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Abstract

This paper presents a novel unsupervised color segmen-
tation scheme named ROI-SEG, which is based on the main
idea of combining a set of different sub-segmentation re-
sults. We propose an efficient algorithm to compute sub-
segmentations by an integral image approach for calculat-
ing Bhattacharyya distances and a modified version of the
Maximally Stable Extremal Region (MSER) detector. The
sub-segmentation algorithm gets a region-of-interest (ROI)
as input and detects connected regions having similar color
appearance as the ROI. We further introduce a method to
identify ROIs representing the predominant color and tex-
ture regions of an image. Passing each of the identified ROIs
to the sub-segmentation algorithm provides a set of differ-
ent segmentations, which are then combined by analyzing a
local quality criterion. The entire approach is fully unsu-
pervised and does not need a priori information about the
image scene. The method is compared to state-of-the-art
algorithms on the Berkeley image database, where it shows
competitive results at reduced computational costs.

1. Introduction

The problem of segmentation is to partition an image
into a set of non-overlapping regions. Traditionally, seg-
mentation is formulated as bottom-up process, where no
high-level knowledge about the image scene is incorporated
into the algorithm. An overview of color segmentation al-
gorithms can be found e. g. in [9]. Bottom-up approaches
identify regions in the input image only based on low-level
cues, like color or texture. Although such segmentation re-
sults can be achieved in an efficient way, they often do not
match manual segmentations.

To overcome the limitations of low-level cues based ap-
proaches, there has recently been much interest on top down
algorithms e. g. by Vasconcelos et al. [19], or on simulta-
neous combination of top-down and bottom-up approaches

e. g. by Levin and Weiss [11]. But there are still many ap-
plications where a priori information is hard to obtain or is
not available at all and thus, have to rely on an efficient and
as good as possible bottom-up segmentation.

In this work, we present a fully unsupervised color seg-
mentation scheme named ROI-SEG, which does not need
any learning process or a priori information. The underly-
ing idea is to compute the final segmentation as a combina-
tion of differently focused sub-segmentations of the same
input image. A combinatorial approach was recently also
used for segmentation by Pichel et al. [16] and Micusik
and Hanbury [14]. Both algorithms either suffer from long
computation times or from insufficient quality of the sub-
segmentations and the final combination step. To over-
come this problem, we propose an algorithm to calculate
sub-segmentations in a fast and fully automatic way and an
approach to efficiently combine the results by analyzing a
segmentation quality criterion.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the novel sub-segmentation concept,
which needs a region-of-interest (ROI) as input. The al-
gorithm is based on efficient calculation of Bhattacharyya
distances by an integral image approach combined with a
modified version of the Maximally Stable Extremal Region
(MSER) detector. The sub-segmentation algorithm returns
a set of connected regions which all have approximately
the same color distribution as the input ROI. The final seg-
mentation result is a combination of n sub-segmentations,
where each is calculated for one of n different ROIs. For
unsupervised segmentation all input ROIs have to be found
automatically. Section 3 introduces an efficient concept to
identify ROIs representing the predominant color and tex-
ture regions in a color image. Section 4 describes the com-
bination process which analyzes a Bhattacharyya distance
based quality measure. The entire ROI-SEG framework is
illustrated in Figure 1. Finally, Section 5 compares seg-
mentation results of the ROI-SEG algorithm on images of
the Berkeley segmentation database to state-of-the-art color
segmentation algorithms.
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Figure 1: Illustration of unsupervised color segmentation concept. The final segmentation is a combination of sub-
segmentation results, where each is based on an automatically identified region-of-interest (ROI).

2. Sub-segmentation concept

The main part of our unsupervised segmentation concept
is an algorithm, which allows detection of a set of con-
nected regions in a color image, based on a previously de-
fined region-of-interest (ROI). The detected regions all have
approximately the same color distribution as the input ROI.

The sub-segmentation algorithm, which gets an arbitrar-
ily shaped ROI and a color image as input, can be roughly
divided into four subsequent steps. First, the image is con-
verted into the CIE Luv color space in order to have an
isotropic feature space. Second, the color distribution of
the ROI is modeled by a Gaussian Mixture Model (GMM),
which is initialized by the results of a Mean Shift algorithm,
as described in Section 2.1. Third, all color pixels are or-
dered by calculating Bhattacharyya distance values for each
pixel. This is done by an efficient integral image based
approach, which is described in Section 2.2. Finally, Sec-
tion 2.3 shows how the ordered pixel values are passed to a
modified version of the Maximally Stable Extremal Region
(MSER) detector to compute the final result – a set of con-
nected regions, which approximately have the same color
appearance as the input ROI. Figure 2 illustrates the con-
cept described, where (a) shows input ROIs, (b) calculated
Bhattacharyya distances mapped to a grayscale range and
(c) segmentation results.

2.1. Estimating ROI color distribution

The color distribution of the pixels within the input ROI
is characterized by a Gaussian Mixture Model (GMM) in
the Luv feature space. For a three-dimensional Luv feature
vector ~x the mixture density for the GMM model Θ is de-
fined as

p(~x,Θ) =
C∑

c=1

ωcN
(
~µc, ~Σc

)
. (1)

(a) Region-of-interest (b) Bhattacharyya (c) Segmentation result

Figure 2: Illustration of sub-segmentation algorithm. Based
on a ROI as input (a), Bhattacharyya distances are calcu-
lated (b) and passed to a modified MSER detection algo-
rithm, which results in a set of connected regions (c).

Thus, the density is a weighted linear combination of C
multivariate Gaussian distributions N(~µc, ~Σc), where ~µc is
the 3 × 1 mean vector and ~Σc is the 3 × 3 covariance ma-
trix of the c-th component. The weights ωc describe the
proportion of the c-th component and fulfill

∑C
c=1 ωc = 1.

Thus, the parameter set λ of the GMM model Θ consists
of λ = {ωc, ~µc, ~Σc}, with c = 1 . . . C. The parameters of
the model are estimated as maximum likelihood parameters
using the Expectation–Maximization (EM) algorithm [6].
The EM algorithm is an iterative approach, which refines
the parameters of the model to monotonically increase the
likelihood for the observed feature vectors.

One challenge of representing the probability distribu-
tion of the Luv feature vectors by a Gaussian Mixture
Model is to find the number of components C and to ini-
tialize the EM algorithm. In this work, we use an idea mo-
tivated by Cho et al. [2] to determine the number of compo-
nents automatically by a Mean Shift algorithm designed for
detecting the number of significant clusters in the feature
space.



The Mean Shift algorithm proposed by Comaniciu and
Meer [4] is a non parametric kernel-based density estima-
tion technique. In general, the Mean Shift concept enables
clustering of a set of data-points into C different clusters,
without prior knowledge of the number of clusters. It is
based on the non parametric density estimator at the d-
dimensional feature vector ~x in the feature space, which can
be obtained with a kernel K(~x) and a window size h by

f(~x) =
1

nhd

n∑
i=1

K

(∥∥∥∥~x− ~xi

h

∥∥∥∥2
)

, (2)

where ~xi are the n feature vectors of the data set. Calcu-
lating the gradient of the density estimator shows that the
so-called Mean Shift defined by

m(~x) =

n∑
i=1

~xiK (~x− ~xi)

n∑
i=1

K (~x− ~xi)
, (3)

points toward the direction of the maximum increase in the
density. The main part of the algorithm is to move the win-
dow iteratively by

~xt+1 = ~xt + m(~xt). (4)

It is guaranteed that the shift converges to a point where
the gradient of the underlying density function is zero.
These points are the detected cluster centers of the distribu-
tion and represent an estimated mean value for the cluster.

We are not interested in the mean shift clusters itself.
We just run the Mean Shift procedure to find the stationary
points of the density estimates, which are the modes of the
distribution. These modes serve as initialization of the EM
algorithm to find the maximum likelihood parameters of the
GMM model.

2.2. Definition of ordering relationship

The next step is to order the pixels of the input color im-
age. Therefore, for every pixel a unique distance value β
between a single Gaussian distribution fitted to the Luv val-
ues within a x × y window around the pixel and the Gaus-
sian Mixture Model (GMM) of the ROI, as obtained by the
step described in Section 2.1, is calculated. While the single
Gaussian distributions have to be recalculated for all of the
windows located on every pixel, the GMM of the ROI stays
the same during the entire computation.

The comparison between the GMM and the single Gaus-
sian distributions is based on calculating Bhattacharyya dis-
tances [1]. The Bhattacharyya distance β compares two
d - dimensional Gaussian distributions N1 = {~µ1, ~Σ1} and
N2 = {~µ2, ~Σ2} by

β (N1, N2) =
1
2

ln

∣∣∣ ~Σ1+~Σ2
2

∣∣∣√∣∣∣~Σ1

∣∣∣ ∣∣∣~Σ2

∣∣∣ +
1
8
(~µ2 − ~µ1)t

[
~Σ1 + ~Σ2

2

]−1

(~µ2 − ~µ1).

(5)

The Bhattacharyya distance allows a quantitative state-
ment about the discriminability of two Gaussian distribu-
tions by the Bayes decision rule. Therefore, for our analysis
in the three-dimensional CIE Luv feature space, the Bhat-
tacharyya distance represents a quantitative statement if two
color distributions are likely to be equal or not.

To be able to compare a single Gaussian distribution to a
GMM, C different Bhattacharyya distance values to every
component of the GMM have to be calculated. Then, the
final distance value β is computed by

β =
C∑

c=1

ωc β (Nc, Nw), (6)

where ωc is the c-th GMM weight, Nc = {~µc, ~Σc} denotes
the c-th component of the GMM and Nw = {~µw, ~Σw} is
the single Gaussian fitted to the window pixels.

To be able to calculate a Bhattacharyya distance for ev-
ery pixel, the window has to be moved all over the image.
For every window location the mean and the covariance ma-
trix of the corresponding Luv values within the window
have to be computed which is a time-consuming process.
Therefore, we introduce an adaption of the Summed-Area-
Table (SAT) approach to efficiently calculate the Bhat-
tacharyya distances. The SAT idea was originally proposed
for texture mapping and brought back to the computer vi-
sion community by Viola and Jones [20] as integral image.

In general, the integral image Int(r, c) is defined for a
gray scale input image I(x, y) by

Int(r, c) =
∑

x≤r,y≤c

I(x, y), (7)

as the sum of all pixel values inside the rectangle bounded
by the upper left corner.

Tuzel et al. [18] proposed an efficient method to calcu-
late covariances based on the integral image concept. They
build d integral images Pi for the sum of the values for each
dimension and d ∗ (d + 1)/2 images Qij for each product
between the values of any two dimensions, where d is the
number of dimensions of the feature space.

Thus, the integral images Pi, with i = 1 . . . d, are de-
fined by

Pi(r, c) =
∑

x≤r,y≤c

Ii(x, y), (8)



where Ii is the value of the i-th dimension of the input im-
age. The product of the values of any two dimensions Qij ,
with i, j = 1 . . . d, is calculated by

Qij(r, c) =
∑

x≤r,y≤c

Ii(x, y) ∗ Ij(x, y). (9)

Based on the three integral images Pi the mean vector
~µ = {µ1, . . . µd} for any window defined by the upper left
and the lower right coordinates pul and plr can be calculated
by

µi

(
pul : plr

)
= Pul

i + P lr
i − Pur

i − P ll
i , (10)

where Pul
i is the value of Pi at the upper left coordinate of

the window and P lr
i , Pur

i and P ll
i denote the values for the

lower right, upper right and lower left coordinates, respec-
tively.

The covariance matrix ~Σ(pul : plr) for the same window
can be calculated by

Qsub(i, j) = Qul
ij + Qlr

ij −Qur
ij −Qll

ij , (11)

Psub(i) = Pul
i + P lr

i − Pur
i − P ll

i , (12)

~Σ(pul : plr) =
1

m− 1

(
~Qsub −

1
m

~Psub
~Psub

T

)
, (13)

where m is the number of pixels within the window. Thus,
for calculation of the Bhattacharyya distances, nine differ-
ent integral images are needed. Please note, that these inte-
gral images only have to be calculated once, even if we want
to perform comparisons to different GMMs, as described in
Section 4.

2.3. MSER detection

The last step of the sub-segmentation concept is to de-
tect a set of connected regions by analyzing the calculated
Bhattacharyya distances. This step is based on a modified
version of the Maximally Stable Extremal Region (MSER)
concept from Matas et al. [13]. The MSER detector is one
of the best interest region detectors in computer vision as
e. g. shown by Mikolajczyk et al. [15].

The underlying idea is to apply the MSER detector to
the Bhattacharyya distances which allows the integration
of color information into the detection process. In general,
MSERs are defined for connected, weighted graphs, i. e. for
gray scale images. To make the MSER detection applicable
for color images, a unique ordering of the color pixels has
to be provided. We propose to use the Bhattacharyya dis-
tances to define the ordering and to use them as weights in
the MSER detection algorithm.

MSERs are detected by analyzing the levels Lω of a con-
nected, weighted graph. A specific level Lω contains the set
of nodes that have a weight above a given threshold ω. The

groups of connected nodes within each level are called ex-
tremal regions Ri, because they all fulfill

∀p ∈ Ri ,∀q ∈ boundary(Ri) → W (p) ≥ W (q), (14)

where p and q are pixels within the input image, W (p) is
the corresponding weight and boundary(Ri) is the set of
all boundary pixels of the region. In contrast to the original
MSER detector we work on continuous valued weights –
the Bhattacharyya distances – which we have to discretize.
This is done by constraining the analysis on levels at con-
stant distance steps ∆Bhatt. Then, MSERs are detected
as those extremal regions Ri within the levels Lω with
ω = i ∗∆Bhatt and i ∈ [0, 1, 2 . . .], that have a local stabil-
ity minimum Ψ defined by

Ψ(Ri) =
|Rω−η∆Bhatt

j | − |Rω+η∆Bhatt

k |
|Rω

i |
, (15)

where |.| denotes the cardinality, Rω
i is a region which is

obtained in a level at weight ω and η is a stability range
parameter. Rω−η∆Bhatt

j and Rω+η∆Bhatt

k are the extremal
regions that can be found at the same location within the
levels at weights ω − η∆Bhatt and ω + η∆Bhatt. Thus,
the extremal regions with the highest stability (MSERs) are
those regions which have approximately the same size over
a level range of 2η∆Bhatt.

MSERs can be calculated in a very efficient way by using
the component tree as data structure as shown by Donoser
and Bischof [8]. In addition, we are only interested in de-
tecting MSERs at very low weights, i. e. regions that have a
color distribution that is approximately similar to the one of
the input ROI. Thus, constraining the search on low weights
makes the MSER computation even faster.

3. Automatic ROI detection
The concept presented in Section 2 enables the detection

of connected regions based on a previously defined region-
of-interest (ROI). Such a ROI can be initialized manually,
e. g. if we are interested in a specific region of the image. Of
course, for unsupervised segmentation a set of input ROIs
has to be provided automatically. This section introduces a
method to detect ROIs representing the predominant color
and texture distributions of a color image.

Please note, that this is not a critical step of the unsuper-
vised concept and that any other algorithm can be used for
the automatic ROI detection. The number of detected ROIs
only influences the computational time and has almost no
effect on the final quality of the results, because bad initial-
izations will be sorted out in the combination step, as de-
scribed in Section 4. Because of the efficient design of the



(a) Nine ROIs (b) Seven ROIs (c) Eight ROIs

Figure 3: Automatic ROI detection results.

other parts of the concept, we propose a fast method which
allows detection of a low number of ROIs in short time.

The first step of the ROI detection concept is to parti-
tion the input color image into n equal sized blocks. For
each of these blocks a K-Means algorithm is applied in the
five dimensional space consisting of the three Luv values
and the two spatial coordinates of each pixel. To achieve
consistent results the K-Means is always initialized by the
the first k data points and the ordering of the data points is
fixed. The clustering result is mapped back to the image
and holes are filled. The result of this step is a segmenta-
tion of the input image into n ∗K clusters. Different values
for K influence the ROI detection quality, but experimental
evaluation showed that on average K = 3 yields the best
results. The ROIs are then identified by applying a region
merging approach to the results of the K-Means algorithm.
The merging step is done by analyzing the n ∗K mean Luv
values of all clusters by Mean Shift clustering, as described
in Section 2.1. The Mean Shift clusters the regions into
m ≤ n ∗ K new clusters, thus, some regions are merged.
These m detected clusters finally represent an estimate of
the predominant color and texture distributions within the
input image. The regions identified are then eroded to avoid
border effects, and the smaller ones are removed.

The result of the ROI detection algorithm is a set of con-
nected regions. As one can see from the examples shown
in Figure 3, the predominant color distributions are found
quite well.

4. Combination of sub-segmentation results
The sub-segmentation concept presented in Section 2 is

applied to all of the ROIs detected with the algorithm pre-
sented in Section 3. Each input ROI provides a segmenta-
tion of the input image into a number of connected regions.
As last step of our concept, these results have to be com-
bined into the final segmentation result.

To be able to combine the sub-segmentation results, we
define a local criterion, which evaluates the segmentation
quality for each detected region in every result. We pro-
pose to analyze the corresponding Bhattacharyya distances
to evaluate the quality of each segmentation. The lower the
Bhattacharyya values the more similar the compared distri-
butions are, which is a sign of good segmentation quality.
Thus, the mean Bhattacharyya distance of all pixels within
a detected region is used to distinguish between a high and
a low quality result.

We calculate the mean Bhattacharyya value for every de-
tected region within each sub-segmentation result. Then we
assign the label of the region with the locally lowest mean
Bhattacharyya distance to every pixel of the input image,
which provides a first segmentation result. Some regions
will still be unassigned, as can be seen in Figure 1 and some
post-processing is necessary. If the unassigned region is
bigger than a fixed threshold one can assume that this area
covers a non–initialized ROI of the image. Then, another
sub-segmentation is performed and added to the set of sub-
results. All other regions are assigned to those region in its
neighborhood with the most similar mean Luv value.

5. Experimental evaluation
Our ROI-SEG algorithm is benchmarked against state-

of-the-art color segmentation algorithms based on images
from the Berkeley database [12]. Since our algorithm does
not include a priori information about the image scene or
any learning algorithms, we only use the 200 images of the
test data set. Figure 4 shows segmentation results of our
algorithm for 15 selected images. The images chosen are
the same as in [14] in order to allow a direct comparison to
one of the state-of-the-art methods.

For quantitative comparison of segmentation results ob-
tained with different algorithms we analyze the Global Con-
sistency Error (GCE). The GCE requires calculation of a
Local Refinement Error (LRE) for every pixel pi by

LRE(S1, S2, pi) =
|R(S1, pi)\R(S2, pi)|

|R(S1, pi)|
, (16)

where S1 and S2 are two different segmentation re-
sults, pi is one pixel of the image, |.| denotes cardinality,
R(Sj , pi) is the connected region to which pixel pi belongs
to in segmentation Sj and R(S1, pi)\R(S2, pi) is the differ-
ence between two regions. The GCE is a single value and
is calculated by

GCE(S1, S2) =
1
m min {

∑
LRE(S1, S2),

∑
LRE(S2, S1)} , (17)

where m is the number of pixels in the image. The GCE
allows to make a quantitative statement about the similarity
between two segmentation results S1 and S2.



Figure 4: Segmentation results of our algorithm on images of Berkeley database. The same images as in [14] are chosen, to
allow a direct comparison to one of the state-of-the-art algorithms.

Based on the GCE we have compared our results to six
state-of-the-art color segmentation algorithms: the JSEG al-
gorithm from Deng and Manjunath (Jseg) [7], the Mean
Shift method (Mshift) from Comaniciu and Meer [3], the
standard normalized cut algorithm (Ncuts) from Shi and
Malik [17], the multi-scale normalized cut approach (Ms-
cuts) from Cour et al. [5], the seeded graph cuts method
(Seed) from Micusik and Hanbury [14] and the pixel affin-
ity based method (Affin) from Fowlkes et al. [10]. All re-
sults were calculated with publicly available implementa-
tions, with the exception of Affin and Seed, where the results
are taken directly from the paper [14].

At least five human segmentations, which represent the
ground truth for this benchmark, are available for each of
the 200 images from the Berkeley database. In the first
step, for every algorithm 200 mean GCE values denoted
as GCEn, with n = 1 . . . 200, were calculated by

GCEn =
1

Hn

Hn∑
i=1

GCE
(
Segn,Humi

n

)
, (18)

where Hn is the number of available human segmentations
for the n-th image, Segn is the segmentation result of one
of the seven algorithm and Humi

n is the i-th human seg-
mentation of the n-th image. Then, for each algorithm an
overall quality measure GCE was calculated by

GCE =
1

200

200∑
n=1

GCEn. (19)

To be able to measure the consistency of the human seg-
mentations itself, we computed GCE values of all possible

combinations between all available human segmentations
for every image, which additionally allows calculation of
an overall mean GCE for the human results. The obtained
value was 0.0783, which is an indication for good consis-
tency of the human segmentations.

Table 1 summarizes the comparison of the aforemen-
tioned algorithms using the quality measure GCE. As one
can see, Ncuts and Mscuts exhibit the highest values indicat-
ing poorer performance compared to the other algorithms,
while our method yields the lowest value. In addition, our
algorithm provides on average 18 regions per segmentation,
which is close to the human average.

To further compare the performance of different algo-
rithms, many publications, as e. g. [14] calculate the GCEs
to all available human segmentations and summarize these
values in a histogram, as shown in Figure 5. Again, it seems
that the algorithms approximately perform the same, except
the Ncuts and the Mscuts algorithms, their histograms are
located more at the right side.

The histograms shown in Figure 5 do not allow a deeper
insight into divergences between segmentation results ob-
tained with different methods, since the correspondence be-
tween the calculated GCE and the input image is lost. In
order to overcome this weakness, we compare our approach
directly to other algorithms using scatter plots, as shown in
Figure 6. Each point in these plots represents one of the
200 input images, where the x-value is the GCEn of our
method and the y-value is the GCEn of the algorithm cur-
rently compared. Points on the diagonal line y = x indi-
cate identical deviation from the ground truth for both algo-
rithms, while the distance to the line is a measure for the
disagreement between the obtained segmentation results.



Human Jseg Mshift Ncuts

GCE Reference 0.1996 0.1870 0.2811
# regions 17 36 20 7

Mscuts Affin Seed Our

GCE 0.2557 0.214 0.209 0.1840
# regions 7 13 4 18

Table 1: Comparison of state-of-the art methods. It shows
the quality measure GCE and the average number of de-
tected regions. The GCE values for the Affin and Seed
method are taken directly from [14].

(a) Human vs. Human (b) Human vs. Jseg (c) Human vs. Mshift

(d) Human vs. Ncuts (e) Human vs. Mscuts (f) Human vs. Our

Figure 5: Comparison of state-of-the-art algorithms by his-
tograms showing the GCE distribution computed on 200
Berkeley images.

Points above the diagonal line represent images, where our
algorithm performs better, whereas points below indicate
superior performance of the other algorithm. This discrimi-
nation is emphasized by different colors in the scatter plots.
As can be seen in Figures 6(c) and 6(d), the two normal-
ized cut based approaches perform inferior to our approach,
since most of the points are above the diagonal line. Al-
though the Jseg algorithm has a almost similar GCE, the
scatter plot in Figure 6(a) reveals that the points above the
diagonal line are on average farther away from the line than
the points below. This is an indication that for some images
Jseg performs distinctively poorer as our approach. Mshift
in Figure 6(b) achieved almost similar performance as our
algorithm. In order to gain a deeper insight into the main
differences between these two algorithms, it is essential to
identify images depicting scenes which cause different, re-
spectively the same, levels of performance. The required
information is available in the scatter plots, because every
point can be matched to the corresponding image. There-
fore, the scatter plot from Figure 6(b) is analyzed in more
detail in Figure 7, which shows the corresponding images
of key data points located in the four corners of the plot.

The data points in the lower left corner of Figure 7 rep-
resent images, where both algorithms achieved almost sim-

(a) Jseg vs. ROI-SEG (b) Mshift vs. ROI-SEG

(c) Mscuts vs. ROI-SEG (d) Ncuts vs. ROI-SEG

Figure 6: Comparison of segmentation performance using
GCE scatter plots. Points above the diagonal line represent
images, where ROI-SEG performs better. This discrimina-
tion is emphasized by different colors in the scatter plots.

ilar agreement with the ground truth. The three key images
shown, reveal that these are images, which can be easily
segmented in distinct regions. The upper right corner con-
tains images, where both results exhibit a large difference to
the ground truth. These are images with hard-to-segment,
complex scenes. On the other hand, the upper left and the
lower right images are the most interesting ones, because
they cause a large difference in the performance of the two
algorithms. As can be seen in Figure 6(b), there is a larger
number of data points in the upper left corner compared to
the lower right, which indicates that there are more images,
where our algorithm performs distinctively better. But in
contrast, for the easy-to-segment images in the lower left
corner, the Mshift mostly performs better, because its de-
tected region boundaries are more accurate than ours.

To sum up, our ROI-SEG algorithm shows competitive
results to state-of-the-art segmentation algorithms. Addi-
tionally, because of the efficient design of the individual
concepts our algorithm provides results in short computa-
tion times, outperforming the other algorithms. The detec-
tion of the input ROIs is done within a second and every
sub-segmentation needs about half a second for the Berke-
ley images. Thus, segmentation results can be achieved in a
few seconds.



Figure 7: GCEn scatter plot of Mean Shift versus the pro-
posed algorithm including key images.

6. Conclusion

This paper introduced a novel unsupervised segmen-
tation scheme named ROI-SEG, which is based on the
main idea of combining a set of differently focused sub-
segmentation results. Because of the efficient design of the
individual parts of the concept, segmentation results can be
achieved within a few seconds. Experimental evaluation
on the Berkeley image database showed visually appealing
results. In addition, a quantitative evaluation proved, that
ROI-SEG can keep up with state-of-the-art algorithms and
is calculated with reduced computational costs.
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