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Abstract

To implement a persistent tracker, we build a set of view-
dependent object appearance models adaptively and auto-
matically while tracking an object under different viewing
angles. This collection of acquired models is indexed with
respect to the view sphere. The acquired models aid re-
covery from tracking failure due to occlusion and changing
view angle. In this paper, view-dependent object appear-
ance is represented by intensity patches around detected
Harris corners. The intensity patches from a model are
matched to the current frame by solving a bipartite linear
assignment problem with outlier exclusion and missed inlier
recovery. Based on these reliable matches, the change in
object rotation, translation and scale is estimated between
consecutive frames using Procrustes analysis. The experi-
mental results show good performance using a collection of
view-specific patch-based models for detection and tracking
of vehicles in low-resolution airborne video.

1. Introduction

To achieve long-term object tracking, a persistent tracker
must adapt to changes in object and background appearance
while avoiding drift during the adaptation [9]. Furthermore,
since object trackers suffer from losing the object with high
probability during occlusion and changes in view angle, a
persistent tracker must be able to reacquire the object af-
ter these failures [5]. Our approach to solve these problems
is to model the object adaptively and automatically while
tracking, so that the object can be detected and recognized
again after losing it (Fig.1). The models, which are collec-
tions of small view-dependent intensity patches, are accu-
mulated on-the-fly during the tracking run.

Learning object models for later recognition remains
a challenging problem in the fields of machine learning
and computer vision. Several recent approaches have been
based on the observation that features belonging to the same
object should have correlated behavior (e.g. should be seen
together frequently or should move in the same direction)

Figure 1. A collection of view-dependent intensity patch models
built while tracking can help the persistent tracker recover from
failure by enabling global detection of the target object.

while features belonging to different objects exhibit more
independent or uncorrelated behavior [4, 14, 16]. Previous
approaches are good at discovering view-dependent cliques
of features that have consistent behavior, but they leave
open the problem of inferring chains of cliques that rep-
resent different views of the same object (e.g. the two sides
and front view of the same vehicle).

Rothganger et al. introduced a successful 3D object
representation using local affine-invariant image descriptors
constrained by spatial relations between the corresponding
surface patches [15]. The invariants select promising local
patches for modeling, and the spatial constraints efficiently
match the same object patches under different views by dis-
carding geometrically inconsistent candidate matches. In
practice, this approach relies on textured objects and high
resolution images, and the 3D object models are constructed
in controlled environments with little or no clutter. Thus, it
is not feasible to build models for less textured objects in
cluttered low resolution video, e.g. airborne video of ve-
hicles in traffic. Dowson and Bowden provided a simul-
taneous modeling and tracking (SMAT) method [2]. The
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object features are selected manually and tracked individu-
ally. While tracking, a mixture model is fit to the exemplar
appearances and geometric structures built from the feature
positions. This approach is closely related to the template
updating work of [9]. Leordeanu et al. developed an algo-
rithm for unsupervised learning of object models as constel-
lations of features [7]. Small clusters of features that match
across frames in short subsequences are grouped together to
form “parts”. The novelty of this approach is that transitive
chains of part pairs that span different aspects of the same
object can be discovered.

Our approach builds an object model during real-time
tracking. We represent the object by small intensity patches
around detected Harris corners [6]. The patches from the
previous model are matched to the current frame by solving
a bipartite linear assignment problem. Furthermore, out-
lier matches are excluded by an Exhaustive Sample Con-
sensus process, and some missing inlier matches are re-
covered using geometric location constraints. Based on
correct matches found, the elliptical shape change in ob-
ject rotation, translation and scale between two consecutive
frames is estimated using Procrustes analysis. The above
processes, including corner detection, patch extraction and
matching, and Procrustes analysis, run in real-time to pro-
vide continual modeling while tracking. While tracking the
object under different view angles, we collect and index
view-dependent object patches with respect to a viewing
sphere. The result is an appearance-based model that ex-
plicitly characterizes change in object appearance with re-
spect to pose, and that can be used to recognize the same
object at a later time from an unknown (but previously seen)
viewpoint.

Each acquired appearance-based object model consists
of a view sphere populated with viewpoint dependent ob-
ject representations (e.g. clusters of intensity patches). This
provides a valuable resource for recognition because it com-
pletely characterizes change in object appearance with re-
spect to viewing angle. Note that the view sphere will not
necessarily be fully populated from a single video sequence
- it may take several passes of the sensor to see all as-
pects of the object. However, the view-sphere appearance
model succinctly categorizes which views have been seen,
and which have not yet been seen, and thus can be used
proactively to suggest new viewpoints for modeling previ-
ously unseen sides of the object.

In the rest of this paper, we describe simultaneous ob-
ject modeling and tracking in Section 2. Indexing object
models using a view sphere is introduced in Section 3 and
experimental results are shown in Section 4.

2. Object Modeling while Tracking
Instead of tracking an object by warping and matching

a single large template, in this approach we represent the

Figure 2. Left: detected Harris corners within a subimage; Right:
the object is constrained by an elliptical shape and represented by
intensity patches extracted around Harris corners.

object by a constellation of intensity patches. The patch
features are extracted around Harris corners. The object is
tracked in new images by matching the patches using nor-
malized cross correlation (NCC). Since an individual inten-
sity patch does not include the object’s rotation and scale
change information between consecutive frames, we apply
Procrustes analysis on the locations of all well-matched ob-
ject patches to estimate the similarity transformation.

2.1. Feature detector and descriptor

Good feature detectors and descriptors are important for
object modeling and tracking. Quite a few state-of-the-art
feature detectors and descriptors have been evaluated based
on their performance on sets of test images under different
image conditions [10, 11, 12]. Generally, the combination
of Harris/Hessian-affine detectors and SIFT feature descrip-
tor [8] performs the best. In the Harris-affine feature detec-
tion method, the Harris corner detector determines interest
points and a Laplacian of Gaussian filter is used to select
the appropriate scale. To achieve invariance to affine trans-
formations, the second moment matrix of the intensity gra-
dients is used to estimate the shape of a covariant elliptical
region that is used to normalize the image neighborhood.

In this paper, we also use the Harris corner detector to
find interest points, but represent local appearance using in-
tensity patches centered at each Harris point (Fig.2). In the
first input image, the target is chosen manually and con-
strained by an elliptical shape. The Harris corners within
or close to the ellipse belong to the object. Instead of using
the whole object appearance as template, the object is repre-
sented by a set of intensity patches that are extracted around
Harris corners. Although the whole appearance of the ob-
ject is likely to change within consecutive frames, some of
the local patches between two consecutive frames may re-
main approximately the same. Thus we achieve feature sim-
ilarity from these small patches without iteratively warping
the whole appearance template for matching.

In our approach, a Harris corner detector with non-max
suppression is used to locate interest points. Image appear-
ance features are extracted around Harris corners and repre-



sented by 11× 11 intensity patches. Each patch has several
additional properties: patch location in the image, mean and
variance of the pixel intensities within the patch, and feature
ID. With normalization by subtracting the mean and divid-
ing by the standard deviation, the patches become invariant
to global illumination changes. There are several reasons to
choose the 11× 11 window size. First, we need to maintain
the feature descriptors in a low dimensional space without
losing distinctiveness. If the patch is too large, it requires
more computational and memory cost. Additionally, if a
square patch is large enough to cover the whole object and
the object changes its appearance between two consecutive
frames, it is hard to find a perfect matching between these
two frames. If the patch is too small (the extreme case is
a one-pixel patch), many outlier matches could be found
between two frames, thus there is low distinctiveness. Sec-
ondly, an 11×11 square patch can be converted and padded
into a 128-byte vector for efficient computation. For exam-
ple, the normalized cross correlation between patches can
be implemented efficiently by dot product between two nor-
malized vectors using MMX instructions [13].

2.2. Feature matching

During tracking, we use the object patch model built
from previous frames to match the object in the current
input image. After detecting Harris corners and extract-
ing corresponding intensity patches in the current image,
we need to determine which matches between object model
patches and current image patches are acceptable. We con-
sider this as a bipartite linear assignment problem (LAP) or
“marriage problem”. Every object patch is compared via
NCC (implemented by MMX vector dot product) with all
input image patches. The one having the highest correla-
tion score is considered as a mate of this object patch. Sim-
ilarly, every input image patch is correlated with all object
patches, with the highest scoring one yielding a mate. If the
two mate pairings agree, they are a good match. Fig.3 illus-
trates a set of matches found by solving the marriage prob-
lem. Many outlier matches exist because of nearby similar
objects (clutter).

Random Sample Consensus (RANSAC) is usually used
to exclude outliers from a large data set. Since our objects
are small, there are not many matching patches in our video
sequences, so we can perform Exhaustive Sample Consen-
sus (EXSAC) to select the best inlier set. The difference
between EXSAC and RANSAC is that every combination
of k points (e.g. 3 for affine transformation) is tried when
finding inliers, not just a random sampling. Fig.4 gives the
result after an affine EXSAC is used to exclude outliers. We
assume the previous patch model and object in the current
image is related by an affine transformation:

Figure 3. Initial matches are found by solving a bipartite linear
assignment problem.

Figure 4. Inlier matches found by exhaustive sample consensus.
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The weight ωi for each matched pair is proportional to their
matching score and life length of their feature ID (how
many times the feature ID appeared in the past L frames).
As experiments show, most of the features do not last long
and we can choose a small history window (e.g. L = 5
or 10). We use the weight to avoid drifting in cluttered
backgrounds, i.e. matches with higher matching score that
exist longer are more reliable than others. This assumes



Figure 5. Recovering some previously missed inlier matches (red).

that features on the moving object persist within the track-
ing window, whereas features in the background leave the
window fairly quickly. Modeling the background area sur-
rounding the foreground target or adaptively classifying the
foreground from the background [1] could also be explored
to avoid drifting. The solution to the optimization problem
(Eq.2) is:
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The above matching process is executed between the ob-
ject appearance patch model and the whole sub-image. The
bidirectional matching is very strict and spatial information
of the patches is not taken into account. However, after
we estimate the affine transformation, we can recover some
missed inlier matches by restricting the searching range and
matching these features again. Specifically, the location of
one unmatched model patch can be affine transformed into
the current image coordinates, and we search for this model
patch’s mate around just that position instead of the whole
subimage. If some image patch is close to the model patch
and their matching score is above a threshold, we consider
this as a good match. As a result of this process, we can
recover some of the inlier matches that were missed previ-
ously. Fig.5 shows the result after recovery of missed in-
liers.

After finding matches by solving bipartite LAP, exclud-
ing outliers by affine EXSAC and recovering missed inliers,
we have a set of reliable matches. The feature ID of each
image patch is determined in two cases: if a current image

Figure 6. Shape matching between previous and current Delau-
nay graphs to estimate the similarity transformation of the object’s
bounding ellipse.

patch is matched to a patch in the model, it inherits the fea-
ture ID from its matched model patch; otherwise this is a
new image patch and a new feature ID is assigned to it.

2.3. Procrustes Analysis on Matched Patch Loca-
tions

The locations of the matched patches form a Delau-
nay Triangulation graph, which is a useful global shape
constraint. The object appearance patch model can be
enhanced by this geometric structure. Locally, intensity
patches around Harris corners describe the object appear-
ance details, but they are blind to their neighboring patches.
Globally, the Delaunay Triangulation connects all the ob-
ject patches into a network graph. Although the object
orientation and scale change between consecutive frames
can not be estimated from a single pair of intensity patch
matches, we can rely on the spatial Delaunay graph to com-
pute the similarity transformation of the object’s bounding
ellipse between consecutive frames. We model object shape
(ellipse) changes using 4-parameter similarity rather than
6-parameter affine to increase robustness, so the elliptical
shape can only translate, rotate and scale in an image.

We apply Procrustes analysis ([3]) on the two Delau-
nay graphs of consecutive frames to compute the similarity
transform between them (translation (tx, ty), rotation θ and
scale s). The position, orientation and scale of the current
ellipse is computed based on the similarity transformation
and previous ellipse properties: position, orientation, semi-
major and semiminor axis lengths. The intensity patches
around the new ellipse are considered as a new model for
tracking the object in the next frame. Fig.6 illustrates the
Procrustes analysis result between two consecutive frames.

3. Indexing Object Models using a View Sphere
For small changes of viewpoint, such as between con-

secutive frames, object features can be matched well and
thus the object can be tracked in the video by chaining these
short subsequences, as shown in Fig.7. Both SIFT keys and



Figure 7. Top row: SIFT key matches within five consecutive frames; Bottom row: corner-patch matches within five consecutive frames.

Figure 8. A sample training sequence for acquiring view-dependent object models. The camera circles around the vehicle as it travels along
a straight highway.

our corner patches can be matched well between consecu-
tive frames, but our approach is faster and more features are
extracted.

However, recent comparison has shown that the repeata-
bility performance of state-of-the-art detectors degrades
slowly with increasing change of viewpoint [11], and no
detector-descriptor combination performs well with view
point changes of more than 25-30 degrees [12]. This in-
spired us to build a collection of view-specific object mod-
els arranged on a view sphere, as described below.

3.1. Collecting Patch Models

Fig.8 shows a sample training sequence used to build
a patch model adaptively and automatically while track-
ing. Fig.9 shows the feature numbers at each time instant
and corresponding ellipse orientations. There are about 15-
40 matched features at each time instant (when the object
size increases in the image, more features are extracted
and matched). In this sequence, the vehicle travels along
a straight highway while the airborne camera circles around
it. The orientation of object bounding ellipse in the image
thus evolves simultaneously with change in viewing angle.

Fig.10 shows the status of each feature, where each col-

Figure 9. Left column: the total number of features at each time
instant; Right column: the ellipse orientation at each time instant.

umn represents life time of one feature and the rows show
when this feature appeared during the tracking. This view
matrix shows that most features do not last long in the se-
quences, i.e. building a single model with viewpoint invari-
ance would be quite difficult, thus it is necessary to track
the object by chaining together object models acquired un-
der different view angles.

3.2. Indexing by Viewing Angle

The viewing angle of a camera can be specified by two
angles, θ and φ, which correspond respectively to the az-



Figure 10. The birth and death process of each feature ID.

Figure 11. View angle computation.

imuth and elevation of the principal viewing ray with re-
spect to a view sphere centered on the object. In our current
application, we use a heuristic to compute azimuth angle of
the view from the orientation of the major axis of the bound-
ing ellipse of a vehicle in the image. This heuristic assumes
a view with large elevation angles (say roughly 70-90 de-
grees) such as those taken by a circling airborne camera.

Assume the vehicle can be bounded with a 3D prolate
(cigar-shaped) ellipsoid, with the long axis aligned with an
object-centered X-axis (Fig.11). A camera with viewing an-
gle (θ, φ) with respect to a viewing sphere centered at the
origin of this ellipsoid has relative rotation

R =

 − sin θ cos θ 0
sinφ cos θ sinφ sin θ − cos φ
− cos φ cos θ − cos φ sin θ − sinφ


Assuming the camera is distant enough from the object

that orthographic projection is relevant, the relationship be-
tween 3D object-centered coordinates X,Y,Z and image co-
ordinates x,y is specified as[

x
y

]
=

[
− sin θ cos θ 0

sinφ cos θ sinφ sin θ − cos φ

]  X
Y
Z


Under this projection model, the major axis of the

ellipsoid, namely X,Y,Z = 1,0,0 maps to a vector
(− sin θ, sinφ cos θ) with respect to the 2D center of mass

of the object in the image. Although this vector contains
both elevation and azimuth angle information, it is not pos-
sible to tease them apart without further information, and
thus not possible to uniquely determine viewing angle from
just the bounding ellipse in the image. However, for large
enough elevation angles, we can approximate sinφ ≈ 1,
such that the orientation of the major axis of the bounding
ellipse in the image is directly related to just the azimuth an-
gle of the camera view. Azimuth angle can thus be approxi-
mately recovered by applying arc tangent to the components
of the major axis of the 2D bounding ellipse of the vehicle
in the image. In our modeling experiments, we cluster ac-
quired models by this recovered angle to form a discrete set
of model clusters indexed by approximate azimuth angle.

Instead of retaining an unsorted bag of patches, we sam-
ple and index the patch models by view angle on the view
sphere (Fig.1). When detecting the object globally in an im-
age to recover from tracker failure, “lookup” of the nearest
model on the sphere is more efficient than exhaustive search
through an unsorted bag of models for one with similar ap-
pearance. Our viewing angle computation is simplified and
based on eccentricity here because we are looking at nearly
textureless objects (cars) in low-resolution video. In close-
range cases with textured objects, more sophisticated view
angle estimates can be computed via SFM [15].

4. Experimental results
An object tracker based on SIFT keys and graph match-

ing has been successfully implemented by Tang and Tao
[17], which takes on average 3fps (P4 3.2GHz, C++). Com-
pared to their SIFT key tracker, our algorithm runs at 15 fps
on average (P4 3.2GHz, Matlab). If the object is larger, it
takes more time to detect and extract the corner patches and
find reliable matches.

Fig.8 demonstrates a scene in which the camera circles
around a moving vehicle. Fig.12 shows another tracking
sequence where the object turns around a corner, yielding
a quick change in object appearance. In addition, rapid
panning motion of the camera occasionally makes the im-
age blurred. For comparison, we also tested two template
matching methods based on Lucas-Kanade template warp-



ing: (1) updating the template adaptively frame by frame
and (2) always matching with the initial selected template.
They both failed during this sequence. Fig.13 shows an
example where the object is static and the camera moves
around it. Both illumination and object appearance change
during the tracking. In all these sequences, the objects are
tracked and modeled well by intensity patches extracted
around detected Harris corners.

After we build the object patch models on the view
sphere, they can be used for detection if the target is lost in
new images. For example, the azimuth angle changes about
90 degrees in the training sequence of Fig.8, and we sample
this view angle space into 20 collections of object patches
and use them for detection in new video sequences. Fig.14
shows some of the detection results using this set of mod-
els, when the object is partly occluded or seen from slightly
different viewpoints. The detection is performed by solv-
ing a bipartite LAP with outlier exclusion and missed inlier
recovery, as described in Section 2.2. Each collection of ob-
ject patches searches for its match over the entire new image
frame, therefore the detection takes more time (0.3 seconds
per patch model on a 480 × 720 image) than the tracking
process, in which only the subimage around the object is
searched. Fig.14 shows examples of using patches learned
from one sequences to detect the same object in another new
sequence by recognizing it in previously seen poses, and
multiple collections of object patches can be matched to the
target in the test image because those patches are similar to
each other. On the other hand, this duplicate detection by
multiple patch models increases the detection accuracy.

5. Conclusion

To persistently track an object by its appearance, the
model must adapt to appearance change and avoid drifting.
Since existing feature detectors and descriptors can not per-
form well under large changes in view angle, we construct
a collection of view-specific appearance models on a view
sphere. The object is represented by a constellation of inten-
sity patches extracted around detected Harris corners. The
patch model is built automatically while tracking the object
by solving a bipartite LAP patch matching using outlier ex-
clusion and missed inlier recovery. The scale and rotation
change of the object is estimated by applying Procrustes
analysis on a spatial graph of patch locations. The exper-
imental results show that the algorithm performs well when
tracking objects, and that the view-specific models acquired
can be used to detect the object again in new frames if the
tracker has lost it. Since no detector and descriptor can out-
perform all others under all image conditions [11], in future
work we will consider combining complementary detectors
and descriptors together to enhance the ability to construct
appearance models while tracking.
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Figure 12. The object turns around a corner, yielding a quick change in object appearance.

Figure 13. Large changes in viewpoint as a camera moves around a static truck.

Figure 14. Detecting the object under occlusions and different view angles using a collection of models learned previously.


