
CRF-driven Implicit Deformable Model

Gabriel Tsechpenakis
University of Miami

Dept. of Electrical and Computer Engineering
gavriil@miami.edu

Dimitris N. Metaxas
Rutgers University

Dept. of Computer Science
dnm@cs.rutgers.edu

Abstract

We present a topology independent solution for segment-
ing objects with texture patterns of any scale, using an
implicit deformable model driven by Conditional Random
Fields (CRFs). Our model integrates region and edge in-
formation as image driven terms, whereas the probabilistic
shape and internal (smoothness) terms use representations
similar to the level-set based methods. The evolution of the
model is solved as a MAP estimation problem, where the
target conditional probability is decomposed into the in-
ternal term and the image-driven term. For the later, we
use discriminative CRFs in two scales, pixel- and patch-
based, to obtain smooth probability fields based on the cor-
responding image features. The advantages and novelties
of our approach are (i) the integration of CRFs with im-
plicit deformable models in a tightly coupled scheme, (ii)
the use of CRFs which avoids ambiguities in the probability
fields, (iii) the handling of local feature variations by updat-
ing the model interior statistics and processing at different
spatial scales, and (v) the independence from the topology.
We demonstrate the performance of our method in a wide
variety of images, from the zebra and cheetah examples to
the left and right ventricles in cardiac images.

1. Introduction
Object segmentation plays a fundamental role in both

computer vision and medical image analysis. A challenging
task is to segment objects with textures of different scales,
in the presence of clutter, complex backgrounds, and insuf-
ficiencies in the object boundaries. To address these prob-
lems, many segmentation approaches have been proposed.
In this work we focus on a specific category of segmentation
methods, namely the deformable models.

Parametric deformable models [9, 19, 2], or active con-
tours, use parametric curves to represent the model shape.
They start from an initial estimate for the boundary of the
region of interest (ROI) and use image-driven forces to
move the curve towards the desired boundaries, while their

internal (smoothness) forces preserve the curve’s smooth-
ness along its arc-length. The traditional parametric meth-
ods, use edges as image features to attract the curve towards
the desired position, which makes them sensitive to noise,
background complexity, and boundary edges’ insufficien-
cies. This is the reason why other parametric methods have
been proposed that use region-based features for the image-
driven forces [18], or even combinations of both edge- and
region-based forces [21]. The limitation of these methods is
that they do not update the region statistics during the model
evolution, so that local feature variations are difficult to be
captured. A method that can be used for updating the region
statistics was proposed in [4], where Particle Filters are used
for vascular segmentation with active contours in medical
images. In this method, boundary insufficiencies are suc-
cessfully handled; on the other hand, this method is not in-
tegrated into a topology-independent deformable model and
it not used yet for more complex textures.

Another category of deformable models are the implicit
geometric models [15, 17, 1], which use the level-set based
shape representation. In the Mumford-Shah formulation,
the objective function to be minimized consists of im-
plicit terms for the image-driven forces, and the boundary
smoothness and length constraints. According to this for-
mulation the optimal curve is the one that best approximates
the image data, it is smooth locally and has the minimum
length. In [17] a variational framework is proposed, in-
tegrating boundary and region-based information in PDEs
that are implemented using a level-set approach. However,
these frameworks assume piecewise or Gaussian intensity
distributions within each partitioned image region, which
limits their ability to capture intensity inhomogeneities and
complex intensity distributions. Moreover, the high com-
putational cost of the level-set based methods is widely
known. To tackle these problems, another class of de-
formable models were proposed in [8], namely the Meta-
morphs. This framework uses both edge and texture infor-
mation in a semi-parametric model, where the shape is rep-
resented similarly as in level-set methods. The interior tex-
ture is captured using a nonparametric kernel-based approx-
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imation of the intensity probability density function (pdf ),
which is updated in every iteration. The deformations that
the model can undergo are defined using Free Form Defor-
mations (FFD).

Among the parametric and implicit deformable models,
and apart from the traditional energy minimization, there
are methods that convert the energy-driven model evolu-
tion into a maximum a posteriori (MAP) problem, using
a probabilistic formulation. In the survey of [14], meth-
ods that use probabilistic formulations are described. The
main drawback of most of these methods is that they use
only edge information, although they are more robust than
similar deterministic approaches. In the work of [6] the in-
tegration of probabilistic active contours with Markov Ran-
dom Fields (MRFs) in a graphical framework was proposed
to overcome the limitations of edge-based probabilistic ac-
tive contours. Deformable models with MRFs were also
used in [7] to achieve better (smoother) image likelihoods
for the model evolution. In this work, although the MRFs
were loosely integrated with the deformable model, the re-
sults show that the use of MRFs outperforms methods that
do not use smoothing in the label field.

As an alternative to the MRFs, and to obtain better
smoothing in the probability (or label) fields, Conditional
Random Fields (CRFs) were introduced in computer vision
[12]. Although CRFs were first used to label sequential
data, extensions of them were used for image segmentation
[10, 11, 5, 20]. The main advantage of CRFs compared to
MRF-based segmentation (such as [13]), is that they han-
dle the known label bias problem, described in [12], taking
into account the pixel or region features in the smoothing
of the probability field. In the work of [10] the discrimina-
tive version of CRFs was presented, to incorporate spatial
neighborhood dependencies both in the labels and the im-
age features, allowing the MAP inference for binary pixel
classification. In the work of [5], CRFs where used in dif-
ferent spatial scales to capture the dependencies between
image regions of multiple sizes. CRFs were also used in
image sequences as in [20], where the dynamic CRF model
was proposed to capture both temporal and spatial contex-
tual information.

In this work we present a probabilistic implicit de-
formable model that combines the advantages of the above
described segmentation approaches. In our method, (i) we
use the shape representation of known level-set based ap-
proaches, to achieve topology independence, (ii) we inte-
grate edge and region information, which is being updated
during the model evolution, to handle local feature varia-
tions, (iii) we avoid the problem of getting trapped in lo-
cal minima, which most of the energy minimization driven
models suffer from, (iv) we exploit the superiority of CRFs
compared to MRFs for image segmentation, coupling a
CRF-based scheme with the deformable model, and (v) we

Figure 1. Graphical model for the integration of the CRF scheme
in the deformable model

capture higher scale dependencies, using pixel- and patch-
based CRFs. We use the two-scale CRF model in a tightly
coupled framework with the deformable model, such that
the external (image-driven) term of the deformable model
eventually corresponds to the smooth probability field esti-
mated by the CRF. We use a modified version of the dis-
criminative CRFs presented in [10], where the MAP infer-
ence is computationally tractable using graph min-cut algo-
rithms. Unlike methods such as the Active Shape Model
(ASM) [3] and the Active Elastic Model [16], in this work
we do not use shape priors.

The rest of this paper is as organized follows. In the
next section we describe the formulation of our deformable
model as a MAP problem. In 3 we describe the multi-scale
CRF model that uses the discriminative CRF formulation.
In 3.1 and 3.2 we describe the CRF formulation for two
different spatial scales, namely the pixel- and patch-based
CRFs, whereas in 3.3 we describe the integration of the two
CRFs. In 4 we present our results and in 5 we give our
conclusions and describe our future work.

2. Deformable Model Formulation
We use an implicit representation of the evolving curve

and we follow a probabilistic formulation of the energy
terms, namely the image-driven and the smoothness term.
Using the simple graphical model of Fig. 1, we integrate
the deformable model with a CRF scheme; then, the energy
minimization is solved as a MAP problem.

The model � defines two regions in the image domain
�, namely the region�� enclosed by the model� and the
background����. The model is represented implicitly by
its distance transform, i.e., the signed distance function,

���x� �

��
�

�� x ��
���x���� x � ��
���x���� x � ����

� (1)

where x � ��� �� is the image pixel location in cartesian
coordinates, and ��x��� � ��	x� �x � x�� is the min-
imum Euclidean distance from the pixel location x to the
model consisting of the points x�.

Our objective is formulated as a joint MAP estimation
problem,

�������� � 
�� �


������

� �����	��� (2)



where � is the pixel labels and � is the given image. Ac-
cording to the model of Fig. 1, the probability � �����	��
is decomposed into,

� �����	�� 
 � �� 	�� � � ��	��� � � ����
� � ���� � � ��� � � ��	��� � � ��	��

(3)

The term � ���� corresponds to the model internal energy
and the probability� ��� is the image prior, assuming, with-
out loss of generality, a gaussian distribution for the pixel
intensities. The term � ��	��� will be defined as a soft-
max function of ��. Finally, the main contribution of this
paper is the estimation of the probability � ��	��, which is
estimated using our CRF-based approach.

In the following, we will describe the terms � ����,
� ��� and � ��	���, and in section 3 we describe how we
formulate the term � ��	��.

The image prior � ���: For simplicity, and without loss
of generality, we define the image prior � ��� in terms of a
gaussian distribution,

� ���x��� �
��
�����

�
�
�
� ��x�������

�
(4)

One can use a nonparametric formulation for this prior.
The term � ��	���: The term � ��	��� is defined in

a similar way as in [6]; for each image pixel x�, using the
softmax function,

� �	�	��� �
�

� � �
������x��

(5)

The model prior � ����: The term � ���� corre-
sponds to the model internal energy, i.e., the model smooth-
ness. We define the model internal energy in terms of the
area of the model interior, and the first derivative of the
model distance transform,

������� �

������� � ��

� �
���

�����x���x (6)

where ��� denotes a narrow band around the model. The
parameters ��, �� are weighting constants, and ����� is
the area of the model interior ��, which is calculated as,

����� �

� �
�

�����x���x� (7)

with � being the step function: ���� � ���� � �, and
���� � ���� 
 �.

In a typical deformable model that follows an energy
minimization approach, the first term of eq. (6) would force
the model to a position where the area of its interior is the
minimum, whereas the second term would enforce first-
order smoothness. Similarly to the works of [14, 6], the

model internal energy can be written in a probabilistic man-
ner using a gibbs prior as,

�������� � �������� �
���
�������
� (8)

where ���� is a constant.
From eq. (3), the remaining term � ��	�� is formulated

using our CRF-based approach described in the following
section.

3. CRF-based Image Term
We use a two-scale discriminative CRF formulation,

where the scale refers to pixels and image regions (patches).
In the following, we describe the general CRF framework
that is applied to both scales.

Let � � �	�
 be the labels associated to the image sites
s � ���
. For the sake of generality, we use the term sites to
refer to either the image pixels or the image patches. In our
case, the sites (either the image pixels or the image patches)
can have two labels, i.e�, belong to either the model interior
(��) or the background (����).

The discriminative CRFs can estimate directly the labels
distribution of the sites s given an appropriate set of features
of the image � as,
���	�� �

�

�
�
�

��
���

���	�� �� �
�
���

�
����

���	�� 	� � ��

	
� (9)

where � is a normalization constant, � is the size of the set
s (the number of sites), and �� is the set of neighbors of the
site �	�� ���.

The association potential ���	�� �� between a site label 	�
and the observation set � is defined as the log probability,

���	�� �� � ���� �	�	�� (10)

The interaction potential ���	�� 	� � �� between neighboring
site labels 	� and 	� given the observations � is,

���	�� 	� � �� �
�

��
�
�

�
Æ�	� � 	��

��

	
� ����� (11)

where Æ��� � �, if � � � and Æ��� � �, if � �� �, � is a
function of the image features used to drive the deformable
model, �� is a normalization constant, and �� controls the
similarity between neighboring labels. Note that in com-
mon MRFs, similar definition is used for the interaction be-
tween neighboring sites with the difference that instead of
the function ����, a global constant (usually equal to one)
is used.

The association potential associates the site’s label with
the observation in a discriminative manner. The interac-
tion potential acts as a data-driven term that handles dis-
continuities, i.e., forces smoothness in the probability field



when neighboring sites have different observations; other-
wise, when the observations of neighboring sites agree, the
interaction potential has no effect.

In our CRF-based approach, we first estimate the pixel-
based and then the patch-based probability field. In both
cases we use the above CRF formulation.

3.1. Pixel-based Probability Field
We will estimate the local probability field according to

eq. (9), where local refers to the pixel-based CRF, the sites
refer to the image pixels X � �x�
, where x� is the cartesian
coordinates on the image plane.

3.1.1 Pixel-based Association Potential of eq. (10)

We define the association potential of eq. (10) using two
pixel-wise features, namely the pixel intensity and the tex-
ture of the region centered at a pixel. For the estimation
of the probabilities below, we use training samples for the
intensity and the texture of the ROI, and we update the re-
gion statistics using the model interior (from the initializa-
tion and the model interior at each iteration).

(a) Pixel intensity: Let ���x� � ��x � ��	������ be
the probability density function (pdf ) of the intensity values
at the locations x corresponding to the model interior ��.
We approximate this pdf with a mixture of � gaussians,

���x� �
	�
���

�� � ����� �
�
� � (12)

where the parameters � � ����� ��� �
�
� �� � � �� � � � � �� are

estimated using the EM algorithm. Then, the probability of
a pixel label given its intensity value is,

� �	�	������ � ���x��� (13)

where ����� denotes the intensity values in the model in-
terior. The pdf of the intensity values in the model interior
is learnt off-line using training samples for the desired ROI,
and the parameters � are updated during the model evolu-
tion.

(b) Multi-scale texture: For very pixel x� we estimate
the probability of its neighborhood ��x�� being consistent
with the desired ROI, learned from both the training sam-
ples and the model interior.

We represent this probability with �
 �x�� � � ���x�� �
��	� �����, where � ���� denotes the ROI’s texture.
To estimate the texture of a neighborhood, we use the gabor
filter responses for different scales (frequencies) and orien-
tations. Under the assumption that the gabor responses are
conditionally independent, the probability of a pixel label
given its neighborhood’s texture is given by,

Figure 2. Gabor responses for three scales (rows) and four orien-
tations (columns)
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where � and � denote the the gabor filters scales and orien-
tations, respectively, and ��� � ��

�����
�


 and ��� � ��
�����
� 


are the filter responses for the desired ROI and the �-th pixel
neighborhood. Fig. 2 illustrates the gabor responses in three
scales (rows) and four orientations (columns) for the zebra
example.

(c) Integration of intensity and texture: The pixel-
based association potential for a given image pixel, as de-
fined in eq. (10), is the log conditional probability of the
pixel label given the observation. Thus, according to the
individual probabilities described above,

�������	�	�� � � �	�	������ � � �	�	� ������ (15)

assuming that intensity and texture are independent. Note
that estimating these probabilities independently has the
same result as estimating association potentials for each fea-
ture separately, since
������� �	�� �� � ������ �x�� � �
 �x���

� ������x�� � ����
 �x��

� ������� �	�� ������ � ������� �	�� � �����
(16)

3.1.2 Pixel-based Interaction Potential of eq. (11)
We define the interaction potential of eq. (11) using the in-
tensity and texture information. The goal is to define such
a function ���� that can describe the similarity between
(neighboring) sites, based on the corresponding image fea-
tures.

Let ���x�� x�� and �
 �x�� x�� be the similarity measures
between two pixels x� and x� , based on the grayscale inten-
sity, and the texture of the regions centered at those pixels.



The function ���� is defined locally as,

� �������� �  ���x�� x�� � !�
 �x�� x�� (17)

where  and ! are constants. In our results, we used equal
weights  � ! � �.

(a) Pixel intensity: The simplest similarity measure be-
tween two pixels is the absolute difference between their
intensities,

���x�� x�� � ���x��� ��x��� (18)

This term is not sufficient for our purposes, since texture
patterns of higher scales (textons with size bigger than a
single pixel) include pixels of much different intensities.

(b) Multi-scale texture: Based on the texture informa-
tion we described in 3.1.1, the similarity between two pixels
is measured as the Bhattachayya distance between the pdf s
of the gabor responses ������ in the image regions centered
at those pixels,
�
 �x�� x�� �

���
 ��
���
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where the Bhattachayya distance between �� and �� is,
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3.1.3 Pixel-based Probability field of eq. (9)
From the general CRF model of eq. (9), and using the asso-
ciation and interaction potentials described above, the prob-
ability field ��������	�� produced by the pixel-based CRF is
estimated by replacing in eq. (9),
��������
�������
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���	�� 	� � �� �
�
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where ��� is the size of the image, i.e., the total number of
pixels.

3.2. Patch-based Probability Field
From the probability field estimated by the pixel-based

CRF, we go a step further and smooth the probability field
to overcome discontinuities at a higher (spatial) scale.

Instead of using the associations between pixel labels-
observations and interactions between pixels, we use the as-
sociation and interaction potentials for image patches. Fur-
thermore, we apply the smoothing process only for those

Figure 3. Patches around the model used as sites in the CRF.

image patches close to (around) the model to reduce the
complexity. Instead of using features derived from the im-
age, we use directly the pixel-based probability field. In
this way, we now take into account the probability patterns
within those patches. In Fig. 3, we illustrate the idea of
smoothing the probability field using patches, which is ex-
plained below.

3.2.1 Patch-based Association Potential of eq. (10)

Let R � ���
 represent the set of the image patches ��

centered at the image sites located in a narrow band around
the model; obviously these patches are overlapping and
cover a wider band around the model, depending on the
patch size. Also, let x��� denote the image pixels within the
#-th patch, ����� be the area of the patch, and � index the
pixel locations within the patch. To determine whether ��

is entirely in the interior or exterior of the model, we define
the parameter,

$� � ���%

�
������

����
� �

��

���%����x���x

����
	
� (22)

where ���%��� � �, if � & �, ���%��� � ��, if � 
 �
and ���%��� � �, if � � �. The above expression is equal
to zero if ���x���� & �, �x��� � ��, or ���x���� 
 �,
�x��� � ��. Also, if a patch shares image pixels from both
the model interior and exterior, it is $� � �.

As mentioned above, we are interested in those patches
where $� � �, i.e., for the patches where there is at least
one pair (x���, x���), � �� ', that satisfies the condition
���%����x����
 �� ���%����x����
.

The probability of a patch with $� � � belonging to the
model interior is defined in terms of a gibbs prior, which
associates the probability values of the pixels in the patch
where �� 
 �, with the probability values of the pixels
where �� � �.

More specifically, let ������ be the probability field es-
timated from the pixel-based CRF, and (��, (�� be the
distributions of the probability values inside the #-th patch,
where �� � � and �� 
 � respectively (Fig 3). Then
the Bhattachayya distance between (�� and (�� indicates
how similar the probability patterns of these two intra-patch
segments are. Thus, the probability of the entire patch ��



having a smooth probability field is defined as,

����������� � �
�

�
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where ) is a normalization constant. This equation assigns
probability equal to one to image regions away from the
model (inside or outside of it), i.e., we ignore the effects
of these regions during the model evolution. Also, smooth
probability field around the model means that the band out-
side the model is very likely to belong to the model interior,
given that the band inside the model belongs to the ROI.
Thus it can be written

�������	�	������� � ������������ (24)

where in this case � indexes the patches and not the pixels.

3.2.2 Patch-based Interaction Potential eq. (11)
For the patch-based CRF, we define the interaction potential
between two patches that lie close to the model. Similarly to
the association potential, we use the Bhattachayya distance
between the distributions of the probability values within
the patches, estimated from the pixel-based CRF.

Since neighboring patches can be overlapping, we also
take into account their overlap percentage. If�� and�� are
two patches, we represent as ��� ��� ����� ��� � the ratio
of the common image pixels between these two patches.

Then, the interaction potential between two patches ��

and �� is defined in terms of the function,
����������������� �

��������� �
�
��

�� � ��

�� � ��

�
"������(�� (� �� (25)

where the overlap percentage between neighboring patches
has similar smoothing effect as the similarity between the
patches.

3.2.3 Patch-based Probability Smoothing of eq. (9)
From the general CRF model of eq. (9), and using the asso-
ciation and interaction potentials defined above, the proba-
bility field �����������	������� produced by the patch-based
smoothing is estimated by replacing in eq. (9),������������
�����������

� � ������

���	�� �� � ���������� �	�� ������� �
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where ��� is the size of the patch set, i.e., the total number
of patches.

3.3. Integration of the Pixel- and Patch-based CRFs
From eq. (3), our goal is to estimate the conditional

probability� ��	��. The CRF-based approach we described
above, at both scales (pixel- and patch-based), aims at
smoothing the probability field. In this way, we avoid pos-
sible modeling insufficiencies of a purely discriminative ap-
proach, where we would directly learn ��	�	��x���.

Let ������ and ��������� be the probabilities obtained
by the pixel-based and the patch-based CRFs respectively,
where local indicates inter-pixel smoothing and regional in-
dicates inter-patch smoothing. The local probability is es-
timated directly from the image features, whereas the re-
gional probability is estimated using the probability patterns
within each patch.

Then the overall probability used in eq. (3) is given by,

� ��	�� � ��������	�� � �����������	������� (27)

The above equation results to a smoother probability fields
that drives the deformable model. Fig. 4(d) illustrates the
result of this smoothing, compared to an MRF (Fig. 4(b))
and the pixel-based CRF (Fig. 4(c)). For the MRF, we used
the same intensity and texture features.

4. Implementation Issues and Experiments
The overall algorithm for the model evolution consists of

the following steps:

1. Model initialization and learning the ROI statistics
from both training samples and the model interior, ac-
cording to eqs. (12) and (14) .

2. Estimate the association and interaction potentials of
the pixel-based CRF and obtain the pixel-based image
probability field, using eqs. (21).

3. Smooth the pixel-based probability field using the
patch-based CRF, according to eqs. (26); for reduced
complexity, follow this smoothing process for those
patches close to (around) the model.

4. Evolve the model within the band around it, which
is determined by the patches used for the patch-based
CRF, based on eqs. (2) and (3), using the definitions of
eqs. (4), (5) and (8).

5. For the new position of the model, update the interior
statistics and repeat the above steps.

In the examples we present here, our goal is to show the per-
formance of our method in a wide variety of images, with
clutter, complex backgrounds, and insufficiencies in the ob-
ject (ROI) boundaries. We show how our method handles
(i) local feature variations, such as variations in the inten-
sity and texture, (ii) objects with various textures, differ-
ent from their background, and (iii) objects with boundary
insufficiencies. To support our results, we submit videos
(supplemental material) where the model evolution and the



(a) (b) (c) (d)

Figure 4. Comparison between MRF, the pixel-based CRF and the two-scale CRF.

Figure 5. Model dynamics for the zebra example.

final result are shown in a variety of images. All results are
shown with red lines on the object boundaries.

In Fig. 5 we illustrate six indicative moments of the
model evolution in the zebra example. The ROI texture
samples we used in our pixel-based CRF scheme include
the zebra-stripe pattern as well as samples from tails and
noses. In Fig. 6(a) we illustrate a similar case, namely
the cheetah example. The segmentation of the bird in Fig.
6(b) is another case where the object of interest has differ-
ent texture patterns and the background is highly cluttered;
in this case we used different training samples for all the
texture patterns of the bird. In the submitted video ‘bird-
init-only.mpg’ we show the segmentation result using only
the region statistics of the model interior and no training
samples; in this case we undersegment the bird.

For the lizard examples of Fig. 6(c) and (d), we show
the performance of our method in cases where there is a
very small difference between the ROI and the background
textures and intensities. For the example of Fig. 6(c), the
submitted video ‘lizard-init-only.mpg’ shows the results of
the lizard segmentation using only the model interior statis-
tics (without using training samples for the intensity and
texture); in this case we undersegment the lizard.

In Fig. 6(e), although the two fish are successfully seg-
mented from the background, the boundary between them is
not found, since we do not use shape priors in our method
(see future work).

In Fig. 6(f) and (g) we illustrate the performance of our
method for the segmentation of the left and right ventri-
cle in cardiac MRI images; the second image is a tagged
MRI where the texture pattern is of higher scale. Although
we used different intensity and texture training samples for
these two cases, the two segmentation results are exactly the
same. Finally, in Figs. 6(h) and (i), we illustrate our results

for local texture variations. For the example of Fig. 6(h) we
used training samples that include the dark regions between
the peppers; in the submitted video ‘peppers-only.mpg’ we
show the same example where the training samples did not
include those dark regions. For the example of Fig. 6(i)
we only used the model interior statistics and no training
samples.

5. Conclusions and Future Work
We presented a robust solution for segmenting objects

with texture patterns of any scale, using an implicit de-
formable model driven by Conditional Random Fields
(CRFs), in a tightly coupled framework. The deformable
model is integrated with the CRF scheme using a simple
graphical model, and the evolution is solved as a MAP esti-
mation problem. Our CRF scheme is based on the discrim-
inative version of the CRFs and it is used in two scales,
namely pixel- and patch-based. In this way we obtain
smooth probability fields based different image features,
namely the pixel intensity and the multi-scale texture. We
avoid ambiguities in the estimation of the probability field
with our two-scale CRF scheme, and we handle local fea-
ture variations by updating the statistics of our model inte-
rior. Our results show that our method performs success-
fully in a wide variety of images.

We leave for future work the introduction of shape priors
into our framework.
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