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Abstract

In this paper, we present a probabilistic formulation of

kernel-based tracking methods based upon maximum like-

lihood estimation. To this end, we view the coordinates for

the pixels in both, the target model and its candidate as ran-

dom variables and make use of a generative model so as

to cast the tracking task into a maximum likelihood frame-

work. This, in turn, permits the use of the EM-algorithm to

estimate a set of latent variables that can be used to update

the target-center position. Once the latent variables have

been estimated, we use the Kullback-Leibler divergence so

as to minimise the mutual information between the target

model and candidate distributions in order to develop a

target-center update rule and a kernel bandwidth adjust-

ment scheme. The method is very general in nature. We il-

lustrate the utility of our approach for purposes of tracking

on real-world video sequences using two alternative kernel

functions.

1. Introduction

Object tracking and recognition is a classical problem

in the areas of pattern recognition, computer vision and

robotics. In visual tracking, one of the main challenges is to

achieve robustness to variation in the target model so as to

correlate it with an observation in the scene.

Along these lines, kernel-based methods for computer

vision [3, 5] have recently gained a great deal of attention

and have shown to be a successful approach in the pursuit of

robust tracking [6, 4, 11]. Moreover, kernel-based tracking

has been a popular alternative to particle filter-based tech-

niques due to its efficiency and robustness. Kernel-based

trackers build upon mean-shift optimisation methods which

aim at finding the location of the target in the scene. The

basic idea here is to represent the target by a convolution of

the features with a spatially weighted kernel.
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The mean shift tracker, as introduced in [6], aims at es-

timating the translation shift of a sub-image area. Elgam-

mal et al. [8] have cast the tracking framework in a more

general form so as to model joint feature-spatial distribu-

tions. In this manner, the spatial structural information of

the object can be utilised to improve the performance of the

tracker. Yang, Duraiswami and Davis [14] use a fast Gaus-

sian transform to improve on the computation cost of the

mean shift optimisation procedure.

In a related development, Collins [4] has employed a

scale-governed kernel in addition to the spatial one so as

to recover the scale of the target. In [15] a quadratic den-

sity distance is adopted for tracking objects under affine

transformations. Fan, Wu and Yang [9] build upon [15]

and use multiple kernels to enhance the kernel observability

by imposing additional constraints upon the tracking pro-

cess. They also present a strategy so as to avoid singulari-

ties in the optimisation involved in the kernel tracking task.

Hager et al. [11] employ multiple kernels so as to address

invariance to rotation and scaling. Here, in order to sim-

plify the optimisation procedure, the tracking equation is

linearised and solved by a Newton-style iteration. An akin

approach, which employs color-based distributions to es-

timate not only the position but also also the target shape

using its histogram covariance matrix is proposed in [16].

Here, we present a probabilistic formulation of the track-

ing task which which makes use of a generative model for

the target model and candidate. As in the approaches above,

the target is tracked making use of a local optimum obtained

through an iterative procedure, which, in this case is driven

by a maximum likelihood estimation effected using the EM

algorithm. In contrast with the approach in [16], where

colour distributions are used, here we employ the second

moments of the pixel-coordinates so as to obtain a target

representation which is invariant to affine transformations.

Furthermore, we present a method to estimate the band-

width of the kernel so as to recover the optimum scale of

the target. Thus, our method incorporates the robustness

inherent to probabilistic methods while providing a genera-

tive model that is quite general in nature. It also provides a

means to estimating the scale of the target.
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2. Maximum Likelihood Formulation

The principle of kernel-based tracking is, in general, not

restricted to colour spaces. To provide a probabilistic for-

mulation of the problem, we consider the pixel-coordinates

for the pixel in both, the target model and its candidate as

random variables which give rise to probability distribu-

tions. This treatment permits, in turn, the use of the EM

algorithm to estimate a set of latent variables that can then

be used to update the target-center position. To this end, we

make use of the expectation value to govern the generative

model for the probability distribution for the second mo-

ments of the pixel coordinates. Since the second moments

describe how much the pixel coordinates deviate from the

target center, we can perform a maximum a posteriori prob-

ability estimation on the second-moment set so as to update

the target position.

The section is organised as follows. We commence

by introducing the maximum likelihood formulation upon

which a set of latent variables can be estimated for visual

tracking. We then show how the target-center position can

be updated by minimising the mutual information between

the distributions corresponding to the candidate and model

regions.

2.1. Preliminaries

As mentioned earlier, we aim at developing a probabilis-

tic formulation of the tracking problem. To do this, we com-

mence by viewing the pixel-coordinates for the model and

the candidate regions as random variables in a quantised

feature space. Viewed in this way, these random variables

can be used to obtain probability distributions for purposes

of tracking. These two distributions, corresponding to the

model and the target, are, for the sake of consistency, con-

structed in the same manner. Thus both regions are treated

equally for purposes of developing the likelihood function

for the tracking process.

Let the coordinates X = {xi}i=1...N of the N -pixels

in either the target model or candidate regions be ran-

dom variables. For these random variables, the function

b : Rn → {1, 2, . . . ,M} is a mapping which assigns the

random variables xi to a to a set of M mutually exclusive

intervals {Wj}j=1...M in the quantised n-dimensional fea-

ture space W .

For tracking purposes, we employ a distribution of X
which is defined with respect to the coordinates y of the

center pixel for the tracking region in the current frame. It

is important to note that the independent observations in W
are not recorded, but rather the number Nj of them that

“fall” in Wj together with their coordinates in the image

lattice. That is, individual observations are made in the n-

dimensional feature space W , but only their class intervals

Wj and coordinates are available.

Since our N independent observed random variables are

given by the coordinates of those pixels in W , the first mo-

ment, or average value, of X is y by construction. Sim-

ilarly, the second moments are given by the squared dis-

tances µ2[xi] = 〈xi − y, xi − y〉, where 〈·, ·〉 denotes the

inner product. Note that the second moments of X are also

given by the quantity E[(X − y)2], where E[·] is the ex-

pectation operator. These relations are importnat since they

permit, in the following sections, to cast the tracking task

as that of estimating the updated coordinates of the center

pixel for the tracking region making use of the second mo-

ments of X .

2.2. Kernels and Probabilities

Here, we wish to obtain an improved estimate of the tar-

get position y by making use of distribution of second mo-

ments for the target model and candidate. We do this, by

viewing the expectation of the distribution of second mo-

ments µ2(X ) given a class interval as a predictor of the first

moment bias that governs the probability distribution which

gives rise to the structure of the random variables in X .

Furthermore, the fact that the second moment µ2[xi] can

be formulated as an inner product, permits the construction

of a kernel function K. For purposes of analysis, consider

the class of kernels given by K(xi, y) = P (xi)P (y), where

P (·) is a probability density function. We can extend these

kernels by taking sums over products of weighted probabil-

ity distributions [1]. We get

K(X , y) =
M
∑

j=1

P (X|hj)P (y|hj)P (hj) (1)

where we have used conditional probabilities as an alter-

native to the density functions P (·) and introduced the set

of parameters {hj}j=1,...,M that corresponds to the band-

widths for the class intervals Wj ∈ W .

In this manner, the kernel K(X , y) can be viewed as a

function f(µ2[X ], h) governed by the bandwidth h and the

second moments µ2[X ] of X , which is proportional to a

mixture distribution of the form

P (µ2[X ]) =
M
∑

j=1

πjP (E[(X − y)2]|hj)

=
M
∑

j=1

πjP (µ2[X ]|hj)

(2)

where πj is the mixture weight. Thus, the marginal for the

distribution of second moments with respect to the class in-

terval is

P (µ2[X ])Wj
=

P (E[(X − y)2]|hj)
∑M
j=1 πjP (E[(X − y)2]|hj)

(3)



The equation above can be rewritten, given Equation 1 and

the proportionality between K(X , y) and P (µ2[X ]), as fol-

lows

P (µ2[X ])Wj
=

∑

xi∈Wj
K(xi, y)

∑M
j=1

∑

xi∈Wj
K(xi, y)

(4)

The relevance of the relations above will become evi-

dent in following sections. For now, we are concerned with

a generative model for the probability distribution of µ2(X )
which captures whether or not the moments for the observed

random variables belong to a class interval indexed j. Since

the intervals are mutually exclusive, we can consider the

moment-set structure for the region Wj to arise as the out-

come of a series of Bernoulli trials. Thus, by using the

shorthand φj = P (µ2[X ])Wj
, we can include unobservable

frequencies in the interval Wj using the conditional proba-

bility

P (qj |φj) = φj
qj (1 − φj)

(1−qj) (5)

where {qj}j=1,...,M are latent variables that should be esti-

mated and φj is the probability of success in the Bernoulli

distribution, which is given by the distribution of µ2(X ) in

the class interval Wj .

2.3. Expectation­Maximisation

In this section, we focus on finding the expected values

φj and the unobservable frequencies qj which maximize the

likelihood function appearing in Equation 5. To do this, we

employ the apparatus of the EM algorithm [7].

The idea underpinning the EM algorithm is to recover

maximum likelihood solutions to problems involving miss-

ing or hidden data by iterating between two computational

steps. In the E (or expectation) step we estimate the posteri-

ori probabilities of the hidden data. The M-step in-turn aims

to recover the parameters which maximise the expected

value of the log-likelihood function. It is the available a

posteriori probabilities from the E-step which allows the

weighting of log-likelihood required in the maximisation-

step.

For the likelihood function appearing in Equation 5, the

expected log-likelihood function is defined as

L(φj , pj) = pj ln(φj) + (1 − pj) ln(1 − φj) (6)

Performing algebra and collecting terms, we have

L(φ,pj) = pj ln

(

φj

1 − φj

)

+ ln(1 − φj) (7)

2.3.1 E-Step

In the E-step of the algorithm, we compute the expectation

of the hidden data by making use of a gradient-based anal-

ysis of the log-likelihood function. Thus, we commence

by computing the derivatives of the expected log-likelihood

function with respect to the frequency variables

∂L(φj , pj)

∂pj
= ln

(

φj

1 − φj

)

(8)

Since the associated saddle-point equations are not tractable

in closed form, we use the soft-assign ansatz of Bridle [2] to

update the cluster membership assignment variables. This

is a form of naive mean field theory [10]. According to

mean field theory the latent variables should be updated by

replacing them with their expected values [12]. Rather than

performing the detailed expectation analysis, soft-assign al-

lows the cluster memberships to be approximated by ex-

ponentiating the partial derivatives of the expected log-

likelihood function. The updated frequency variables are

given by

p̂j =

exp

[

∂L(φj ,pj)
∂pj

]

∑M
j=1 exp

[

∂L(φj ,pj)
∂pj

] =

φj

1−φj

∑M
j=1

φj

1−φj

(9)

2.3.2 M-Step

With the updated frequency variables at hand, the update

of the random variable φj is a straightforward task. To

maximise the log-likelihood, we calculate the derivatives of

L(φ, p) with respect to φj and equate the result to zero, i.e.

we solve
∂L(φj , pj)

∂φj
= 0 (10)

It is somewhat surprising that, after some algebra and

collection of terms, we find that the log-likelihood is max-

imised when φ̂j = p̂j . Recall that φj = P (µ2[X ])Wj
.

Hence, the maximum likelihood estimate for the probabil-

ity of the moments in the class interval Wj is given by its

frequency variable.

2.4. Minimising Mutual Information

Thus far, we have focus on the probability distributions

and likelihoods for the target model and candidate rather

than their mutual relationship. For tracking, we are inter-

ested in updating the coordinates yM of the model center

pixel given the random variables corresponding to the can-

didate. In this section, we show how this can be effected by

making use of an information theoretic criterion.
Let the two sets of random variables for the model and

the candidate be given by XM and XD, respectively. Simi-
larly, the second moments for the two sets of random vari-
ables are denoted µ2[XM ] and µ2[XD]. It is straightforward
to show that, if the two sets of random variables XM and
XD are equivalent, then the Kullback-Leibler divergence
between the distributions of their second moments over the



feature space W is equal to zero. Further, since the intervals
Wj ∈ W are mutually exclusive, we can write

KL
�
P (µ2[XM ])||P (µ2[XD])]

�
=X

Wj∈W

P (µ2[XM ]Wj
) ln

�
P (µ2(XM )Wj

)

P (µ2(XD)Wj
)

�
(11)

The advantages of this formulation are twofold. Firstly, we

can exploit the fact that, for our generative model in the pre-

vious section, the maximum likelihood estimate for the ex-

pectation of the second moments of XM and XD is given by

their corresponding frequency variables. Secondly, it per-

mits the use of the physical interpretation of the moments

to update the coordinates y by recovering the shift in y that

minimises the divergence in Equation 11. Note that, so far,

we have worked with the second moments of the observed

random variables instead of the variables themselves. As a

result, we have not, so far, included the coordinates y im-

plicitly, but rather used them to recover “distances” that we

can employ for purposes of inference. As a result, we can

update the target center coordinates by using the rule

ŷ = y + y∗ (12)

where y∗ is the deviation from y that minimises the

Kullback-Leibler divergence between the model and the

candidate moment distributions.

To minimise the divergence in Equation 11, we note that

the updated variables φ̂j are the maximum likelihood esti-

mates of the expectation values in Equation 5. Moreover,

from Equation 4, we can write

φ̂j =

∑

xi∈Wj
K(xi, ŷ)

∑

xk∈W
K(xi, ŷ)

=

∑

xi∈Wj
f(µ̂2[xi], h)

∑

xk∈W
f(µ̂2[xi], h)

(13)

where we have written µ̂2[xi] to imply that the second mo-

ments above correspond to updated variables of the form

µ̂2[xi] = 〈xi − ŷ, xi − ŷ〉

= 〈(xi − y) − y∗, (xi − y) − y∗〉 (14)

and used the shorthand f(µ̂2[xi], h) = K(xi, ŷ) to stress

that the kernel is here a function of the second moments

and the bandwidth h. Note that this notation is consistent

with that used in section 2.2. By substituting Equations 13

and 14 into Equation 11, we get

KL
(

P (µ2[XM ])||P (µ2[XD])]
)

=
1

∑

xk∈W
f(µ̂2[xk], h)

∑

Wj∈W

{

∑

xi∈Wj

f(µ̂2[xi], h) ln

(

ϕi

ψi

)}

(15)

where ϕi is the estimated frequency variable pj for the sec-

ond moments in the target model random variables XM cor-

responding to the interval Wj . The value of ϕi is, in turn,

the estimated frequency variable for the second moments of

the candidate given the class interval Wj .

Finally, we can recover the minimum of the equation

above with respect to y∗ by differentiating and equating to

zero. By manipulating terms, this yields

γ
∑

xi∈XM

βi
∂f(µ̂2[xi], h)

∂µ̂2[xi]

dµ̂2[xi]

dy∗
= 0 (16)

where γ is a proportionality constant given by
1P

xk∈W
f(µ̂2[xi],h)

and βi = ln
(

ϕi

ψi

)

. By using Equa-

tion 14 to compute the differential of the second moment

with respect to y∗ and some algebra, we get

y∗ =

∑

xi∈XM
(xi − y)∂f(µ̂2[xi],h)

∂µ̂2[xi]
βi

∑

xi∈XM

∂f(µ̂2[xi],h)
∂µ̂2[xi]

βi
(17)

and, hence, the updated target center coordinates become

ŷ = y +

∑

xi∈XM
(xi − y)∂f(µ̂2[xi],h)

∂µ̂2[xi]
βi

∑

xi∈XM

∂f(µ̂2[xi],h)
∂µ̂2[xi]

βi
(18)

Note that the negative derivative of f(·) in the above

equations is defined as the shadow of the kernel f(·) in ker-

nel methods [3].

3. Updating the Bandwidth

The formulation above has the advantage of allowing the
recovery of the optimum bandwidth for the updated param-
eters. This is due to the problem formulation in section 2.4,
where we recovered the updated target center-coordinates
making use of the Kullback-Liebler divergence. Hence, to
update the bandwidth, we take, hence, an approach similar
to that in the previous section and minimise

KL
�
P (µ2[XD])||P (µ2[XM ])

�
=X

Wj∈W

P (µ2[XD]Wj
) ln

�
P (µ2(XD)Wj

)

P (µ2(XM )Wj
)

�
(19)

We note that, up to this point, the bandwidth has been
considered as a variable that applies equally to all the class
intervals in W . Furthermore, in in previous sections, it
has played the role of a parameter in the kernel function
K(X , y). As a result, and without any loss of generality,

we can express the updated bandwidth as ĥ and aim at min-
imising

KL
�
P (µ2[XD])||P (µ2[XM ])

�
=

ϑ
X

xi∈XD

f(µ2[xi], ĥ) ln

�
ψi

ϕi

�
(20)

where ϑ is a normalisation constant.

The equation above is reminiscent of Equation 15. More-

over, we constraint the updated bandwidth h∗ to lie in the



interval [c, d], where c and d are real-valued, positive con-

stants such that 0 < c < d. Thus, by removing the constant

ϑ from further consideration, we can pose the problem of re-

covering ĥ as that of finding the minimum over a weighted

linear combination of kernel values. This is

ĥ =

{

h∗
∣

∣

∣

∣

min
h∗∈[c,d]

{
∑

xi∈XD

f(µ2[xi], h
∗)ηi}

}

(21)

where, as in Equation 16, ηi is a weight given by ln
(

ψi

ϕi

)

.

4. Implementation Issues

Having presented the theoretical foundations for our

method in the previous sections, we now focus in the use

of two kernel functions for purposes of tracking. These two

alternatives are the Epanechnikov kernel [5] and the diffu-

sion kernel [3]. The tracking algorithm hence works as fol-

lows. Starting from an initial position, which is obtained

by the tracking results at the previous frame, the algorithm

iterates using Equation 18 to find the position of the target

in the frame under consideration. This can be viewed as a

local optimum for the Kullback-Leibler divergence which

can then be used for purposes of finding the optimal scale

solving Equation 21.

Following our developments in section 2, we commence

by noting that, for both of the alternatives, the new target

center position is governed by the quantity βi This quantity

can be seen as a weight defined in terms of the marginal

probability of the feature indexed u in the target model.

Considering the function b : Rn → {1, 2, . . . ,M}, which

allocates the M bin indexes for each pixel in the target

model and candidate. We can view the marginal probabil-

ities as two sets of variables indexed to the feature space

bins. Thus, can express the marginal probability for the

model as follows

rj = Cr
∑

xi∈XM

K(xi, y)δ[b(xi) − j] (22)

where δ is the Kronecker delta function, K(·) is the kernel

function and Cr is a normalisation constant defined as fol-

lows

Cr =
1

∑

xi∈XM
K(xi, y)

(23)

After successfully calculating the variables rj for the tar-

get model, the marginal probabilities for the target candi-

date are computed as follows

sj = Cs
∑

xi∈XD

K(xi, y)δ[b(xi) − j] (24)

where, again, y is the center pixel of the current tracking

region and Cs is a normalisation constant given by

ss =
1

∑

xi∈XD
K(xi, y)

(25)

Given the two sets of variables pj and qj , it is a straight-

forward task to compute the weights βi and ηi as follows

βi =
M
∑

u=1

ln

( ru

1−ru

∑M
j=1

sj

1−sj

su

1−su

∑M
j=1

rj

1−rj

)

δ[b(xi ∈ XM) − u] (26)

ηi =
M
∑

u=1

ln

( su

1−su

∑M
j=1

rj

1−rj

ru

1−ru

∑M
j=1

sj

1−sj

)

δ[b(xi ∈ XD) − u] (27)

With the equations above at hand, we can proceed to ob-

tain the update rules for the target position and the band-

width for the two alternative kernel functions under study.

4.1. Epanechnikov Kernel

The first of our two alternative functions is the Epanech-

nikov kernel introduced by Comaniciu and Meer [5] for

purposes of mean-shift tracking. In [5], the profile kernel

K(X , y) for each pixel {xi}i=1...n is defined as a function

of the form

K(xi, y) =

{

1 − g(xi, y)
2 if ‖g(xi, y)‖ < 1

0 otherwise
(28)

where g(xi, y) is a monotonic function which, for tracking

purposes is defined with respect to the center pixel y of the

tracking region in the current frame. Thus, for rectangular

tracking regions centered at y of width w and height z the

square of g(·) is typically given by

g(xi, y)
2 =

4‖y − xi‖
2

w2 + z2
(29)

where h2 = w2 + z2 is the bandwidth parameter as before.

As a result, the function f(µ2[X ], h) is given by

f(µ2[xi], h) =

{

1 − 4µ2[xi]
h2 if ‖ 4µ2[xi]

h2 ‖ < 1

0 otherwise
(30)

For the function above, the derivatives with respect to the

second moments µ̂2[xi] are

∂f(µ̂2[xi], h)

∂µ̂2[xi]
=

{

− 4
h2 if ‖ 4µ̂2[xi]

h2 ‖ < 1

0 otherwise
(31)

Hence, making use of Equations 18 and after some algebra,

the update rule for the target center becomes

ŷ = y +

∑

xi∈XM
(xi − y)βi

∑

xi∈XM
βi

(32)

We now turn our attention to the update of the bandwidth

h. To this end, we recover the updated bandwidth ĥ such

that

ĥ =

{

h∗
∣

∣

∣

∣

min
h∗∈[c,d]

{
∑

xi∈XD

(

1 − 4
µ2[xi]

(h∗)2

)

ηi}

}

(33)

subject to Gibbs inequality, i.e. KL(·||·) ≥ 0.



4.2. Diffusion Kernel

Having presented the update rules for the Epanechnikov

kernel, we now focus in the analogue equations for the dif-

fusion kernel in [3]. This profile kernel is defined as a func-

tion of the form

K(xi, y) =

{

λ exp(−g(xi, y)
2) if ‖g(xi, y)‖ < 1

0 otherwise
(34)

where λ = 1
2πh2 and g(xi, y) is a function of the target

center pixel y and the pixel coordinates xi. The function

g(·) is typically given by

g(xi, y)
2 =

‖y − xi‖
2

2h2
(35)

where h is the bandwidth parameter. Thus, the function

f(µ2[X ], h) is

f(µ2[xi], h) =







1
2πh2 exp

(

− µ2[xi]
2h2

)

if ‖µ2[xi]
2h2 ‖ < 1

0 otherwise

(36)

Similarly, the partial derivative of f(µ̂2[xi], h) with re-

spect to µ̂2[xi] becomes

∂f(µ2[xi], h)

∂µ̂2[xi]
=







− 1
4πh4 exp

(

− µ̂2[xi]
2h2

)

if ‖ µ̂2[xi]
2h2 ‖ < 1

0 otherwise

(37)

In contrast with Equation 31, the expression above de-

pends on the moments µ̂2[xi] = ||xi − ŷ||2, which are gov-

erned by our aim of computation, i.e. the variable ŷ. Fur-

thermore, due to the exponential term involved, the evalu-

ation of the associated update rule becomes non-tractable

in closed form. Rather than making a detailed analysis, we

note that, if the shift in the target center coordinates is small,

we can consider the moments µ̂2[xi] = ||xi− ŷ||2 to be ap-

proximately equal to µ2[xi] = ||xi − y||2. By substituting

Equation 37 into Equation 18 and using µ2[xi] as an alter-

native to µ̂2[xi], we get

ŷ = y +

∑

xi∈XM
(xi − y) exp

(

− µ2[xi]
2h2

)

βi

∑

xi∈XM
exp

(

− µ2[xi]
2h2

)

βi

(38)

For the update of the bandwidth, we solve numerically

Equation 21. Thus, we recover the updated bandwidth such

that

ĥ =

{

h∗
∣

∣

∣

∣

min
h∗∈[c,d]

{
∑

xi∈XD

ηi

2π(h∗)2
exp

(

−
µ2[xi]

2(h∗)2

)

}

}

(39)

in the interval [c, d] = [h − τh, h + τh], where τ is a con-

stant.

5. Experiments

In order to characterize a target, one or more feature

spaces must be determined such that a non-parametric

power density function can be estimated. The ideal choice

of feature space will be the one that is distinctive of the tar-

get with respect to the surrounding background while being

robust to noise and image corruption. The most common

feature space is the RGB colour. However, there are other

alternatives such as brightness or contrast. Following Co-

maniciu et at [5], we have used the RGB colour intensity

as the feature upon which the tracker should operate upon

and constructed a 16×16×16-bin colour histogram. Fur-

ther, this histogram is, in fact, a three-dimensional cube in

which every dimension corresponds to a colour channel, i.e.

Red, Green and Blue.

Thus, in our experiments, the first instance of the target

is selected as a rectangular region by the user at the initial

frame of the image sequence under study. For each pixel in

this region, the colour intensities of each channel are subject

to a 16-level quantisation process. The quantised intensi-

ties act as indices to allocate each of the pixels in the target

image region to a bin in the histogram. The further away

the pixel from the center point of the target, the smaller the

weight. To ensure the histogram is a power density function

representing the target, a normalisation step is applied at the

end of the process. In the case of the diffusion kernel, we

have set set τ to 0.2 for all the video sequences under study.

For purposes of illustrating the utility of our tracking

method, we have used three image sequences. These are

a sequence which depicts a racing car that looses control in

a curve, a video of a user taken using a webcam and a ta-

ble tennis clip. We have compared our results to those yield

by other three competing algorithms elsewhere in the liter-

ature. The first of the alternatives is the tracker introduced

in [16]1, which shares with our approach the capability of

estimating both, target position and scale. The other two

alternatives are the particle filter-based tracker described in

[13] and the mean shift tracker in [6]. For the particle fil-

ter, the state space is given by the target position and scale.

Following [13], we have adopted the HSV colour histogram

with 110 bins. In all the experiments, we have set the num-

ber of particles to 600 and chose the standard deviation of

the Gaussian noise to the value which provides the best re-

sults for each sequence.

In Figure 1 we present example results for the frame 25

(left-hand column) and 56 (right-hand column) of the racing

car sequence. In the top-most row, we show the results yield

by our approach when the diffusion kernel is used. The re-

sults obtained using the Epanechnikov kernel are shown in

the second row. The third, fourth and fifth row show the

1For our experiments, we have used the code available at the au-

thor’s website. The code can be downloaded from http://staff.science.

uva.nl/∼zivkovic/.



results for the EM-like shift [16], mean-shift [6] and a Par-

ticle filter [13], respectively. From the two top rows, it is

clear that both of our trackers (with the Epanechnikov ker-

nel and diffusion kernel) are able to track the car success-

fully. More importantly, both of them get a more accurate

estimate of the target’s scale. Although it can successfully

track the target’s center, the EM-like shift tracker [16] has

difficulties to recover the scale when the target undergoes

large scale variation. For the particle filter, we set the stan-

dard deviation for the Gaussian noise to a small value, i.e.

0.005 pixels. Nonetheless, the particle filter over estimates

the scale of the car in the last several frames.

In Figure 2, we present example results for a webcam

video. Here, we track the face of the subject in an office

environment. For this sequence, the standard deviation for

the Gaussian noise in the particle filter has been set to 0.01
pixels. Again, from the results yield by our trackers (two

top-most rows), we can conclude that our method can es-

timate scale changes. The EM-like shift (third row) fails

to recover the scale correctly for frame indexed 229 in the

sequence. The standard mean shift and the particle filter

produce reasonably good results (shown in the two bottom-

most rows). This is due to the fact that, for this sequence,

the scale of the face does not change significantly.

Finally, in Figure 3, we show the results for frames in-

dexed 5 and 85 of the table tennis clip. In the figure, we

repeat the presentation layout in Figures 1 and 2. From the

panels, we can conclude that our approach for the two ker-

nels under study, i.e. the diffusion and the Epanechnikov

kernels, and the particle filter, with a standard deviation

of 1.5 pixels, perform much better than the EM-like shift

and the mean shift trackers. Moreover, the mean shift com-

pletely loses the target at frame 85.

6. Conlusions

In this paper, we have presented a new probabilistic in-

terpretation for kernel-based object tracking. By viewing

the coordinates for the pixels as random variables, the track-

ing task can be cast into a maximum likelihood framework.

This treatment naturally lends itself to the recovery of the

scale of the target in the scene. It is worth noting that the

approach is quite general and can employ a variety of ker-

nel functions. Here, we have shown how to use the diffusion

and the Epanechnikov kernels, to robustly track the objects

as well as adapt to changes in scale of the object.
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