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Abstract

In this paper we propose a new segmentation al-

gorithm which combines patch-based information with

edge cues under a probabilistic framework. We use a

mixture of multiple Gaussians for building the statis-

tical model with color and spatial features, and we in-

corporate edge information based on texture, color and

brightness differences into the EM algorithm. We eval-

uate our results qualitatively and quantitatively on a

large data-set of natural images and compare our re-

sults to other state-of-the-art methods.

1. Introduction

Image segmentation is essentially the partitioning of
an image into several constituent components, or ob-
jects. The basic task of image segmentation is, then,
to assign each pixel in the image to one of the image
objects. Segmentation is often not a well-defined task,
since the level to which an image is subdivided is de-
termined by the application at hand and it is also a
subjective task: people may subdivide a given image
differently, using a different number of objects, or to
different levels of resolution. In general, autonomous
segmentation is one of the most difficult tasks in image
processing [6].

Traditionally, work has been focused on either
region-based approaches or edge-based approaches. In
edge-based processing, gradients are used to detect lo-
cal edge fragments which are defined by sharp localized
changes in some image feature. The edge fragments
can be linked in further processing in order to iden-
tify extended contours. The main difficulties with such
approaches are the resultant false and broken edges
[12, 1]. Edges or edge fragments are generated in loca-
tions where no real boundaries exist, due to the local
nature of the process and its sensitivity to noise arti-

facts.

Region-based approaches focus on grouping by sim-
ilarity in feature space. They include classical ap-
proaches such as region-growing, as well as probabilis-
tic clustering based approaches such as K-means clus-
tering and GMM based approaches [4]. Traditional
GMM-based methods are intensity based pixel-wise
clustering schemes. These schemes have been recently
augmented by incorporating spatial features within the
feature vector, so as to include spatial context within
the model and to provide smooth segmentation maps
[2, 7]. Further recent extensions include the utiliza-
tion of a large set of Gaussians in order to enable the
representation of non-convex regions, in cases in which
an initial segmentation to an a priori defined set of
segments is possible. Such is the case in MRI brain
segmentation [8]. Current (region-based) parametric
clustering approaches are based on intensity and color
features, so far lacking an extension to additional fea-
tures, such as texture. Gaussians in the model are often
generated across boundaries (in cases in which the re-
gion color is similar enough) - thus causing a blurring
of region boundaries in the output segmentation map,
or a complete loss of object segments.

Current work searches for models that combine re-
gion and edge cues. Promising results were recently
shown on natural image datasets, via pairwise clus-
tering graph-based techniques [15, 13]. Fowlkes et al.
[5] used pairwise affinity functions to model the re-
lationship between any two pixels in the image using
both region-based features (brightness, color and tex-
ture) and gradient-based features derived from these.
A large gradient along a straight line connecting a pair
of pixels suggests that there is an intervening contour
between them and therefore that they do not belong to
the same segment. The authors used a large data-set
of natural images to optimize all the free parameters in
their algorithm. The final segmentation stage is done
by the Normalized-Cuts method, which is a global cri-
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terion for partitioning a graph, measuring both the to-
tal dissimilarity between the different groups as well
as the total similarity within the groups [15]. Sharon
et al. [14] used segmentation by weighted aggregation
(SWA), along with techniques from algebraic multigrid,
to find image segments. Here too, a Normalized-Cut
type function is optimized to evaluate the saliency of
a segment, on a preformed irregular pyramid structure
that represents the input image.

In the current work, we propose an extension to
Gaussian mixture based modeling, that enables the
combination of region and edge cues within the proba-
bilistic GMM framework. The inclusion of edge infor-
mation within the model generation process, along with
a Gaussian-tying step, provides the ability to model
non-convex segments in the image as linked sets of
Gaussians. Each Gaussian represents a localized co-
herent neighborhood. The edge information ensures
that Gaussians are tied within-object only. Gaussians
are formed as needed (based on the image content),
thus there is no need to set a priori the number of
components. Gaussians are linked (tied) so as to rep-
resent an entire image segment. The framework com-
bines the advantage of local modeling with a globalized
optimization. The transition from pixels to localized
Gaussians is computationally attractive. A validation
of the proposed methodology is presented, both qual-
itatively and quantitatively, on a large set of natural
images (COREL) and a comparison is made to addi-
tional state-of-the-art methods.

2. The GMM Region-Based Model

The GMM approach for image segmentation [2, 7],
groups the data points of an image into k segments,
each assigned with a Gaussian distribution. Probabilis-
tic image modeling and segmentation is performed in
the color and position (x, y) feature space. The distri-
bution of a d-dimensional random variable is a mixture
of k Gaussians, if its density function is:

f(x) =

k
∑

j=1

αj

1
√

(2π)d|Σj |
exp{−

1

2
(x−µj)

T Σ−1

j (x−µj)}

(1)
where αj are probabilities of occurrence of each Gaus-
sian and µj , Σj , are the mean and the covariance
matrix of each Gaussian respectively. An immediate
transition is possible between the GMM representation
and probabilistic image segmentation. Each pixel of
the original image is affiliated with the most proba-
ble Gaussian and a localized segmentation map, a map
of convex superpixels, is formed. The EM algorithm,
which is utilized to estimate the model parameters,

works by first estimating the probability of each pixel
to belong to any of the k Gaussians (E-step), and then
optimizing the GMM parameters to best fit the cur-
rent segmentation (M-step). The E-step is composed
of computing the posterior probability wtj of each fea-
ture vector xt to belong to the j-th component:

wtj =
1

z
αjf(xt|µj , Σj) (2)

where z is a normalization scalar. The end result of the
region-based GMM is a mixture of k components, each
consisting of similar points in feature space (e.g. color).
However, in natural world images frequently points of
similar features may actually belong to different ob-
jects in the image plane. Since the color-based model
does not take into account edge-type information, the
model cannot detect the existence of a boundary be-
tween spatially proximal objects.

Figure 1. Combining local features and edges in the EM
learning process. Edge map is overlayed in white. Gaus-
sians in the trained model are shown as ellipses. First,
the weights from point t to each Gaussian j (wtj) are com-
puted. For those Gaussians with high posterior probability
(the three nearest ones in this example), a straight line is
drawn and the function Etj determines if it intersects an
edge. Such is in fact the case for one of the Gaussians and
the corresponding wtj is set to zero. There are two remain-
ing Gaussians for which no edge is intersected.

3. Combining Region and Edge Cues

within the GMM Framework

In this study we propose an extension to the GMM
framework, which introduces the utilization of edges
into the algorithm by setting a zero posterior probabil-
ity to a cluster which has an edge between its center
and a given pixel t. In a preprocessing stage, an edge
detector is used to extract edge information from the



image. The edge information is utilized in the Expec-
tation step of the EM process, in training the GMM
model, as follows: An edge existence score Etj is com-
puted at each pixel point, t, to each of the Gaussian
centroids, j. A straight line is ‘drawn’ between point
t and µj in the image plane. If that line intersects an
edge in the edge map, then Etj > 0. If there are no
edges between the two points then Etj = 0. For rea-
sons of efficiency, all the weights wtj at a given point (to
each Gaussian in the model) are computed first, and
then Etj is checked only for those Gaussians with high
enough posterior probability. The modified E-step, is
therefore as follows:

wtj =







1

z
αjf(xt|µj , Σj) if Etj = 0

0 else
(3)

where xt is the feature vector of pixel t and wtj is
the posterior probability that pixel t belongs to the
j-th component. The Maximization step of the EM
algorithm is not altered. The modified EM process is
repeated to convergence to extract the final GMM rep-
resentation of the image. In a follow-up labeling phase,
each point in the image is affiliated with the most prob-
able cluster. Here, again, the edge information plays an
important role. The modified EM process is illustrated
in Figure 1.

3.1. Dynamic Gaussian Allocation

The EM algorithm is initialized with a small num-
ber of Gaussian components (via K-means for example,
with an arbitrary small k value). New Gaussians are
added during the Expectation step in case there are
pixels that are not well modeled by any existing Gaus-
sian (i.e. wtj = 0 for all j). Such pixels may often be
found within small object regions, for which no spe-
cific Gaussian is initially allocated. Within-object pix-
els cannot be linked to any existing Gaussians without
crossing an edge (boundary of the object), as is illus-
trated in Figure 2. As such, they cannot be linked to
any of the available clusters.

A dynamic Gaussian allocation is proposed: a new
cluster is added at the problematic pixel point. Initial
new Gaussian parametrization are the pixel features
and its mean spatial position. The covariance of the
new Gaussian is set to be the average covariance over
all the Gaussians in the image. Gaussian elimination
is also enabled: a Gaussian component is eliminated if
it is redundant, i.e. it is supported by less points than
a minimum threshold. This is done at every iteration
independently. Note that adding a new Gaussian is
done in the E-step and Gaussian elimination is done in
the M-step. The dynamic allocation process ensures a

a b
Figure 2. Dealing with closed edges. (a) Initialization with
six Gaussians (ellipsoids), (b) A point in the image is shown
from which all straight lines to Gaussian centroids intersect
an edge. In such a scenario, the sum of all weights is zero
and a new Gaussian is formed.

Figure 3. Examples of non-convex scenarios that require
multiple blobs per object.

distribution of Gaussians that is adaptive to the given
image content. Multiple Gaussians are used in more
complex areas of the image, while a small number of
Gaussians is used across the more uniform areas. Note
that the dynamic Gaussian allocation step, in addition
to providing the spatial distribution of the Gaussian
components, provides an automated means for defining
the appropriate number of Gaussians within the model.

3.2. Gaussian Tying

When attempting to segment natural images we reg-
ularly deal with non-convex objects. In such cases, it
is possible to have an edge separating a point that be-
longs to the Gaussian representing the object and the
Gaussian centroid. An example is shown in Figure 3(a).
A point ‘o’ at the head of the arrow obviously belongs
to the Gaussian representing the arrow, with its cen-
troid ‘x’ located somewhere in the middle of the arrow.
However, there are a few edges between them, causing
the algorithm to decide that point ‘o’ is not part of the
arrow. Additional examples include objects with holes
((b) and (c)) and objects within the main object (d).

The Gaussian allocation step often results in a multi-
Gaussian allocation per object region (in particular in
non-convex cases). A Gaussian-tying step attempts to
automatically link together such Gaussians. Gaussians
with similar features that have no edges between their
centroids, are provided a unique label (linked) thus en-
abling the representation of higher-level object regions.



An illustration of the Gaussian-tying step is shown in
Figure 4. Note that the mean-shift segmentation algo-
rithm [3] also effectively merges clusters though in an
indirect way.

a b c
Figure 4. Dealing with non-convex objects: Multiple Gaus-
sian tying. (a) Multiple Gaussians generated within a non-
convex object; (b) Gaussian-tying: any two Gaussian cen-
troids with similar features, that have no edge between
them, are linked together; (c) Segmentation result.

The Gaussian allocation and linking procedure
works well for an ideal scenerio in which the input
edge-map is very accurate and provides a reliable rep-
resentation of the scene. However, when we deal with
less than optimal edge maps (as is normally the case),
the provided object contours are often not complete
(contain ‘holes’) and many non-related (noise) edges
are included. The issue of incomplete boundaries may
lead to ‘bleeding’, i.e. the tying of Gaussians which
do not belong to the same object. The issue of extra,
noninformative edges, may lead to an oversegmentation
of the scene. In order to control the ‘bleeding’ issue,
special measures are taken to determine the degree of
similarity between Gaussians prior to their linkage. A
fixed threshold is used to decide whether two Gaus-
sians are ‘similar enough’ to be tied together. This
in effect defines the ‘within-object’ variability. An in-
creased threshold may enable the merging of regions
which are more varied in their feature content (e.g.
contain different shades of color, shadow or texture).
In such cases, the edge map information is highly re-
liable and may serve as the dominant criteria in the
segmentation. An automated scaling of the threshold
is suggested based on a measure of the quality and re-
liability of the edge detector used, as defined in the
following section.

4. Probabilistic Edge Detection

We extend the algorithm to enable the utilization of
probabilistic edge maps. Such maps may provide better
information in modeling the relationship between color
patches and their boundaries. Given a probabilistic
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Figure 5. Examples of edge quality scores. (a) Input image,
(b) Berkeley edge detector probabilistic map, (c) Corre-
sponding histogram. The number beside each histogram is
the quality score Q for that edge map.

edge map, the overall probability of having an edge be-
tween any pixel t and Gaussian centroid j is computed
as the maximal probability, p(Etj), of an edge along
the straight line connecting the pixel and the Gaus-
sian centroid. This value is used as a penalty measure
for weighing the original E-step weight between point
t and µj :

wtj =
1

z
αjf(xt|µj , Σj)(1 − p(Etj))

20 (4)

Equation (4) presents the soft combination (the num-
ber 20 was determined empirically) of region-based and
edge-based information, as used in this work.

In the current work we utilize edge information via
existing edge maps algorithms. We use the Canny
edge detector [1], as well as the more recently proposed
Berkeley edge detector [9], which is based on much ef-
fort in studying human-based edge markings for the
natural image archive of interest [10]. The Canny de-
tector works on intensity images and uses brightness
cues only, to generate a binary edge map. The Berke-
ley edge detector [9] combines color, brightness and
texture cues to provide a probabilistic edge map, where
for each pixel in the image a probability for being an
edge, or contour is computed.

The binary version of the proposed algorithm is used
for a binary edge input, such as the Canny edge input,
while the extended probabilistic version of the algo-
rithm is used for a probabilistic edge map, such as



(a) (b) (c) 0.84 (d) (e) 0.93 (f) (g) 0.96

(h) (i) (j) 0.95 (k)

(l) 0.96 (m) (n) 0.97

Figure 6. Edge maps and Segmentation results: (a) Input image, (b) Canny edge detector, (c) Canny+our method, (d)
Berkeley edge detector, (e) Berkely+our method, (f) Manual segmentation, (g) Manual segmentation + our method. A
second example is shown in (h)-(n).

given by the Berkeley edge detector. A given binary
edge map undergoes a pre-processing step prior to us-
ing it in the model. This includes edge thinning, 4-
neighborhood connectivity masks for ensuring closed
contours, and the elimination of short edges. For a
probabilistic edge input, an additional processing step
is required. In several stages of the algorithm, such
as adding a new Gaussian and Gaussian-tying, a hard
decision is required (does an edge exist). Such binary
decisions are done based on thresholding the proba-
bilistic map into a deterministic one. A fixed threshold
above which an edge is defined has proven to give poor
results. We therefore suggest an adaptive scaling of
the threshold, per image, based on an edge-map qual-
ity measure as defined next.

Given a probabilistic edge map histogram h, we
measure the ratio of the number of pixels with high
edge probability [0.8-1.0] to the number of pixels with
edge probability in the mid-range (e.g. [0.2-0.8]):

Q =

∑N

i=0.8N hi
∑

0.8N

i=0.2N hi

(5)

where N is the number of bins in the histogram. A
more accurate edge-map is one in which the number of

pixels of high-confidence (e.g. probability above 0.8) is
relatively large, and the number of pixels in the mid-
probability range is low. A very noisy, low-probability
edge map, will result in low values of Q (approach-
ing zero), while a more strongly-defined edge map (of-
ten seen as a bimodal histogram) will result in values
around 0.5. Figure 5 shows several examples of proba-
bilistic edge maps and their respective histograms. The
number beside each histogram is the quality score Q for
that edge map. The top two rows in Figure 5 are ex-
amples of strong edge maps. The edge map itself can
be seen to be ‘clean’ and the corresponding histogram
is of a bi-modal nature: there is a strong peak at the
low probability range (p < 0.2), a small peak in the
high probability range (p > 0.8) and very few pixels in
the mid-range (0.2 < p < 0.8). The two bottom rows
in Figure 5 present examples of unreliable edge-maps.
In one case, too many pixels are in the mid-range (am-
biguity range) which result in a very ‘dirty’ edge map,
containing too many possible edges that might confuse
our algorithm. This is often the result of the edge de-
tector failing to deal with the presence of texture in the
image. In a second scenario, not enough distinct edge
information is given. Although there are only a few



pixels with medium probability (0.2 < p < 0.8) there
are in fact no pixels with high probability (p > 0.8)
at all, giving the edge map a zero score. The exam-
ple shown is of an animal camouflage, which occurs
frequently in natural images.

The Q measure is used to scale the threshold that
is required in determining a hard decision for an edge.
We use the following definition: th = 0.85*(1-Q). This
results in a threshold of around 0.38 for a high quality
map, and around 0.85 for a low quality map.

The Segmentation Algorithm

• Create a probabilistic edge map (e.g. using the
Berkeley edge map algorithm.)

• Initialize the GMM model using the K-means
algorithm.

• Perform EM iterations based on both region
and edge information:

– E-step: For each pixel, find the posterior
probability for each Gaussian based on
both the features and the existence of edge
between the pixel and the Gaussian cen-
ter. If there is no relevant Gaussian, create
a new Gaussian centered at the pixel.

– M-step: Update the Parameters of each
Gaussian based on the E-step. If the num-
ber of pixels that support a Gaussian is
less than a threshold, eliminate the Gaus-
sian.

• Link together Gaussians that are similar in fea-
ture space and are not separated by an inter-
vening edge.

Execution speed of the proposed segmentation algo-
rithm is similar to the Berkeley Segmentation Engine
(BSE). The added edge information does not add much
complexity to the standard GMM-EM algorithm since
we check the existence of an edge between a point t
and a small number of candidate Gaussians (E-step).
Therefore, the complexity does not depend on the size
of the image or the number of Gaussians and it is con-
stant in this regard. The tying step is also very effi-
cient since we are only checking those Gaussians that
are similar enough in the feature space (in their mean
values). However, the complexity does increase sim-
ply because we are using more Gaussians in the model.
This results in more computations during the M-step.

5. Experimental Results

The proposed algorithm is evaluated using the
Berkeley Segmentation Database [10] which is a dataset
of natural scene images. This database has expert man-
ual markings which serve as the ground-truth. In the
following we provide qualitative as well as quantita-
tive results. A standard non-parametric measure of
clustering quality is the Rand index [11]. Several vari-
ants of the Rand index were recently introduced for
measuring the quality of segmentation algorithms (e.g.
[16]). We used the human segmentations as ground
truth and used the (normalized version of) the Rand
score to evaluate our results. For the sake of complete-
ness, the variant of the Rand matching score that we
used is as follows: Let C1 stand for the true cluster-
ing of the n pixels and C2 stand for the clustering in
question of those points. Then:

Rand Score :=
1

2
·

(

N0,0

N0

+
N1,1

N1

)

.

where N0,0 is the number of pairs of points that do not
belong to the same cluster neither in C1 nor in C2, N0

is the number of pairs of points that do not belong to
the same cluster in C1, N1 is the number of pairs of
points that belong to the same cluster in C1 and N1,1

is the number of pairs of points that belong to the same
cluster both in C1 and C2.

Qualitative and quantitative results are shown in
Figure 6. We focus here on a comparison across dif-
ferent edge-maps as input to the segmentation algo-
rithm. Two example cases are shown. In each one, the
Canny edge detector, Berkeley edge detector and the
human-expert edge markings are presented, along with
corresponding segmentation results. The manual edge
markings most closely reflect our visual understanding
of the scene, the edges are accurate thus enabling a
high degree of accuracy in the segmentation results.
This result can be regarded as the ground-truth result
per case. Of the two automated edge-detectors used,
the Berkeley edge-detector in general handles natural
images better than the Canny edge-detector, mostly
due to its ability to deal with texture. This fact is re-
flected in the segmentation results, which seem for the
most part to be more pleasing visually, and achieve a
higher Rand score.

In the next experiment, we evaluated the segmenta-
tion results of the proposed algorithm on an extended
database. A training set was used to set the proba-
bilistic edge parameters (using Berkeley edge-detector).
Once set, a fixed set of parameters was used for the
testing of 100 images. Examples of segmentation re-
sults are shown in Figure 7. A ground truth segmenta-
tion image was randomly selected per image (from the
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0.53 0.52 0.94
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(a) (b) (c) (d)

Figure 7. Example segmentation results: (a) Input image; (b) GMM segmentation results [7]; (c) BSE segmentation results
[5]; (d) Proposed algorithm segmentation results. Rand score per image. First 3 examples are from the training set and the
last two are from the testing set.

set of manually marked images) and was used for the
Rand evaluation. A comparison is made to the GMM
segmentation which is region-based only (color and x,y
features) [7], as well as to the Berkeley Segmentation
Engine (BSE) as described in [5]. Both qualitative and
quantitative results indicate the strength of the pro-
posed algorithm.

A statistical summary of the results (mean Rand
score) is presented in figure 8. The proposed scheme
compares favorably with other existing state-of-the-art

segmentation algorithms.

6. Conclusion

This work presents a methodology for incorporating
(probabilistic) edge cues along with region cues within
the GMM framework. We believe this is a major step
forward in augmenting probabilistic modeling, for im-
age representation and segmentation tasks. Previously,
the GMM was shown to work with color and spatial po-
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Figure 8. Mean normalized Rand score for three segmenta-
tion algorithms on the Berkeley database.

sition features. In the current work, the feature space is
augmented to include state-of-the-art edge cues, which
are inherently tuned to both color and texture features
within the image plane. Thus, color, texture, spatial
location and edge information are all accounted for
within the developed model. The number of Gaussians
that comprise the model is determined automatically
and adaptively per image via novel Gaussian allocation
and Gaussian-tying schemes. The proposed methodol-
ogy was shown to outperform earlier GMM versions.
Better segmentation results are also achieved as com-
pared to the BSE results, as presented in [5]. A small
number of parameters are set once using a small train-
ing set, and are shown to work well in a generalized
testing scenario. We are currently extending the test-
ing dataset as well as investigating the contribution
of the proposed model to specific applications such as
medical archives. Additional quantitative measures are
investigated for the evaluation.
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