
Joint Object Segmentation and Behavior Classification in Image Sequences

Laura Gui1, Jean-Philippe Thiran1 and Nikos Paragios2

1Signal Processing Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2Laboratoire MAS, Ecole Centrale de Paris, Chatenay-Malabry, France

Abstract

In this paper, we propose a general framework for fus-
ing bottom-up segmentation with top-down object behav-
ior classification over an image sequence. This approach
is beneficial for both tasks, since it enables them to co-
operate so that knowledge relevant to each can aid in the
resolution of the other, thus enhancing the final result. In
particular, classification offers dynamic probabilistic priors
to guide segmentation, while segmentation supplies its re-
sults to classification, ensuring that they are consistent both
with prior knowledge and with new image information. We
demonstrate the effectiveness of our framework via a partic-
ular implementation for a hand gesture recognition applica-
tion. The prior models are learned from training data using
principal components analysis and they adapt dynamically
to the content of new images. Our experimental results il-
lustrate the robustness of our joint approach to segmenta-
tion and behavior classification in challenging conditions
involving occlusions of the target object before a complex
background.

1. Introduction

In the classical computer vision paradigm, the problems
of image segmentation and object behavior 1 classifica-
tion lie at different levels of abstraction. At a basic level,
segmentation aims at extracting meaningful objects from
the target image(s). A higher level image understanding
task is to infer the behavior class of the object(s) extracted
from each image, based on prior knowledge about behav-
ior classes. For instance, one may want to classify object
motion (e.g., car turn directions at an intersection), clas-
sify motion and deformation (e.g., hand gestures, body mo-
tions), or classify intensity changes in a brain activation map
for diagnostic purposes. Generally, this inference is for-
mulated in terms of a set of relevant attributes (e.g., color
histogram, object position, orientation, shape, size, etc.),

1By “behavior” of an object in an image sequence, we refer to the tem-
poral evolution of the object, as observed in the image sequence.

which have been extracted from the image sequence in a
preceding phase. Thus, attribute extraction, which may or
may not involve image segmentation, is conventionally per-
formed separately from classification.

This paper pursues a joint solution to the problems
of image segmentation and object behavior classification.
Clearly, a precise segmentation of the target object would
greatly facilitate behavior classification by making explicit
any object attributes relevant to the classification task.
Moreover, image segmentation could be dramatically im-
proved by exploiting the knowledge which is available to
the behavior classification task. This knowledge is typically
represented in the form of probabilistic models of attribute
values corresponding to behavior classes, and it can be used
to guide the segmentation of the target object(s) in chal-
lenging conditions (e.g., images affected by noise or occlu-
sions).

These considerations have motivated us to introduce a
general framework for joint object segmentation and behav-
ior classification in image sequences [11]. We formulated
the segmentation in a variational setting, which enables the
smooth integration of both prior knowledge (in the the form
of behavior class models) and specific segmentation criteria
for the target images. We further develop our framework in
the present paper by introducing more complex prior mod-
els.

Variational methods offer a solid mathematical basis for
the formulation and solution of many computer vision prob-
lems. In particular, the image segmentation problem has
been formulated in terms of energy minimization, allow-
ing the seamless blending of various criteria describing the
desired solution, such as smoothness, region homogene-
ity, edge correspondence, etc. Starting with the original
active contour (snakes) model [12], variational segmenta-
tion has been steadily advancing through the introduction
of the Mumford-Shah model [16], the level set approach
[17], geodesic active contours [3] and, more recently, ver-
satile segmentation approaches such as [25, 18]. The seg-
mentation of familiarly shaped objects in difficult cases has
been made possible by the introduction of statistical shape
priors into active contours [6] and also into level set active
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contours [15, 5, 20] and the Mumford-Shah model [8, 9, 2].
Variational methods for contour evolution have also been
adapted to object tracking (e.g., [12, 19, 8]). The coherence
between frames has been exploited by approaches based on
Kalman filtering [23], particle filtering [22], and autoregres-
sive models [7].

Our framework fuses segmentation and behavior classi-
fication over image sequences. To our knowledge, this idea
is novel in the context of variational image sequence anal-
ysis, and it capitalizes on existing developments in the use
of shape priors. Segmentation has been combined with ob-
ject recognition, yielding good results in the case of sin-
gle, static images, both in variational [9] and non-variational
[24, 14, 10, 13] settings. Our work makes a significant con-
tribution in that we address image sequences and the tempo-
ral problem of object behavior classification. To tackle this
problem, we introduce a variational framework that incor-
porates dynamic probabilistic priors automatically obtained
via a machine learning approach. These priors are based on
training data available for classification and they evolve dy-
namically as more information is accumulated from newly
segmented images. Cooperation and shared access to all the
available information (new images and priors) substantially
improve both segmentation and behavior classification.

Note that in this paper we develop a general framework
for the joint resolution of the two tasks—segmentation and
behavior classification—which can have a wide range of ap-
plications by adapting its components and parameters ac-
cording to the specific need. In particular, we illustrate the
power of our approach in a gesture recognition application,
where the combination of segmentation and classification
dramatically increases the tolerance to occlusion and back-
ground complexity present in the input image sequence.

The remainder of the paper is organized as follows. Sec-
tion 2 details the collaborating halves of our general frame-
work, first behavior classification and then segmentation.
In Section 3 we propose a particular implementation of our
framework, which employs a specific image term and a dy-
namic prior component, for the purposes of gesture recog-
nition. Experimental results are presented at the end of Sec-
tion 3. Section 4 concludes the paper.

2. Formulation of the General Framework

Our general framework for joint segmentation and be-
havior classification is based on the idea of cooperation be-
tween the two processes along the target image sequence
(Fig. 1). In an interleaved fashion, classification is per-
formed, providing probabilistic attribute priors to guide seg-
mentation towards the most likely objects at the given time
instance, followed by segmentation, which identifies these
objects in the new image (consistently with prior knowl-
edge) and provides their attributes to classification. The pri-
ors offered by classification are learned from training data
and they are updated dynamically according to newly pro-

Figure 1. Our approach: Cooperation of segmentation and classi-
fication along the image sequence.

cessed images.
We use the generic term “attribute” to designate a visual

property of the object of interest, which can be expressed as
a functional A(C, I) of the image I and of the object’s seg-
menting contour C (A is assumed to be differentiable with
respect to C). The palette of such attributes can be quite
large, including all properties computable with boundary-
based and/or region-based functionals, such as position, ori-
entation, average intensity/color, or higher order statistics
describing texture.

2.1. Behavior Classification and its Cooperation
with Image Segmentation

Suppose that the segmentation problem is solved and
we know the attribute values for the given image sequence.
Then, behavior classification translates to finding the behav-
ior classes which best account for the generation of these
attributes in each image. We approach this problem in the
machine learning framework of generative models [1]. In
particular, we use Hidden Markov Models (HMMs) [21],
where the hidden states (stochastic processes that generate
observations) correspond to behavior classes and the obser-
vations are the attribute values. Once the HMM parameters
are estimated from training samples, they can be used to
classify new attribute sequences via the Viterbi algorithm.
We can run this algorithm jointly with the segmentation of
the image sequence in order to achieve the intended coop-
eration, as we show in the following.

We denote the states of the HMM (each corresponding
to a behavior class) by S = {S1, S2, . . . , SM}, the state at
time t by qt, and the attribute value at time t by A(t). The
HMM parameters are

1. the initial state distribution π = {πi}, with πi =
P (q1 = Si), i = 1..M ,

2. the state transition probability distribution T = {tij},
with tij = P (qt+1 = Sj|qt = Si), i, j = 1..M , and

3. the state observation probability distributions (class



likelihoods):

P (A(t) | qt = Si) = Pi(A(t)), i = 1..M. (1)

To support cooperation with the segmentation process, we
require that these class likelihood functions Pi(A(t)) be dif-
ferentiable with respect to A(t).

Once the ensemble λ of HMM parameters have been es-
timated from training data, we can use the Viterbi algorithm
[21] to classify new attribute sequences. For a new obser-
vation sequence A1..T = {A(1), A(2), . . . , A(T )}, the al-
gorithm estimates the most likely state (behavior class) se-
quence qopt

1..T = {q1, q2, . . . , qT }opt that generated it, as fol-
lows:

qopt
1..T = argmax

q1..T

P (q1..T |A1..T , λ)

= argmax
q1..T

P (q1..T , A1..T |λ).
(2)

This estimation translates to the evaluation, for each time
step t and for each state Si, of the quantity

δt(i) = max
q1,q2,...,qt−1

P (q1..t−1, qt = Si, A1..t|λ). (3)

It represents the highest probability along a state sequence,
at time t, which explains the first t observations and ends in
state Si. After proper initialization, the following recursion
is used to compute the δs:

δt(i) = (max
j

δt−1(j) tji) · Pi(A(t) |λ). (4)

These maximization results are stored and can be used at
any time instance within the sequence to retrieve the (cur-
rently) optimal state sequence by backtracking.

We implement the cooperation between behavior classi-
fication and segmentation by using the probability estimates
of the Viterbi algorithm at each step to guide the segmen-
tation of each image. To this end, we run the algorithm
and segmentation in an interleaved manner along the image
sequence, using as observations the attributes of newly seg-
mented images as soon as they become available. Suppose
that we have completed step t − 1 of both the segmenta-
tion and the Viterbi algorithm, so that attributes A1..t−1 and
δt−1(j), j = 1..M are available. To guide the segmentation
of I(t), we use the maximum amount of a priori knowledge
offered by classification:

1. the predictions of each class i for the next attribute
A(t); i.e., the likelihood functions Pi(A(t) |λ), i =
1..M (1), and

2. our relative confidence in the prediction of each class
i, given by the Viterbi algorithm, i.e., the maximum

probability of reaching state Si at time step t, after hav-
ing observed attributes A1..t−1:

wt+1(j) = max
i=1..N

δt(i)tij

= max
q1,q2,...,qt

P (q1..t, qt+1 = Sj , A1..t|λ).

(5)

More specifically, we use the product of these two quantities
as prior information about the target object offered by each
behavior class i. According to (4), this product is actually

δt(A(t), i) = wt(i)Pi(A(t) |λ), i = 1..M ; (6)

i.e., δt as a function of the unknown attribute A(t). Next,
we explain how to introduce these class contributions into
the segmentation framework.

2.2. Image Segmentation and its Cooperation with
Behavior Classification

To guide the segmentation process of an image, proba-
bilistic attribute priors δt(A(t), i) are associated with each
behavior class i. Our philosophy for dealing with these mul-
tiple priors is to create a competition between them, result-
ing in a final segmented object belonging to the class which
best accounts for its generation, given the image evidence.

We formulate segmentation in a variational framework
and use a labeling mechanism motivated by [9] to create
competition between the multiple priors. Supposing that
we have run our joint segmentation / behavior classification
framework on the first t−1 frames of an image sequence, we
employ the following energy functional in order to segment
I(t):

E(C,L, I(t)) = Edata(C, I(t)) + αEprior(C,L, I(t)), (7)

where C is the segmenting contour, L = (L1, . . . LM ) is
the set of labels (defined below) and α is a positive weigh-
ing constant. Energy Edata(C, I(t)) can be any boundary-
based or region-based segmentation energy that best suits
the application at hand (e.g., the energy proposed in [4]).
The energy due to the priors is

Eprior(C,L, I(t)) = −
M∑
i=1

log
(
δt(A(C, I(t)), i)

)
L2

i

+ β

(
1 −

M∑
i=1

L2
i

)2

,

(8)

where β is a positive constant and the δ function is defined
in (6). For each prior i, we associate a label Li, a scalar
variable that varies continuously between 0 and 1 during
energy minimization and converges either to 1 (for the win-
ning prior) or to 0 (for the other priors). The winner among



attribute priors is the one whose probability has been max-
imized through segmentation. Each of the prior terms car-
ries a label factor equal to L2

i that controls its contribution
to segmentation according to its relative probability with re-
spect to the other priors. Competition is enforced by the soft
constraint that the values of these factors should sum to 1,
which is introduced by the term (1 −∑M

i=1 L2
i )

2 in energy
(8).

We minimize (7) simultaneously with respect to the seg-
menting contour C and the labels L using the calculus of
variations and gradient descent. The contour C is driven by
image forces (intensity, gradients, etc.) due to Edata(C) and
by the M attribute priors due to Eprior(C,L):

∂C

∂τ
= −∂Edata(C, I(t))

∂C
− α

∂Eprior(C,L, I(t))
∂C

. (9)

Here ∂Edata(C, I(t))/∂C can be derived through the cal-
culus of variations for the particular chosen form of
Edata(C, I(t)). The second term can be written as:

∂Eprior(C,L, I(t))
∂C

= −
M∑
i=1

(
L2

i

δt(A(C, I(t)), i)

∂δt(A(C, I(t)), i)
∂A

∂A(C, I(t))
∂C

)
, with

∂δt(A(C, I(t)), i)
∂A

= wt(i)
∂Pi(A(C, I(t)) |λ)

∂A
.

(10)

The derivatives ∂Pi/∂A and ∂A(C, I(t))/∂C are com-
puted according to the particular likelihood function and at-
tribute employed.

The evolution equation for the label Li is

∂Li

∂τ
=

M∑
i=1

δt(A(C, I(t)), i)Li − β Li

(
1 −

M∑
i=1

L2
i

)
.

(11)
The effect of these equations is that the label Li corre-
sponding to the maximum δt(A(C, I(t)), i) will be driven
towards 1—i.e., the maximum δt will be extremized—while
the other labels will be driven to 0.

From a probabilistic perspective, the minimization of our
proposed energy using competing priors can be interpreted
as the maximization of the probability δt(A(C, I(t)), i)
with respect to both the attribute A(C, I(t)) and the class
i, subject to image-based constraints imposed through the
energy Edata(C, I(t)). Then the segmentation of image I(t)
can be regarded as the joint estimation of the attribute value
A∗(t) and the class i∗ as:

(A∗(t), i∗) = arg max
A(C,I(t)),i

δt(A(C, I(t)), i),

subject to image constraints via Edata(C, I(t)).
(12)

Thus, segmentation works concurrently towards the same
goal as classification—maximizing the joint probability of

the class and the observation at time t, while remaining
consistent with previous observations, according to prior
knowledge (through the HMM), and incorporating new in-
formation from image I(t).

From the segmentation of I(t) we obtain A(t), so that we
can estimate δt(i) and wt+1(i) (through the Viterbi recur-
sion), then segment I(t+1), and repeat the cycle to the end
of the image sequence. We obtain the classification of the
image sequence as the most probable state sequence given
the observations, by backtracking from the results of the
Viterbi algorithm.

3. A Specific Implementation of our Frame-
work for Hand Gesture Recognition

In the following, we demonstrate the potential of our
general framework through a particular implementation for
a hand gesture recognition application. We begin by de-
scribing the problem that we wish to address, then we detail
the specific models that we use within our framework and,
finally, we present our results.

3.1. Application

In our application, we identify four gesture classes con-
sisting of a right hand going through four finger configura-
tions: fist (Class 0), thumb extended (Class 1), thumb and
index finger extended (Class 2) and thumb, index, and mid-
dle finger extended (Class 3). An example image of each
gesture class is shown in Fig. 2.

Our gesture image sequences depict finger-counting
from 1 to 3 (starting from the fist position) and from 3 to
1 (ending with the fist position), which is, in terms of ges-
ture class successions, 0,1,2,3 and 3,2,1,0. Our aim is to
perform joint segmentation and classification of image se-
quences containing such successions; i.e., for each image,
extract the segmenting contour of the hand and determine
the gesture class to which it belongs. To achieve this, we
instantiate our general framework with particular segmen-
tation and probability models, we use training data to es-
timate the HMM parameters and then we test the resulting
implementation on new gesture image sequences.

3.2. PCA-Based Prior Modeling

The object attribute that we use for this application is the
contour segmenting the hand A(C, I) = C. We represent
the contour using the level set approach [17], via the level
set function (LSF) φ : Ω → R, chosen to be the signed
distance function to the contour, so that C ≡ {(x, y) :
φ(x, y) = 0}.

The likelihood model Pi(C |λ) for each class i relies on
a shape distance function, motivated by [2], between the
segmenting contour C and a prior contour corresponding to
that class. While in our previous work [11], the likelihood
model was a local Gaussian model whose parameters were



(a) Class 0 (b) Class 1

(c) Class 2 (d) Class 3

Figure 2. Samples from the four gesture classes that we use in our
application.

fixed from training, here we use a prior contour for each
class, which is computed from the training data via princi-
pal components analysis (PCA), that evolves dynamically
during segmentation so as best to match the image informa-
tion. We improve the distance function proposed in [2] by
making it symmetric, so that the resulting likelihood models
are suitable for classification.

The purpose of PCA is to reduce redundant information
and summarize the main variations of a training set. Given a
training set of discrete LSFs {φ1, . . . φn}, which have been
discretized on a rectangular grid, its principal directions of
variation are captured by the eigenvectors {e1, . . .en} of
the covariance matrix Σ = 1

n−1M MT , where the col-
umn vectors of the matrix M are the n training LSFs.
The singular value decomposition of the covariance matrix
Σ = USVT is computed. An approximate representation
of the training set is then obtained in the reduced space of
the p < n eigenvectors {e1, . . . ep}, which are the columns
of U corresponding to the p largest singular values in the
diagonal singular matrix S. This enables us to approximate
a new level set function φ̂ using the p-dimensional vector
of eigencoefficients c, as:

φ̂ = φ + E c, (13)

where φ = (1/n)
∑n

i=1 φi is the mean of the training

level set functions and E is a matrix whose columns are
the eigenvectors {e1, . . . ep}.

Our shape distance function between the current seg-
menting contour φ and a continuously interpolated version
of the PCA-represented level set function φ̂ of a prior con-
tour is given by:

d(φ, c, τ ) =
∫∫

Ω

(
φ̂2|∇φ|δ(φ) + φ2|∇φ̂|δ(φ̂)

)
dx dy.

(14)
Here, δ is the Dirac function and φ̂(c, hτ ) is the interpo-
lated level set function of the prior contour, which depends
on the eigencoefficient vector c, according to (13), and on
the parameters τ = {s, θ, Tx, Ty} of a similarity transfor-
mation

hτ

(
[x y]T

)
= s

(
cos θ sin θ
− sin θ cos θ

)[
x
y

]
+
[

Tx

Ty

]
.

(15)
This transformation aligns the prior contour with contour φ
by scaling the former by s, rotating it by θ, and translating it
by Tx, Ty. Since

∫∫
Ω |∇φ|δ(φ) dx dy represents the length

of the zero level set of φ, we can readily observe that the first
term of (14) approximates the minimal Euclidian distance to
the prior contour, integrated along the segmenting contour.
This is an approximation because the level set function φ̂
resulting from PCA is not the exact distance function, but
just a reasonable approximation of it. The second term of
(14), which exchanges the roles of φ and φ̂ relative to the
first term, makes the distance function symmetric and thus
suitable for use in classification.

In our application, we use one PCA-based prior contour
φ̂i for each class i, learned from training samples corre-
sponding to that class and adapting to each new image in
terms of its coefficients ci(t) and τ i(t), as will be shown in
the next section. Based on the shape distance function (14),
we define the likelihood of the segmenting contour repre-
sented by φ, for time t (image I(t)) and class i as

Pi(φ(t)) = e−d(φ(t),ci(t),τ i(t)), (16)

where ci(t) are the PCA coefficients corresponding to class
i and τ i(t) are the transformation parameters aligning the
prior contour φ̂i of class i with φ(t).

3.3. Segmentation Process

As the data term in the segmentation energy (7), we use
the piecewise constant Mumford-Shah model ([4]) to guide
the evolution of the segmenting contour φ and of the prior
contours φ̂i for each class i, in terms of their PCA coef-
ficients ci and similarity alignment parameters τ i, as fol-



lows:

Edata(φ, ci=1..M , τ i=1..M ) =∫∫
Ω

(I − µφ+)2H(φ) + (I − µφ−)2H(−φ) dx dy

+
M∑
i=1

∫∫
Ω

(I − µφ̂i+
)2H(φ̂i)

+ (I − µφ̂i−)2(H(−φ̂i)) dx dy

+ ν

∫∫
Ω

|∇H(φ)| dx dy.

(17)

Here H is the Heaviside function and µφ+, µφ̂i+
and

µφ−, µφ̂i− are the mean image intensities over the positive,

respectively negative, regions of the LSFs φ and φ̂i, where
φ̂i is the continuously interpolated LSF of the prior contour
φ̂i(ci, hτ i(x, y)) = φi(hτ i(x, y)) + Ei(hτ i(x, y)) ci. The
mean LSF φi and eigenvectors Ei have been obtained from
the training set of class i. The last term of (17) imposes
smoothness of the segmenting contour.

The prior term of the energy is given by:

Eprior(φ,L) = −
M∑
i=1

log
(
δt(φ, i)

)
L2

i +β

(
1 −

M∑
i=1

L2
i

)2

,

(18)
where δt(φ, i) = wt(i)Pi(φ). Substituting likelihoods
Pi(φ) with (16), the prior energy becomes

Eprior(φ,L, ci=1..M , τ i=1..M ) =
M∑
i=1

(d(φ(t), ci(t), τ i(t))

− log wt(i))L2
i + β

(
1 −

M∑
i=1

L2
i

)2

.

(19)

The total energy (7), combining (17) and (19), is minimized
via the calculus of variations and gradient descent, yielding
evolution equations for the contour φ, the labels L, the PCA
coefficients ci=1..M and the alignment parameters τ i=1..M .

3.4. Training the Model

In the training phase, we estimate the parameters of the
HMM (see, e.g., [21]) using labeled sequences of LSFs
obtained as segmentations of the mentioned training ges-
ture sequences (0,1,2,3 and 3,2,1,0). The state observa-
tion probability distributions are given by the likelihoods
Pi(φ), i = 1..M from (16). Parameter estimation for these
likelihoods amounts to PCA of the respective training LSFs,
yielding the corresponding mean LSF φi and eigenvec-
tors Ei for each class i. For this application, we used the
first 5 eigenvectors corresponding to the largest eigenval-
ues, which account for 94.8%, 97.6%, 96.5%, and 95.5% of

(a) (b)

(c) (d)

Figure 3. (Left) Segmentation (purple contour) with the proposed
framework of an image in the presence of occlusion and back-
ground complexity. The green contour shows the best-fitting PCA
prior model. (Right) Conventional segmentation of the image is
confused by the occluding left hand.

the variance of the training sets for classes 0, 1, 2, and 3,
respectively.

3.5. Results

In the testing phase, we ran our implementation for
joint behavior classification and segmentation on image se-
quences of a hand performing the succession of gestures
0,1,2,3,2,1,0 in front of a complex background, degraded
by significant occlusions (Fig. 4). The frame number and
resulting classification of each frame are indicated in the
figure.

By virtue of the prior information supplied by the classi-
fication, segmentation with the PCA prior model is able to
cope with occlusions as can be seen in Fig. 3(a). By con-
trast, Fig. 3(b) shows that conventional segmentation fails.

Figure 5 shows the classification results for all the frames
of the sequence presented in Fig. 4, which correctly fol-
low our understanding of the sequence in terms of the exe-
cuted gestures. Moreover, the frame classification obtained
by backtracking from the Viterbi algorithm corresponds to
the partial classification results obtained throughout the se-
quence, which have been used to guide segmentation. This
concordance can be seen in Fig. 5, which exhibits, as func-
tions of time (frame), (a) the final classification, (b) the delta
functions of each class, and (c) the prior confidence of each
class (the w function) used as input to the segmentation.
The w values have been scaled with respect to their maxi-
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Figure 4. Frames sampled from a test image sequence of the right hand performing the 0,1,2,3,2,1,0 gesture in front of a complex back-
ground. Note the left hand enters the scene around Frame 60 and again around frame 102, significantly occluding the right hand around
Frames 69 and and 111. The frame number and resulting classification of each frame are indicated.

mum value for every frame.

4. Conclusion

We have introduced and developed a novel and general
framework that enables the joint segmentation of image se-
quences and classification of object behavior in these se-
quences. Cooperation between the segmentation and classi-
fication processes facilitates a mutual exchange of informa-
tion, which is beneficial to their joint success. In particular,
we employed a classification strategy based on generative
models that provided dynamic probabilistic attribute priors
to guide image segmentation. These priors enabled the seg-
mentation process to work towards the same goal as classi-
fication, by outlining the object that best accounted both for
the image data and for the prior knowledge encapsulated in
the generative model.

We illustrated the effectiveness of our general framework
in a hand gesture analysis application, where we success-
fully segmented and classified image sequences of a gestur-
ing hand before a complex background in the presence of
occlusions.

Future directions of our work include the development

of more complex attribute priors that would enable us to
deal with more challenging application scenarios involving
under-constrained problems, such as the understanding of
3D object behavior from 2D monocular images. We will
also investigate the use of alternative optimization methods
that are less sensitive to local minima.

References

[1] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006. 2

[2] X. Bresson, P. Vandergheynst, and J.-P. Thiran. A vari-
ational model for object segmentation using boundary
information and shape prior driven by the Mumford-
Shah functional. International Journal of Computer
Vision, 28(2):145 – 162, July 2006. 2, 4, 5

[3] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic ac-
tive contours. In Proc. IEEE Intl. Conf. on Comp. Vis.,
pages 694–699, Boston, USA, 1995. 1

[4] T. Chan and L. Vese. Active contours without edges.
IEEE Transactions on Image Processing, 10(2):266–
277, 2001. 3, 5



0 20 40 60 80 100 120 140 160 180
0

1

2

3

C
la

ss

t

(a)

0 20 40 60 80 100 120 140 160 180
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

6

 δ
t(i)

, i
=

0.
.3

t

class 0
class 1
class 2
class 3

(b)

0 20 40 60 80 100 120 140 160 180
−4

−3

−2

−1

0

 w
t(i)

, i
=

0.
.3

t

(c)

Figure 5. Classification results plotted per frame. (a) Final classi-
fication. (b) Delta functions of each class. (c) Prior confidence of
each class used as input to the segmentation.

[5] Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang,
D. Wilson, K. Gopinath, R. Briggs, and E. Geiser. Us-
ing prior shapes in geometric active contours in a vari-
ational framework. International Journal of Computer
Vision, 50(3):315–328, 2002. 2

[6] T. Cootes, C. Beeston, G. Edwards, and C. Taylor.
Unified framework for atlas matching using active ap-
pearance models. Intl Conf. Inf. Proc. in Med. Imag-
ing, pages 322–333, 1999. 1

[7] D. Cremers and G. Funka-Lea. Dynamical statistical
shape priors for level set based tracking. In S. LNCS,
editor, 3rd. Workshop on Variational, Geometric and
Level Set Methods in Computer Vision, volume 3752,
pages 210–221, 2005. 2

[8] D. Cremers, S. Osher, and S. Soatto. Kernel den-
sity estimation and intrinsic alignment for knowledge-
driven segmentation: Teaching level sets to walk. Pat-
tern Recognition, 3175:36–44, 2004. 2

[9] D. Cremers, N. Sochen, and C. Schnör. Multiphase
dynamic labeling for variational recognition-driven
image segmentation. In European Conf. on Computer
Vision, volume 3024, pages 74–86, 2004. 2, 3

[10] V. Ferrari, T. Tuytelaars, and L. V. Gool. Simultaneous
object recognition and segmentation by image explo-
ration. In ECCV, 2004. 2

[11] L. Gui, J.-P. Thiran, and N. Paragios. A variational
framework for the simultaneous segmentation and ob-
ject behavior classification of image sequences. In

Proc. Scale Space and Variational Methods in Com-
puter Vision, 2007. In press. 1, 4

[12] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Ac-
tive contour models. International Journal of Com-
puter Vision, 1:321–331, 1987. 1, 2

[13] I. Kokkinos and P. Maragos. An Expectation Maxi-
mization approach to the synergy between image seg-
mentation and object categorization. In ICCV, pages
617–624, 2005. 2

[14] B. Leibe, A. Leonardis, and B. Schiele. Combined ob-
ject categorization and segmentation with an implicit
shape model. In ECCV Workshop on SLCV, 2004. 2

[15] M. Leventon, W. Grimson, and O. Faugeras. Sta-
tistical shape influence in geodesic active contours.
In IEEE Int. Conf. on Computer Vision and Pattern
Recognition, pages 316–323, June 2000. 2

[16] D. Mumford and J.Shah. Optimal approximations
by piecewise smooth functions and associated varia-
tional problems. Communications in Pure and Applied
Mathematics, 42:577–685, 1989. 1

[17] S. Osher and J. Sethian. Fronts propagating with
curvature-dependent speed: Algorithms based on the
Hamilton-Jacobi formulation. Journal of Computa-
tional Physics, 79:12–49, 1988. 1, 4

[18] N. Paragios and R. Deriche. Geodesic active regions
and level set methods for supervised texture segmen-
tation. International Journal of Computer Vision,
46(3):223–247, 2002. 1

[19] N. Paragios and R. Deriche. Geodesic active re-
gions and level set methods for motion estimation and
tracking. Computer Vision and Image Understanding,
97:259–282, 2005. 2

[20] N. Paragios and M. Rousson. Shape priors for level set
representations. In European Conference in Computer
Vision, volume 2, pages 78–92, 2002. 2

[21] L. R. Rabiner. A tutorial on Hidden Markov Models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2), 1989. 2, 3, 6

[22] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi.
Particle filtering for geometric active contours with
application to tracking moving and deforming objects.
In Proc. CVPR, volume 2, pages 2–9, 2005. 2

[23] D. Terzopoulos and R. Szeliski. Tracking with
Kalman snakes. Active vision, pages 3–20, 1993. 2

[24] Z. Tu, X. Chen, A. Yuille, and S. Zhu. Image parsing:
Segmentation, detection, and recognition. In ICCV,
pages 18–25, 2003. 2

[25] L. Vese and T. Chan. A multiphase level set frame-
work for image segmentation using the Mumford and
Shah model. International Journal of Computer Vi-
sion, 50(3):271–293, 2002. 1


