

tors are computed only from neighborhoods lying within the

same texture.

Fig. 5 shows the data term gt(xt = {1, 2, 3}) for 3 out
of 8 classes, one corresponding to the leopard itself, one

to the area below the leopard and one to the area behind

it. Even though the data terms overlap at some positions

because of the leopard skin’s similarity to the background,

the final labeling correctly splits the textures, see Fig. 6.

4. Seeds

In previous section we formulated the smoothness and

data terms exploiting some priors. The priors are learnt

from representative seeds provided either manually or auto-

matically, as explained further in this section. At this stage,

the superpixels are ignored and everything is done on origi-

nal pixels.

We build on the fact that small image patches consistent

in color and texture can provide sufficient information about

possible classes in the image. The idea appeared in [12]

where the seeds were first placed regularly over the image

and then slightly shifted to avoid crossing texture bound-

aries. However, in [12] the computationally expensive color

and texture gradient [10] was used to do the positioning,

making the strategy impractical.

Here we also start with a regular grid of initial positions

of seeds but we propose a new strategy to position them. A

parameter here is the radius r of the seed, in our case 10
pxls. Each seed, i.e. its central point, can be moved in a
small rectangle R with size 2r × 2r centered at the seed’s
initial position. For each initial seed position we do the fol-

lowing optimization to find a new optimal position avoiding

crossing texture boundaries s∗, i.e.

s∗ = argmin
s∈R

(
χ2(h12, h34) + χ2(h14, h23)

)
, (7)

where hij stands for hij(s, r) meaning the histogram com-
puted from pixels in the i- and j-th quadrant of the cir-
cle with radius r centered at s2×1, and χ2 is a histogram

test statistic. The histogram hij consists of 4 n-bin sub-
histograms, n = 64 in our case. The first 3 histograms are
the color histograms and fourth one corresponds to a tex-

ton histogram. Textons, as a filter bank approach for texture

description, are computed following [10].

After positioning the seeds obeying Eq. (7), the his-

togram vector is computed for each shifted seed from all

pixels of the seed. As before, the histogram vector is com-

posed of 3 color and 1 texton histogram. Such 4 × n his-
togram vectors are fed into a K-means clustering method

partitioning the seeds into a predefined number of classes

K and assigning each seed a particular label, see Fig. 6.

5. Experimental Evaluation
A common problem related to the evaluation of segmen-

tation methods is the difficulty to objectively measure the

quality of the segmentation. However, a Global Consistency

Error (GCE), also used here, introduced in [11] was shown

to be a reasonable way of comparison of algorithms to man-

ual human segmentations.

We used 200 color images and their corresponding hu-

man segmentations in the test group of the Berkeley Seg-

mentation Dataset [11]. For each of the images, at least 5

segmentations produced by different persons are available.

For each image, the GCE of the segmentation produced by

the tested algorithm with respect to each of the available

human segmentations for that image was calculated. The

mean of these values gives the mean GCE per image plot-

ted in a histogram. The global GCE as one number was

calculated as the mean of these 200 mean GCE values.

We compared human segmentations to each other to get

the best possible expectation which can be achieved by au-

tomatic methods. The aim is to be, in terms of the distri-

bution of the histograms, as close as possible to the his-

togram corresponding to the comparison human vs. human,

shown by the first histogram in Fig. 8. We tested state-of-

the art methods handling textures, namely normalized cuts

(NCUTS) [10], SEEDSEG [12] based on MIN-CUT, both us-

ing the combined texture and color gradient, and FOW [5]

based on learning affinity functions.

It can be seen from the histograms, Fig. 8, as from the

global GCE, Tab. 1, that our proposed method achieves in

terms of the GCE the best result. In general, the method

performs well, see Fig. 1, 7 and www1, and gives satis-
factory results even though that current texture descriptor,

1www.prip.tuwien.ac.at/Research/muscle/Images/CVPR07

Figure 7. Results on some images for 8 classes.

method # of regions GCE

HUMAN 17 0.080

proposed 8 0.178
SEEDSEG 4 0.209

FOW 13 0.214

NCUT 8 0.285

Table 1. Comparison of the methods. The first column stands for

method acronyms, the second corresponds to the average number

of regions per image. The third column shows the global GCE

over all segmentations.

based on color variation only, cannot distinguish between

two textures having different structure but consisting of the

same color pairs. Nevertheless, in such cases, the codebook

vectors could easily be augmented by more features while

preserving the proposed strategy of the inference stage in

Eq. (6).

The implementation of the NCUTS used (provided on the

authors’ web page augmented by the texture and color gra-

dient) requires that the number of regions is passed as a pa-

rameter. We used 8, the same as for the proposed method.
The segmentations by the FOW2 and the SEEDSEG3 method
were provided directly by the authors. In both, the number

of segments is achieved automatically.

The proposed segmentation method was implemented in

MATLAB and the most time consuming routines in C inter-

faced through mex-files. The code of the MAX-SUM solver

was downloaded from [6]. The method takes on average 50

seconds on a Pentium 4@2.8GHz on 321×481 images with
|T | = 12500 objects, forK = 8 classes.

We also tried the MAP solver by Kolmogorov [7] and

compared it to the Werner’s solver [20] on all 200 images.

They both lead to almost identical results in most cases in

terms of labeling, but differ in running time, see Fig. 9. The

difference in labeling in some cases is caused by insufficient

number of iterations for the Kolmogorov’s solver required

as a parameter, set to 100 for whole dataset. The Werner’s

2www.cs.berkeley.edu/∼fowlkes/BSE/cvpr-segs
3www.prip.tuwien.ac.at/Research/muscle/Images/ECCV06

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

300

350

400
human vs human

GCE
0 0.1 0.2 0.3 0.4 0.5 0.6

0

20

40

60

80

100

Ncut vs human

GCE
0 0.1 0.2 0.3 0.4 0.5 0.6

0

20

40

60

80

100

Fow vs human

GCE
0 0.1 0.2 0.3 0.4 0.5 0.6

0

20

40

60

80

100

Seedseg vs human

GCE
0 0.1 0.2 0.3 0.4 0.5 0.6

0

20

40

60

80

100

MSum vs human

GCE

Figure 8. Histograms of Global Consistency Error (from left) for human vs. human, NCUTS, FOW, SEEDSEG, and our proposed method
based on the MAX-SUM solver.

20 40 60 80 100 120 140 160 180 200

−20

0

20

40

60

di
ff[
%
]

t[s
]

image number

Figure 9. Speed comparison of the MAX-SUM solver by

Werner [20] (blue curve with the higher variance) to one by Kol-

mogorov [7]. Curve below zero axis depicts the percentage of

label differences.

solver estimates it automatically causing sometimes higher

running time, however a better suboptimal solution, when

the classes are very similar and thus harder separable, see

peaks in Fig. 9.

6. Conclusion
As a contribution to the improvement of single-image

segmentation methods, we proposed a new strategy of en-

coding priors based on color and texture cues into the MRF

built from superpixels. We show that the recently intro-

duced MAP solvers [7, 20] with new design priors offer an

efficient image segmentation framework.

References
[1] A. Blake, C. Rother, M. Brown, P. Perez, and P. S. Torr.

Interactive image segmentation using an adaptive GMMRF

model. In Proc. ECCV, pages I: 428–441, 2004.
[2] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

vision. PAMI, 26(9):1124–1137, 2004.
[3] P. Carbonetto, N. de Freitas, and K. Barnard. A statistical

model for general contextual object recognition. In Proc.
ECCV, pages 350–362, 2004.

[4] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based

image segmentation. IJCV, 59(2):167–181, 2004.
[5] C. Fowlkes, D. Martin, and J. Malik. Learning affinity func-

tions for image segmentation: Combining patch-based and

gradient-based approaches. In Proc. CVPR, pages II: 54–61,
2003.

[6] http://cmp.felk.cvut.cz/cmp/software/maxsum/.

[7] V. Kolmogorov. Convergent tree-reweighted message pass-

ing for energy minimization. PAMI, 28(10):1568–1583,
2006.

[8] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and

C. Rother. Probabilistic fusion of stereo with color and

contrast for bi-layer segmentation. PAMI, 28(9):1480–1492,
2006.

[9] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Solving

Markov random fields using second order cone program-

ming. In Proc. CVPR, pages I: 1045–1052, 2006.
[10] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and

texture analysis for image segmentation. IJCV, 43(1):7–27,
2001.

[11] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In Proc. ICCV, pages 416–425, 2001.
[12] B. Mičušı́k and A. Hanbury. Automatic image segmentation

by positioning a seed. In Proc. ECCV, pages II: 468–480,
2006.

[13] B. Mičušı́k and A. Hanbury. Template patch driven image

segmentation. In Proc. BMVC, pages II: 819–829, 2006.
[14] N. Paragios and R. Deriche. Geodesic active regions and

level set methods for supervised texture segmentation. IJCV,
46(3):223–247, 2002.

[15] M. Schlesinger. Syntactic analysis of two-dimensional visual

signals in noisy conditions. Kibernetika, (4):113–130, 1976.
In Russian.

[16] M. Schlesinger and B. Flach. Analysis of optimal labelling

problems and application to image segmentation and binocu-

lar stereovision. In Proc. East-West-Vision Workshop, pages
65–81, 2002.

[17] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. PAMI, 22(8):888–905, 2000.
[18] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-

Boost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In Proc.
ECCV, pages I: 1–15, 2006.

[19] Z. Tu, X. Chen, A. Yuille, and S. Zhu. Image parsing:

Unifying segmentation, detection, and recognition. IJCV,
63(2):113–140, 2005.

[20] T. Werner. A linear programming approach to Max-sum

problem: A review. PAMI, 2007.
[21] Y. Wexler, A. Fitzgibbon, and A. Zisserman. Bayesian es-

timation of layers from multiple images. In Proc. ECCV,
pages III: 487–501, 2002.

[22] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing

free-energy approximations and generalized belief propaga-

tion algorithms. IEEE Transactions on Information Theory,
51(7):2282–2312, 2005.

