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Abstract

This paper deals with region-of-interest (ROI) tracking
in video sequences. The goal is to determine in successive
frames the region which best matches, in terms of a simi-
larity measure, an ROI defined in a reference frame. Two
aspects of a similarity measure between a reference region
and a candidate region can be distinguished: radiometry
which checks if the regions have similar colors and geome-
try which checks if these colors appear at the same location
in the regions. Measures based solely on radiometry include
distances between probability density functions (PDF) of
color. The absence of geometric constraint increases the
number of potential matches. A soft geometric constraint
can be added to a PDF-based measure by enriching the
color information with location, thus increasing the dimen-
sion of the domain of definition of the PDFs. However,
high-dimensional PDF estimation is not trivial. Instead,
we propose to compute the Kullback-Leibler distance be-
tween high-dimensional PDFs without explicitly estimating
the PDFs. The distance is expressed directly from the sam-
ples using the k-th nearest neighbor framework. Tracking
experiments were performed on several standard sequences.

1. Introduction

The goal of region-of-interest (ROI) tracking is to deter-
mine in successive frames the region which best matches,
in terms of a similarity measure, an ROI (user-)defined in a
reference frame.

Two aspects of a similarity measure between a refer-
ence region and a target region can be distinguished: ra-
diometry which checks if the regions have similar colors
and geometry which checks if these colors appear at the
same location in the regions. Similarity measures based
solely on radiometry include distances between color his-
tograms or probability density functions (PDF). For exam-
ple, the Bhattacharya distance was used for tracking [6, 13]

and mutual information [17] was used for registration. The
Kullback-Leibler divergence (or, informally, distance) and
the Hellinger distance have also been considered in various
applications [7]. However, the absence of geometric con-
straint implies that several candidate regions can appear as
good matches.

As an alternative, geometry can be added by means of
a motion model used to compute a pointwise residual be-
tween reference and candidate regions. A function of the
residual can serve as a similarity measure, classically, the
sum of squared differences (SSD) or functions used in ro-
bust estimation [10] such as the sum of absolute differences
(SAD). The geometric constraint being strictly defined by
the motion model, these measures might be less efficient if
the model is not coherent with the actual motion. Indeed, it
might generate too many outliers in the residual, including
in the framework of robust estimation. Moreover, even if
the model is globally coherent with the actual motion, the
choice of the function of the residual is implicitly linked to
an assumption on the PDF of the residual, e.g., Gaussian for
SSD or Laplacian for SAD. This might not be valid in case
of occlusion for example.

The geometric constraint can be soften, e.g., by cas-
cading a strict geometry approach and a radiometric ap-
proach [16] or by adding geometry to a PDF-based ap-
proach, i.e., by defining a joint radiometric/geometric
PDF [7]. This later approach leads to high-dimensional
PDFs. Although there are efficient [14] and fast [19] meth-
ods to estimate multivariate PDFs using Parzen windowing,
limitations appear when the dimension of the domain of def-
inition of the PDFs increases. This is described in [14] as
the curse of dimensionality: as the dimension of the data
space increases, the space sampling gets sparser. Dilat-
ing the Parzen window is not a satisfying solution since it
implies over-smoothing of the PDFs. Consequently, PDF-
based similarity measures might not be estimated accurately
enough for tracking. To overcome this difficulty, a PDF es-
timator based on a k-th nearest neighbor (kNN) search was
proposed [8]. This approach was then used to define a con-
sistent entropy estimator [3, 9, 11].
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In this paper, we propose to compute the Kullback-
Leibler distance between high-dimensional PDFs using the
kNN framework. In this context, explicit estimation of the
PDFs will not be necessary since the distance is expressed
directly from the samples. This estimator being well-
adapted to high-dimension, it can be applied to extended
radiometric/geometric data. Section 2 provides some no-
tations and general comments. Then, Section 3 reminds
the Ahmad-Lin entropy estimation, the Parzen windowing
method, and the limitations when combining both. Sec-
tion 4 presents the kNN approach and the kNN-based ex-
pression of the Kullback-Leibler distance proposed for ROI
tracking. Finally, Sections 5 and 6 provide some results
and comments of tracking performed on several standard
sequences.

2. Similarity measures for tracking

2.1. Generalities

Let Iref and Itgt be, respectively, the reference frame
in which the ROI is (user-)defined and the target frame in
which the region which best matches the ROI, in terms of a
given similarity measure, is to be searched for. This search
amounts to finding the geometric transformation ϕ̂ such that

ϕ̂ = arg min
ϕ
D(Iref(Ω), Itgt(ϕ(Ω))) (1)

where D is a similarity measure, or distance, between two
sets of data and Ω is the domain of the ROI. Domain Ω is a
subset of R2 (or a subset of N2 in the discrete framework).

For clarity, the reference data set Iref(Ω) will be denoted
by R and the target data set Itgt(ϕ(Ω)) will be denoted by
T , the geometric transformation being made implicit. Thus,
R(x) and T (x), x ∈ Ω, represent corresponding samples
from their respective region. Traditionally, R(x) is a triplet
of color components in a given color space, e.g., RGB or
YUV.

As noted earlier, two aspects of similarity measures can
be distinguished: radiometry which checks if the regions
have similar colors and geometry which checks if these
colors appear at the same location in the regions. Sec-
tions 2.2, 2.3, and 2.4 focus on how geometry is involved.

2.2. Geometry-free similarity measures

The similarity measure can be based solely on radiom-
etry. Classically, D can be a distance between color his-
tograms or, similarly, PDFs. The knowledge of where a
given color was present within the region is lost. For exam-
ple, the Bhattacharya distance was used for tracking [6, 13]

DBHA(T,R) =
∫

Rd

√
fR(s) fT (s) ds (2)

where fG is the PDF of G(x), x ∈ Ω, and d is the number
of components of R(x), i.e., three if all color components
are used.

Another widely used similarity measure is the Kullback-
Leibler distance

DKL(T,R) =
∫

Rd

fT (s) log
fT (s)
fR(s)

ds. (3)

Note that this “distance” is not symmetric, i.e., DKL(T,R)
is not equal toDKL(T,R). Distance (3) can be decomposed
as follows

DKL(T,R) =
∫

Rd

fT (s) log fT (s) ds

−
∫

Rd

fT (s) log fR(s) ds (4)

= −H(T ) +H×(T,R) (5)

where H is the differential entropy and H× is the cross en-
tropy, also called relative entropy or likelihood.

Not accounting for the knowledge of where a given color
was present in the region allows to be more flexible regard-
ing the geometric transformation between the reference re-
gion and the target region. However, it increases the num-
ber of potential matches and then the risk for the tracking
to fail after a few frames. This can be avoided by using a
geometry-aware similarity measure.

2.3. Similarity measures with strict geometry

Geometry can be added by using transformation ϕ,
which represents a motion model, to compute the pointwise
residual between the reference region and the target region.
A function of the residual can serve as a similarity measure,
classically in the discrete framework, SSD

DSSD(T,R) =
∑
x∈Ω

(T (x)−R(x))2 (6)

or functions used in robust estimation such as SAD or a
differentiable approximation of SAD

DSAD(T,R) =
∑
x∈Ω

φ(T (x)−R(x)) (7)

where φ is a smooth approximation of the absolute value
function, e.g., φ(x) =

√
x2 + ε2 − ε [18].

The geometric constraint being strictly defined, these
similarity measures might be less efficient if the motion
model ϕ is not coherent with the actual motion.

2.4. Similarity measures with soft geometry

The geometric constraint can be soften by expressing it
in the PDF-based framework presented in Section 2.2, i.e.,



by adding geometry to the original radiometric data [7].
Formally, the PDF fU of U(x), x ∈ Ω, is replaced with the
PDF gU,x of {U(x), x}, x ∈ Ω. However, as a consequence,
the samples get sparser in this extended, high-dimensional
space, making the PDF estimation, and therefore the sim-
ilarity measure estimation, more problematic. A solution
consisting in short-cutting the PDF estimation in the Kull-
backLeibler distance estimation (see Eq. (4)) is proposed
in Section 4. Let us first study entropy estimation since en-
tropy appears in the expression of this distance (see Eq. (5)).

3. Ahmad-Lin entropy estimator
3.1. Expression

The differential entropy of U (see Eq. (5)) can be ap-
proximated by the Ahmad-Lin estimator [1]

ĤAL(U) = − 1
|Ω|

∑
s∈U(Ω)

log fU (s) (8)

where |Ω| is the number of samples of Ω and U(Ω) is the
set of U(x), x ∈ Ω. Since the actual PDF fU is unknown, it
must be estimated. A common practice is to use the Parzen
windowing method.

3.2. Parzen windowing method and limitations

The Parzen method for PDF estimation makes no as-
sumption about the actual PDF. Consequently, the estimated
PDF cannot be described in terms of a small set of parame-
ters, as opposed to, e.g., a Gaussian distribution defined by
its mean and variance. This method is therefore qualified
as non-parametric. It approximates the density at sample s
with the relative number of samples k(s)/|Ω| falling into
the open ball of volume v centered on s

f̂U (s) =
k(s)
v |Ω|

. (9)

For a Gaussian window, expression (9) can be rewritten as
follows

f̂U (s) =
1
|Ω|

∑
t∈U(Ω)

Kσ(s− t) (10)

where Kσ is a multivariate Gaussian kernel with standard
deviation, or bandwidth, σ.

The choice of bandwidth σ is critical [14]. The following
value has been suggested [15]

σ = 0.9 min(σ̂, p̂/1.34) |Ω|−1/5 (11)

where σ̂ is the empirical standard deviation of the samples
and p̂ is the interquartile range. Unfortunately, this kind
of estimation (called plug-in because the standard devia-
tion and interquartile range of the samples are plugged in

the bandwidth estimator) provides a value too large when
the underlying PDF has several modes. More generally,
the Parzen method suffers from what is informally called
the curse of dimensionality. As the dimension of the data
space increases, the space sampling gets sparser. There-
fore, less samples fall into the Parzen windows centered on
each sample, making the PDF estimation less reliable. Di-
lating the Parzen window does not solve this problem since
it leads to over-smoothing the PDF. In a way, the limitations
of the Parzen method come from the fixed window size: the
method cannot adapt to the local sample density. The k-
th nearest neighbor (kNN) framework provides an advanta-
geous alternative.

4. The k-th nearest neighbor (kNN) framework
The kNN framework allows to estimate the entropy

of a PDF directly from the samples, i.e., without ex-
plicitly estimating the PDF. Nevertheless, this entropy
estimator derives from the kNN-based PDF estimation
method [8], p. 268. For a better understanding of the
construction of the entropy estimator, the key results of
the kNN-based PDF estimation are presented first in Sec-
tion 4.1.

4.1. PDF estimation

In the Parzen method, the density of U at sample s is
related to the number of samples falling into a window of
fixed size centered on the sample (see Eq. (9)). The kNN
method is the dual approach: the density is related to the
size of the window necessary to include the k nearest neigh-
bors of the sample

f̂U (s) =
k

v(s) |Ω|
(12)

where v(s) is the volume of the open ball centered on sam-
ple s with a radius of ρk(s) equal to the distance to the k-th
nearest neighbor of s excluding s itself. Let us remind that
the samples belong to Rd. Therefore, the volume v(s) can
be written as follows

v(s) = ρd
k(s)

2πd/2

d Γ(d/2)︸ ︷︷ ︸
vd

(13)

where Γ is the Gamma function and vd is the volume of the
unit ball in Rd. Then, the kNN density estimate is equal to

f̂U (s) =
k

ρd
k(s) vd |Ω|

. (14)

The choice of k appears to be much less critical than the
choice of σ in the Parzen method. Actually, when the kNN



approach is used for parameter estimation [3] (see Sec-
tion 4.4), k must be greater than the number of parameters
and such that k/|Ω| tends toward zero when |Ω| tends to-
ward infinity. A typical choice is k =

√
|Ω|.

4.2. Entropy estimation

Let Ũ(x) denote the joint radiometric/geometric sample
{U(x), x}, x ∈ Ω. The number of samples |Ω| will be
temporarily denoted by NU . The notation ρk(s) will be re-
placed with ρk(Ṽ , s) to be able to indicate the data set in
which neighbors of s are to be search for.

Based on the Ahmad-Lin entropy estimator (8) and the
kNN-based PDF estimation (14), a consistent and unbiased
entropy estimator was proposed for k = 1 [11]. This work
was extended to k > 1 with a proof of consistency under
weak conditions on the underlying PDF [9]

Ĥ(T̃ ) kNN=
1
NT̃

∑
s∈T̃

log ξk(T̃ , s) (15)

where NT̃ is the number of samples of data set T̃ and

ξk(T̃ , s) = (NT̃ − 1) exp−ψ(k) vd ρ
d
k(T̃ , s) (16)

where ψ is the Polygamma function Γ′/Γ. Note that esti-
mator (15) does not depend on the PDF f̂T̃ . Replacing ξk
in (15) by its expression (16), the kNN-based estimate of
entropy is equal to

Ĥ(T̃ ) kNN= log(vd (NT̃−1))− ψ(k) + d µT̃ (log ρk(T̃ )) (17)

where µT̃ (g) is the mean of g for all the values taken over
data set T̃

µT̃ (g) =
1
NT̃

∑
s∈T̃

g(s). (18)

Informally, the main term in estimate (17) is equal to the
mean of the log-distances to the k-th nearest neighbor of
each sample.

4.3. Cross entropy estimation

In the same framework, the cross entropy of two data sets
R̃ and T̃ can be approximated by [11]

Ĥ×(T̃ , R̃) kNN=
1
NT̃

∑
s∈T̃

log ξk(R̃, s) (19)

= log(vdNR̃)− ψ(k) + d µT̃ (log ρk(R̃)). (20)

Note again that estimator (20) does not depend on any PDF
and that its main term is the mean of the log-distances to
the k-th nearest neighbor among data set R̃ of each sample
of T̃ . Since a sample s of T̃ does not belong to data set R̃,
the search for the k-th nearest neighbor excluding s itself
does not in fact exclude any sample of R̃. This is why NR̃

appears in (20) whereas NT̃ − 1 appears in (17). Note that
NR̃ = NT̃ = |Ω| .

4.4. Kullback-Leibler distance and minimization

Minimization without derivative. Since the Kullback-
Leibler distance is a difference between a cross entropy and
a differential entropy (see Eq. (5)), the kNN estimate of this
distance is equal to

DKL(T̃ , R̃) kNN= log
NR̃

NT̃ − 1
+ d µT̃ (log ρk(R̃))

−d µT̃ (log ρk(T̃ )). (21)

It has been proven that this estimator is consistent and
asymptotically unbiased [12].

Let us remind that R̃ and T̃ are data sets {Iref(x), x},
x ∈ Ω, and {Itgt(ϕ(x)), x}, x ∈ Ω, respectively, where
ϕ is a geometric transformation representing the motion of
the ROI between the reference frame and the target frame.
Therefore, tracking can be performed by minimizing the
Kullback-Leibler distance with respect to ϕ, or a set of pa-
rameters defining ϕ. Estimation (21) being defined in the
kNN framework, it is not differentiable as is. Its minimiza-
tion could be performed by an exhaustive search procedure
in (a subset of) the space of parameters of ϕ. For computa-
tional considerations, it will be performed using a subopti-
mal search procedure known as the diamond search [20].

Derivative and steepest descent. Alternatively, one
could think of using the Parzen formulation to determine
the derivative of the Kullback-Leibler distance and then
evaluating the derivative using the kNN framework. This
can be done for distance (5). However, the derivative of
DKL(R̃, T̃ ) is presented here instead (i.e., with permuted
arguments) because it involves the entropy of the reference
(which is constant) in place of the entropy of the target.
The expression is therefore simpler yet perfectly adapted
to demonstrate the validity of the above claim. The devel-
opment for (5) is similar.

Replacing the Ahmad-Lin approximation (8) in
DKL(R̃, T̃ ), one get

DKL(R̃, T̃ ) =
1
NR̃

∑
x∈Ω

(
log fR̃(R̃(x))− log fT̃ (R̃(x))

)
(22)

where fŨ (s) = 1
NŨ

∑
y∈ΩKσ(s−Ũ(y)) . Let ϕ be a trans-

formation such that ϕ(x) = x + M(x)p where M(x) is a
2×m-matrix and p is the m-vector of the motion parameters
(for example, m = 6 for an affine motion). The derivative



of distance (22) with respect to p is equal to

D′
KL(R̃, T̃ ) = − α

NT̃

∑
x∈Ω

∑
y∈Ω

M(y)TDItgt(ϕ(y))

(Iref(x)− Itgt(ϕ(y)))
Kσ(R̃(x)− T̃ (y))

fT̃ (R̃(x))

= α
∑
x∈Ω

[µR̃(x)(M
TDItgt(ϕ)Itgt(ϕ))

−µR̃(x)(M
TDItgt(ϕ))Iref(x)] (23)

where α is equal to (NR̃σ
2)−1, M(y)T is the transpose of

M(y), DI is the 2×3-matrix (∇IY ∇IU ∇IV ) if I is a
color image described in the YUV-space, and µR̃(x)(f) is a
weighted mean of f(s) for the samples s of T̃ which belong
to the neighborhood of R̃(x)

µR̃(x)(f) =

∑
y∈Ω f(y) Kσ(R̃(x)− T̃ (y))∑

y∈ΩKσ(R̃(x)− T̃ (y))
. (24)

The derivative (23) can be interpreted as a cross-mean-shift,
i.e., the distance between (i) the mean intensity of Itgt(ϕ)
of the samples of T̃ in a window centered at the intensity
Iref(x) of R̃(x) and (ii) the intensity Iref(x) at this cen-
ter. This interpretation should be considered up to a weight-
ing by MTDItgt. The mean (24), and therefore the deriva-
tive (23), can be computed using the kNN framework, i.e.,
replacing the Kσ-weighted mean with a mean based on the
k nearest neighbors of R̃(x) among the samples of T̃

D′
KL(R̃, T̃ ) kNN=

α

k

∑
x∈Ω

[ ∑
y∈kNN(x)

M(y)TDItgt(ϕ(y))Itgt(ϕ(y))

−

 ∑
y∈kNN(x)

M(y)TDItgt(ϕ(y))

 Iref(x)
]
(25)

where kNN(x) = {y, |T̃ (y)−R̃(x)| < ρk(T̃ , R̃(x))}. As a
consequence, the Kullback-Leibler distance (22) estimated
in the kNN framework can be minimized with a steepest
descent approach using the derivative (25) also computed
in the kNN framework.

5. Experimental results
The proposed kNN-based method (referred to as kNN-

KL-G where KL stands for Kullback-Leibler and G stands
for geometry) was compared with three trackers: a
geometry-free version of the proposed method (kNN-KL),
SAD (see Eq. 7), and Mean-shift [6, 8]. For the latter, we
used the Mean-shift tracker publicly available at [5].

The ROI domain Ω was a rectangular region (see
Figs. 2, 3, and 4 for dimensions). The unknown transforma-
tionϕwas restricted to a translation: two parameters needed

Figure 1. Distance between the reference ROI of sequence “Foot-
ball” and candidate regions in frame 20 as a function of horizon-
tal and vertical translations: (from top to bottom) SAD, kNN-KL,
and kNN-KL-G (proposed method). The dashed box is a 12×12-
square (same size as the search window). The red spot at its center
represents the correct translation. The SAD minimum is shifted,
kNN-KL has two local minima, and the minimum of kNN-KL-G
seems accurate. The last figure is the PDF of the pointwise motion
between the reference ROI and the target ROI obtained with kNN-
KL-G. For each pixel of the reference, this motion was computed
as the space displacement to the nearest neighbor in the extended
radiometric/geometric space among the samples of the target. The
domain of definition is a 35×35-square (to be compared with Ω, a
43×43-square) centered around the null translation.

to be estimated. As mentioned in Section 4.4, kNN-based
distances cannot be minimized using a gradient descent ap-
proach. We used a sub-exhaustive search procedure [20]
with a search window of 12×12-pixels and a pixel preci-
sion (for coherence, this procedure was also used for SAD).
Parameter k was chosen equal to 3, which satisfies the con-
ditions mentioned at the end of Section 4.1. The robustness
to the choice of this parameter is discussed later in the sec-
tion. The radiometric space used was YUV. No component
weighting was done when computing distances in the ex-
tended radiometric/geometric space.

Tracking was performed with Iref being fixed equal
to, say, I1 while Itgt was successively equal to It, t =
2, 3, 4 . . . When searching for the ROI in frame It, the
search window was centered around the position of the ROI
computed in frame It−1.

Sequence “Car” is an aerial car chase which is part of



the VIVID tracking testbed [5]. It is composed of 640×480-
frames. In our experiments, tracking was performed on 150
frames (see Fig. 2). Note that the car is partially occulted by
trees from frame 36 to frame 116. kNN-KL eventually lost
the ROI and ended up tracking the second car which has col-
ors similar to the ROI. This is probably due to the fact that
it is based on radiometry only. Mean-shift performed quite
well although the tracking shifted upward when occlusion
occurred in order to avoid including the green colors of the
trees in the color PDF. SAD and kNN-KL-G tracked the car
accurately. Concerning SAD, the translation model being
fairly well respected within the ROI, taking the pointwise
residual makes sense while the use of the absolute value is
robust to the outliers arising from the occlusion.

Sequence “Crew” is composed of 352×288-frames. Two
faces were tracked on 80 frames (see Fig. 3). Note that
this sequence has two kinds of variation of luminance: a
continuous increase as the crew walks out of a dark area,
and strong peaks due to camera flashes. kNN-KL-G tracked
the faces successfully. The other methods lost progressively
the ROI.

Sequence “Football” is composed of 352×288-frames.
Tracking was performed on 20 frames (see Fig. 4). Note
that this sequence is characterized by fast motions and, con-
sequently, motion blur. Moreover, part of the public has col-
ors similar to colors that can be found in the ROI. In some
frames, this area of the public is right above the ROI. This
is probably the reason why kNN-KL stayed stuck in this re-
gion. Finally, as the player runs, he turns and almost faces
the camera toward the end of the sequence. Therefore, the
translation model is not appropriate. This can explain why
SAD, which relies on a strict translation model, lost the ROI
in the first frames. Mean-shift succeeded to track the ROI
approximately. However, it could not avoid being attracted
by the public. The geometric constraint of kNN-KL-G al-
lowed to avoid being attracted by the public area (where the
color spatial distribution is different from that of the ROI)
while being soft enough to deal with the mismatch between
the translation model and the actual motion. The resulting
tracking is accurate.

To support the conclusions about the results on sequence
“Football”, the distance between the reference ROI and can-
didate regions in frame 20 was computed as a function of
the translation parameters for SAD, kNN-KL, and kNN-
KL-G (see Fig. 1). The red spot at the center of the plane
represents the correct motion. The SAD minimum is shifted
as a result of the inappropriateness of the translation model
between frame 1 and frame 20. kNN-KL has several local
minima as there are several possible matches when account-
ing only for radiometry. By adding geometry, kNN-KL-G
allows to find a minimum corresponding to the correct mo-
tion. Also note that the kNN-KL-G criterion seems strictly
convex in a large window around the minimum. This prop-

erty is interesting for the convergence of optimization algo-
rithms (diamond search in our case). The last plot in Fig. 1
represents the PDF of the pointwise motion between the ref-
erence ROI and the target ROI obtained with kNN-KL-G.
For each pixel of the reference, this motion was computed
as the space displacement (i.e., the distance after projection
onto the geometric subspace) to the nearest neighbor in the
extended radiometric/geometric space among the samples
of the target. The PDF is not a Dirac delta function, illus-
trating the fact that the translation model was not correct.

To evaluate the robustness of the kNN-KL-G method to
the choice of parameter k, tracking was performed on se-
quence “Football” with various values of k that respect the
conditions in Section 4.1. The result for k equal to 3 was
taken as a reference and the average shift during tracking
was measured. For k equal to 10, the average shift was 0.2
pixels; for k equal to 20, the average shift was 0.7 pixels;
for k equal to

√
|Ω| = 43, the average shift was 1.1 pixels.

The method is therefore very robust to the choice of k.
Note: videos of the tracking results are available as sup-

plemental material.

6. Discussion and future works
This paper presents a general framework for estimating

statistical measures of information. We focused on a dis-
tance derived from entropy as proofs of consistency and un-
biasedness exist [9, 11, 12].

The kNN-based PDF estimate has two advantages for
dealing with high-dimensional data. First, it relies on a
non-parametric approach which uses variable size kernels
to adapt to the local density of samples. Second, it allows
to derive expressions of PDF-based measures (such as en-
tropy or the Kullback-Leibler distance) without computing
explicitly the PDFs.

Developments on tracking seem to show that robustness
requires the use of more information than just color (e.g.,
image gradient or motion [4]). In this paper, geometry was
added as proposed in [7] while overcoming the difficulty of
estimating multivariate PDFs using the kNN framework.

Future works will focus on extending the kNN frame-
work to other statistical measures such as mutual informa-
tion [17] and the Bregman divergence [2]. The ROI ap-
proach should also be extended to accurate motion segmen-
tation.
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Figure 2. Tracking on sequence “Car”: frames 1, 30, 60, 90, 120
and 150 (relative to the reference frame). kNN-KL-G (proposed
method): green; kNN-KL: cyan; Mean-shift: red; SAD: white.
The car is partially occulted by trees from frame 36 to frame 116.
Ω: 95×47-rectangle.



Figure 3. Tracking on sequence “Crew”: frames 1, 20, 40, 60
and 80 (relative to the reference frame). kNN-KL-G (proposed
method): green; kNN-KL: cyan; Mean-shift: red; SAD: white.
Note that there are two kinds of intensity changes in the sequence:
a slight, continuous intensity increase and some strong and brief
intensity peaks due to camera flashes. Ω: 33×52-rectangle.

Figure 4. Tracking on sequence “Football”: frames 1, 5, 10, 15
and 20 (relative to the reference frame).
kNN-KL-G (proposed method): green; kNN-KL: cyan; Mean-
shift: red; SAD: white.
This sequence is characterized by a fast motion generating motion
blur. Ω: 43×43-square.


