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Abstract

In this paper, we propose a direct method for 3D sur-
face reconstruction from stereo images. We reconstruct a
3D surface by estimating all depths of the vertices of a mesh
composed of piecewise triangular patches on the reference
(template) image.

The analyses described in this paper subsume that the
deformation of the mesh between the stereo images is spec-
ified by homographies, each of which represents the defor-
mation of a single patch. The homography deforms each
patch which has 3 d.o.f. under epipolar constraints. We
first formulate a fast “direct” method for estimating the
three parameters of a 3D plane by incorporating inverse
compositional expression into the sum of squared differ-
ences (SSD) function of two stereo images. This method is
about eight times faster than the conventional method. Then
we extend the direct method to the estimation of the vertex
depths in the mesh for reconstructing piecewise-planar sur-
faces. The validity of the proposed method is demonstrated
through results of experiments using synthetic and real im-
ages.

1. Introduction

In robot navigation, it is important to obtain 3D infor-
mation of the ground surface. It is desirable that the 3D in-
formation be represented by surface model parameters, not
by dense point clouds, not only to reduce the amount of 3D
data, but also because of the importance of surface normals
in robot action. A helicopter or a spacecraft also requires
surface normals for searching a level site to land safely. The
surface normals are also required for a joint control system
of a bipedal robot for walking stably on the ground, and
for driver-assistance systems of a vehicle for seeking slopes
and bumps in a road region.

A simple idea for surface reconstruction is to use dense

depth data obtained using traditional stereo techniques [2,
6]. However, it is difficult to obtain surface model pa-
rameters from noisy stereo data. Numerous other tech-
niques are useful to reconstruct surface models from stereo
images [5, 4, 9, 11]. Unfortunately, most techniques are
specific to object-oriented high-quality 3D reconstruction.
Consequently, they are too time-consuming for use in robot
navigation.

Our basic idea is simple; it is an extension of techniques
on image registration for deformable object. When we gen-
erate a mesh composed of triangular patches on a refer-
ence image, the 3D information of a target surface is de-
rived from the mesh deformation between two stereo im-
ages. We can assume that the deformation between the im-
ages is specified by homographies (eight-parameter projec-
tive deformations), each of which represents the deforma-
tion of a single patch. The epipolar constraints of stereo im-
ages enforce the homography of each patch on 3 degrees of
freedom (d.o.f.) The degrees-of-freedom number is derived
from the number of vertices of a triangle. We can estimate
all vertex depths, each of which has 1 d.o.f., by minimizing
the sum of squared differences (SSD) function between the
reference image and the image warped from the other.

However, when we formulate an algorithm straightfor-
wardly, the algorithm is too time-consuming. Therefore,
we first formulate a fast direct method for estimating 3D
plane parameters, which are homography parameters un-
der epipolar constraints, by incorporating inverse compo-
sitional expression into the SSD function between two im-
ages. This method is about eight times faster than a con-
ventional method, and about two times faster than full eight
parameter estimation using the inverse compositional im-
age alignment (ICIA) algorithm [1] of homography param-
eter estimation, while keeping higher precision. After that
formulation is described, we extend the direct method to es-
timation of the vertex depths in the mesh for reconstructing
curved surfaces.
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Figure 1. Stereo configuration and plane parameters

2. Plane Parameter Estimation

In this section, we describe a direct method for estimat-
ing 3D parameters of the target plane (i.e. its distance and
plane normal) observed using stereo cameras. We formu-
late a fast method using inverse compositional expression.
This direct plane parameter estimation can be regarted as
the homography estimation under epipolar constraints.

2.1. Homography – Basic Notations

Let x and x′ denote a scene point with respect to the two
different camera views. We write: x′ = Rx + t, where R
and t respectively denote the rotation matrix and the trans-
lation vector between the two camera coordinate frames.

Let I[u] and I ′[u′] be the pixel values of the refer-
ence image I and the input image I ′, respectively, where
u = (u, v)T and u′ = (u′, v′)T respectively denote the cor-
responding points in I and I ′. For avoiding complexity, let
u and u′ be in the canonical image configuration.

Let Π be a plane with a unit plane normal n and a dis-
tance d in the 3D coordinate frame of the reference camera.
Thereby, the relationship between u and u′ can be written
by using a 3 × 3 homography matrix P as follows [3]:

ũ′ ∼ Pũ, (1)

where P = R + tqT , q ≡ n/d. (2)

Note that q determines a plane equation in the reference
camera coordinate frame (see Fig. 1). In this section, we
refer to q as the plane parameter vector to be estimated.

2.2. Conventional Direct Method

Let w(u;p) denotes the homography warps derived
from (1), where p = (p1, p2, · · · , p9)T is a homography
parameter vector which is a function of q, as indicated by
(2). A conventional direct method for estimating q mini-
mizes the SSD function as follows [7]:

∑
u∈ROI

{I[u]− I ′ [w (u;p(q̄ + ∆q))]}2 , (3)

where q̄ and ∆q respectively denote a known current esti-
mate and unknown increments of q. Herein, ROI denotes a
region of interest in I .

Applying Gauss-Newton optimization to (3) yields

∆q = −H−1b, (4)

where H ≡
∑

u∈ROI

{[
∂I ′

∂w
∂w
∂p

∂p
∂q

]T [
∂I ′

∂w
∂w
∂p

∂p
∂q

]}
,(5)

b ≡
∑

u∈ROI

{
e

[
∂I ′

∂w
∂w
∂p

∂p
∂q

]T
}

, (6)

e ≡ I[u]− I ′[w(u;p(q̄))]. (7)

The final estimate of q is obtained after iterations in each
of which q̄ is updated by q̄← q̄+ ∆q after computing ∆q
by (4). In the conventional case, ∂I ′/∂w and ∂w/∂p at
each pixel should be re-computed in each iteration because
these differentials are evaluated at the current estimate of q̄.
These per-pixel and per-iteration computations for obtain-
ing H impart large computational costs.

According to [1], in the case of homography parameter
estimation, an SSD function formulated by inverse compo-
sitional expression offers remarkably fast estimation with-
out loss of precision. In the next subsection, we incorporate
an inverse compositional expression and additive expres-
sion for formulating an alternative to (3) for fast estimation
of the plane parameters q.

2.3. Efficient Estimation

A homography matrix can be written as

P = P̄[I + ∆P]−1, (8)

where P̄ and ∆P respectively represent a current estimate
of P and a matrix with small elements. Let p̄ and ∆p be
parameter vectors composed respectively by the elements
of P̄ and ∆P. Equation (8) is a fundamental in the ICIA
(Inverse Compositional Image Alignment) algorithm [1] for
fast homography estimation.

Assume that p̄ and ∆p are functions of q̄ and ∆q, re-
spectively, and ∆p→ 0 when ∆q→ 0, where q = q̄+∆q
(concrete expressions are presented later). Then we re-write
(3) as

∑
u∈ROI

{I[∆w (u;∆p(∆q))]− I ′ [w (u; p̄(q̄))]}2 ,(9)

where w(u; p̄) and ∆w(u;∆p) denote the homography
warps derived respectively from ũ′ ∼ P̄ũ and ũ′ ∼ [I +
∆P]ũ.



Applying Gauss-Newton optimization to (9) yields

∆q = −H−1b, (10)

where

H ≡
∑

u∈ROI

{[
∂I

∂∆w

∂∆w

∂∆p

∂∆p

∂∆q

]T [
∂I

∂∆w

∂∆w

∂∆p

∂∆p

∂∆q

]}
,

(11)

b ≡
∑

u∈ROI

{
e

[
∂I

∂∆w

∂∆w

∂∆p

∂∆p

∂∆q

]T
}

, (12)

e ≡ I[u] − I ′[w(u;p(q̄))]. (13)

As in the conventional method described in 2.2, q̄ is up-
dated by q̄ ← q̄ + ∆q in each iteration. However, in this
case, ∂I/∂∆w and ∂∆w/∂∆p are constant in each iter-
ation because these differentials are evaluated at ∆q = 0
(i.e. ∆p = 0) [1]. ∂I/∂∆w denotes the gradients of the
reference image. In addition, ∂∆w/∂∆p can be written as

∂∆w

∂∆p
=

[
u v 1 0 0 0 −u2 −uv −u
0 0 0 u v 1 −uv −v2 −v

]
.

(14)

The remaining problem is how to compute ∂∆p/∂∆q.
We derive it next.

2.3.1 Derivation of ∂∆p/∂∆q

From (2), we can write

P = R + t[q̄ + ∆q]T . (15)

The relationship between ∆p and ∆q is defined by re-
writing (15) into the form of (8).

Sherman-Morrison’s formula [8] gives the inverse of
(15):

P−1 = R′ + t′[q̄′ + ∆q′]T , (16)

where R′ ≡ R−1, t′ ≡ −R−1t, (17)

q̄′ + ∆q′ ≡ R[q̄ + ∆q]
1 + [q̄ + ∆q]T R−1t

.(18)

Re-writing (16) yields

P−1 = [I + t′∆q′T P̄]P̄−1, (19)

where P̄ ≡ R + tq̄T . (20)

The inverse of (19) is written as

P = P̄[I + t′∆q′T P̄]−1. (21)

Therefore, comparing (21) with (8) gives

∆P = t′∆q′T P̄. (22)

From (18), ∆q′ can be written as

∆q′ =
(1 + q̄T RT t)R∆q− (∆qT RT t)Rq̄

(1 + q̄T RT t + ∆qT RT t)(1 + q̄T RT t)
. (23)

Then, substituting (23) and (17) for (22) obtains

∆P = − 1
1 + q̄T RT t + ∆qT RT t

RT t∆qT . (24)

Equation (24) is directed to the expression of ∂∆p/∂∆q
evaluated at ∆q = 0. We derive

∂∆p

∂∆q
=

1

κ

[
α1 0 0 α2 0 0 α3 0 0
0 α1 0 0 α2 0 0 α3 0
0 0 α1 0 0 α2 0 0 α3

]T

,

(25)

where

κ ≡ −(1 + q̄T RT t), (26)

α1 ≡ t1r1 + t2r4 + t3r7, α2 ≡ t1r2 + t2r5 + t3r8,

α3 ≡ t1r3 + t2r6 + t3r9, (27)

Therein, ti(i = 1, 2, 3) and rj(j = 1, ..., 9) respectively
denote the elements of t and R.

2.3.2 Estimation Algorithm

Unfortunately, ∂∆p/∂∆q can not be constant in each iter-
ation because κ depends on the current estimate q̄, which
varies from iteration to iteration. However, κ is a simple
scalar independent of pixels. Therefore, the final Gauss-
Newton optimization algorithm can be written as

∆q = −κH′−1b′, (28)

where

H′ ≡
∑

u∈ROI

{[
∂I

∂∆w

∂∆w

∂∆p

[
κ

∂∆p

∂∆q

]]T

×
[

∂I

∂∆w

∂∆w

∂∆p

[
κ

∂∆p

∂∆q

]]}
, (29)

b′ ≡
∑

u∈ROI

{
e

[
∂I

∂∆w

∂∆w

∂∆p

[
κ

∂∆p

∂∆q

]]T
}

, (30)

e ≡ I[u] − I ′[w(u;p(q̄))]. (31)

Compared with (10), we simply replace ∂∆p/∂∆q by
κ∂∆p/∂∆q which is a constant 9 × 3 matrix composed
by the elements of R and t, as described in (25). This
replacement renders the product (1 × 3 column vector) of
∂I/∂∆w, ∂∆w/∂∆p, and κ∂∆p/∂∆q at each pixel con-
stant in each iteration. Therefore, H′ and its inverse can be
pre-computed before the iteration process.



 :triangular patch

 :vertex m v

 n C

Figure 2. Mesh on reference image

Note that ∂∆w/∂∆p and κ∂∆p/∂∆q are independent
of the scene. The product (2 × 3 matrix) of the two matri-
ces at every pixel can be computed when the cameras are
calibrated. Additionally, the computational costs of κ are
negligible compared to b′, which requires per-pixel com-
putations in each iteration. Therefore, we can consider that
the per-parameter computational costs of this algorithm are
almost equivalent to those of the ICIA algorithm; the pre-
sented plane parameter estimation algorithm is faster than
the ICIA algorithm of homography estimation.

3. Piecewise-Planar Surface Reconstruction

We can say that the plane parameters are the 3D model
parameters of the scene; to estimate plane parameters is to
estimate the 3D parameters of the scene modeled by a single
plane. In this section, we extend the single plane model to
a multiple plane model.

3.1. Triangular Mesh

We first generate a 2D triangular mesh on the reference
image. The triangular mesh includes M vertices vm(m =
1, · · · ,M) and N triangular patches Cn(n = 1, · · · , N), as
shown in Fig. 2. The position of a vertex on the reference
image is specified by um = (um, um)T , and its depth is
represented as dm.

Several approaches are useful for generating a 2D trian-
gular mesh, such as simple meshing by regular triangles or
Delaunay algorithms using corner-like feature points. Many
types of meshing algorithms are applicable to our direct
method.

In our experiments, the mesh is simply composed of reg-
ular triangles. A simple mesh is sufficient for hierarchi-
cal estimation of a target surface. We can roughly estimate
the surface using a mesh with large patches. According to
the extent of shape details required for a user application,
the surface can be expressed more precisely using smaller
patches.

3.2. Surface Reconstruction by Vertex Depth Esti-
mation

We assume that the deformation of the mesh between the
stereo images is specified by homographies. The homogra-
phy that deforms each triangle has 3 d.o.f. under epipolar
constrains. This number corresponds to the number of ele-
ments of plane parameters and to the number of vertices that
define a triangle. This is readily apparent from the fact that,
under epipolar constraints, the displacement of each vertex
between two images has 1 d.o.f., which corresponds to its
depth variation. We formulate these relationships for di-
rectly estimating all vertex depths; the SSD value between
the reference image and the image wapred from the input
image by the homographies determined by the depths is
minimized.

3.2.1 Relationship of Plane and Depth Parameters

We begin with re-formation of the algorithm presented in
Section 2 for estimating the three depths of a single triangu-
lar patch.

Let {i, j, k} be the indices of the three vertices of the n-
th patch. Because the image coordinates are expressed us-
ing canonical image configuration, the 3D positions of the
vertices on the target surface in the reference camera co-
ordinate frame are written as xm = (dmum, dmvm, dm)T ,
where (m = i, j, k). The relationship between the plane
parameters qn of the n-th patch and the depths dm of the
vertices is written as

qn = Lnγn, (32)

where γn ≡ (1/di, 1/dj , 1/dk)T , (33)

Ln ≡

 ui vi 1

uj vj 1
uk vk 1



−1

. (34)

Consequently, we easily extend (9) for estimating the
depth parameter vector γn of the n-th patch. Let γn =
γ̄n + ∆γn, where γ̄n and ∆γn respectively represent a
current estimate of γn and a vector with small elements.
We can thereby re-write (9) as∑

u∈Cn

{I[∆w (u;∆pn (∆qn(∆γn)))]

−I ′ [w (u; p̄n(q̄n (γ̄n)))]}2 . (35)

The relationship between ∆qn and ∆γn is obtainable from
the linear equation (32).

3.2.2 Estimation of All Depths

The extension to our surface reconstruction method by es-
timating all depths is obtained straightforwardly from (35).



Let Γ ≡ (1/d1, 1/d2, · · · , 1/dM )T , and Γ = Γ̄ + ∆Γ.
Then we re-write (35) as

∑
n

∑
u∈Cn

{I[∆w (u;∆pn (∆qn(∆Γ)))]

−I ′
[
w

(
u; p̄n(q̄n

(
Γ̄)

))]}2
. (36)

Applying Gauss-Newton optimization to (36) yields

∆q = −H−1b, (37)

where

H ≡
∑

n

1

κ2
n
×

∑
u∈Cn

{[
∂I

∂∆w

∂∆w

∂∆pn

[
κn

∂∆pn

∂∆qn

]
∂∆qn

∂∆Γ

]T

×
[

∂I

∂∆w

∂∆w

∂∆pn

[
κn

∂∆pn

∂∆qn

]
∂∆qn

∂∆Γ

]}
, (38)

b ≡
∑

n

1

κn
×

∑
u∈Cn

{
en

[
∂I

∂∆w

∂∆w

∂∆pn

[
κn

∂∆pn

∂∆qn

]
∂∆qn

∂∆Γ

]T
}

,

(39)

en ≡ I[u] − I ′[w
(
u;pn

(
q̄n(Γ̄))

))
], (40)

κn ≡ −(1 + [q̄n(Γ̄)]T RT t). (41)

Because the relationship between ∆qn and ∆Γ is linear,
the product of the four matrices ∂I/∂∆w, ∂∆w/∂∆pn,
κ∂∆pn/∂∆qn, and ∂∆qn/∂∆Γ at each pixel is constant
in each iteration.

In each iteration, a 1 ×M vector at each pixel, which is
the product of the four matrices, has only three non-zero el-
ements because ∂∆qn/∂∆Γ is affected only by three depth
values of the n-th triangular patch. Consequently, the addi-
tional computation of this piecewise-planar surface recon-
struction to the plane parameter estimation of one plane is
the inverse of an M × M matrix H. The costs in each it-
eration can be roughly estimated as O(3P ) + Oinv, where
P is the number of pixels in the entire mesh and Oinv is
the computational cost for the inverse. Note that Oinv can
be application specific; if a roughly estimated surface is re-
quired, Oinv can be ignored. We can easily control the cost
using hierarchical meshing.

4. Experimental Results

We first show the experimental results of the plane pa-
rameter estimation method presented in Section 2. Then we
show some surface reconstruction results using the method
presented in Section 3. All algorithms were implemented in
C-language and run on a Linux PC (Pentium-IV 2.8 GHz).

(a) Reference image (b) Input image
Figure 3. Stereo images used in simulation for plane parameter
estimation: (a) is an example of reference images. The reference
images are created by warping the input image (b) using randomly
generated plane vectors. The rectangle denotes a 100 × 100 ROI
whose position is fixed on the reference image.
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4.1. Plane Parameter Estimation

The presented method for plane parameter estimation
will be used for obtaining the 3D parameter of the ground
plane from stereo cameras mounted on a bipedal robot or a
vehicle for real-time control. We demonstrate the capability
of the presented method using a comparative study of three
methods that estimate plane parameters. These methods are
the conventional direct method described in Section 2.2, a
method which combines the ICIA algorithm of homography
estimation [1] with singular value decomposition (SVD) for
obtatining the plane parameters as presented in [10], and our
method presented in Section 2.3.2. The convergence stabil-
ity and the computational time of the three methods were
evaluated.

We first set the plane parameters of a reference plane as
q0 = n0/d0, where n0 = (0, 0, 1)T and d0 = 15.24 (in
meters). We also set the origin of the object coordinates
of the reference plane at the cross point of the optical axis
of the reference camera and the plane. For setting a target
plane, the reference plane was moved by a set of three val-
ues that were generated randomly by zero-mean Gaussian
noise of a certain standard deviation σ.

Using each set of the three values, the reference plane
was rotated with respect to its x and y axes (in degrees),



Method pre-computation per iteration total(5 iterations) total(100 iterations)

Conventional direct — 15.19 75.95 1519
Homography estimation and SVD 11.09 2.613 24.16 272.4
Proposed Method 2.526 1.312 9.087 133.5

Table 1. Computational time (ms) in plane parameter estimation: Averaged over 100 trials for a 100 × 100 ROI. All algorithms
were implemented using C-language and run on a Linux PC (Pentium-IV 2.8 GHz).

and moved along with the optical axis (at meters/20 incre-
ments). Then we computed the plane parameters q of the
target plane and warped the input image, as shown in Fig.
3(b), by the target plane parameters for creating a reference
image, as in Fig. 3(a). We added Gaussian noise of stan-
dard deviation 4 gray levels to both images. Then we run
the algorithms of the three methods starting from q0.

For each σ, we evaluated the frequency of convergence
over 5000 trials. We judged that an algorithm succeeded
after five iterations, if the angle between q and the estimates
was less than 0.5 degrees. We evaluated the angle because
applying SVD to a homography matrix recovers only the
plane normal direction. The results are shown in Fig. 4.

Figure 4 shows that the two direct methods for plane
parameter estimation give far higher success rates than the
method for homography. Under the epipolar constraints of
the stereo images, the input image deformation is restricted
to the epipolar lines. This restriction is remarkably prof-
itable for acquiring high stability.

Table 1 shows the computational time of the three meth-
ods. Comparing our method with the others shows that the
five-iteration time of our method is about one-eighth as long
as the conventional method, and about one-twice as long as
the homography estimation method.

4.2. Surface Reconstruction

In this subsection, we present the experimental results of
the proposed method for surface reconstruction. The algo-
rithm is implemented in C-language. We used the CLapack
library for computing inverse matrices.

4.2.1 Synthetic Images

We created a textured 3D object and stereo images, as
shown in Fig. 5. The object shape was a large sphere with
the center at x = (0, 0, 15)T and radius 7.7 m. The mesh
generated on the reference image comprised 61 vertices and
96 triangles with sides that were 50 pixels long. We run the
algorithm of the proposed method starting from all depths
with 10 m.

Figure 6 shows the errors of depths for each iteration.
Figure 7 also shows the sequence of the estimated surface
during the iterations. All depths converged to good values
after 20 iterations.

(a) Reference image with mesh (b) Input image
Figure 5. Synthetic stereo images 1: (a)(b) 420 × 420 size stereo
images with baseline 0.3 meters. The mesh, which comprises reg-
ular triangles with sides that are 50 pixels long (M = 61, N = 96)
is shown in (a).
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Figure 8 shows the result of a hierarchical meshing ap-
proach. We created another synthetic stereo images with
the size of 420 × 420 pixels. For such a target with similar
texture patterns on different surface positions, a fine mesh
diverges when the algorithm starts with inappropriate ini-
tial depths. We first generated a mesh composed by regular
triangles with sides 200 pixels long (level 0); then we hi-
erarchically divided each triangle into four regular triangles
with half sides. The final mesh had 217 vertices and 384
triangles with sides that were 25 pixels long. We obtained
a satisfactory surface after 20 iterations for each meshing
level.

In this experiment, the computations of all meshing lev-
els for 20 iterations take 0.6 s, except 0.9 s in level 3. These



(a) Initial surface (b) After 5 iterations

(c) After 10 iterations (d) After 15 iterations

(e) After 20 iterations (f) Actual 3D shape
Figure 7. Surface estimated in each iteration: Our algorithm,
which uses about 105 pixels in the whole mesh, requires 0.61 s
for 20 iterations.

timing results are promising for various navigation applica-
tions.

4.2.2 Real Images

We used stereo images (1280 × 720 pixels large) as shown
in Fig. 9. The target has a moon-like surface, which is sim-
ulated on a sandy plane. For reconstructing the surface, we
also use a hierarchical approach. We first generated a mesh
comprising regular triangles with sides that are 464 pixels
long (level 0). The final mesh has 817 vertices and 1536
triangles with sides 29 pixels long (level 4). In this experi-
ment, we use a condition for each iteration process to stop:
|∆Γ| < 10−4. The plane parameter estimation method de-
scribed in Section 2 was first employed to set initial vertex
depths over the whole region.

Figure 10 shows results of the hierarchical approach. At
each level, the target surface was preferably approximated.
The final mesh recovered valleys in the center and craters in

(a) Initial surface (b) Level 0

(c) Level 1 (d) Level 2

(e) Level 3 (f) Actual 3D shape
Figure 8. Surface estimated at each meshing level after 20 itera-
tions. the computations of all meshing levels for 20 iterations take
0.6 s, except 0.9 s, which was required for level 3.

the left-top area well.

5. Conclusions

We have proposed a direct and efficient method for sur-
face reconstruction. A fast direct method for estimating the
three parameters of a plane was proposed and subsequently
extended to the surface reconstruction method. The experi-
mental results are promising from the standpoint of the sur-
face representation ability and computational efficiency.

Many options are available in our method for better sur-
face reconstruction, such as multi-baseline stereo strategy
and uses of a-priori information. The evaluation of these
options will be studied during future research work.
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(a) Reference image (b) Input image (c) A mesh

Figure 9. 1280 × 720 size real images: A moon-like surface was simulated on a sandy place.

(a) Estimated plane parameters (b) Level 0 (10 iterations) (c) Level 1 (17 iterations)

(d) Level 2 (4 iterations) (e) Level 3 (3 iterations) (f) Level 4 (4 iterations)
Figure 10. Surface estimated in each iteration (real images)
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