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Abstract

Detecting and segmenting free-form objects from clut-
tered backgrounds is a challenging problem in computer vi-
sion. Signature detection in document images is one classic
example and as of yet no reasonable solutions have been
presented. In this paper, we propose a novel multi-scale ap-
proach to jointly detecting and segmenting signatures from
documents with diverse layouts and complex backgrounds.
Rather than focusing on local features that typically have
large variations, our approach aims to capture the struc-
tural saliency of a signature by searching over multiple
scales. This detection framework is general and computa-
tionally tractable. We present a saliency measure based on
a signature production model that effectively quantifies the
dynamic curvature of 2-D contour fragments. Our evalua-
tion using large real world collections of handwritten and
machine printed documents demonstrates the effectiveness
of this joint detection and segmentation approach.

1. Introduction

Detecting free-form objects pose fundamental chal-
lenges in a number of aspects. First, detection needs to
be robust in the presence of cluttered backgrounds. Sec-
ond, non-rigid objects can have very large intra-class vari-
ations, making it almost impossible to model without over-
fitting the data. Third, the contours of many such complex
objects are fragmented 2-D signals, so reliably recovering
the ordering of points along contour fragments from off-
line images is difficult in general. In addition, recognition
and retrieval require well segmented objects from the de-
tected regions, to minimize the effects of outliers during
matching. Detecting signatures from documents is an ex-
ample of one such difficult problem in which diverse layout
structures, complex background, and noise make contour-
based learning hard. Furthermore, the foreground content of
documents generally includes a mixture of machine printed
text, handwriting, diagrams, and other elements. Handwrit-
ten signature detection and segmentation is still an open re-
search area and to our best knowledge, no comprehensive
solutions have been presented in the literature.

As signatures are a pervasive method of individual iden-
tification and document authentication, they provide an im-
portant form of indexing that enables exploration of large
document repositories. Given a large collection of docu-
ments, searching for a specific signature is a highly effec-
tive way of retrieving documents authorized or authored by
an individual. Such need arises frequently in the discovery
phase of legal and intelligence investigations [11].

Prior research on off-line signatures has almost exclu-
sively focused on signature verification and identification
[18, 14, 10, 5] in the context of biometrics to perform au-
thentication. For signature verification, the problem is to
decide whether a sample signature is genuine or a forgery
by comparing it with stored reference signatures. Signa-
ture identification is essentially a writer identification prob-
lem, whose objective is to find the author of a test signature
given a database of signature exemplars from different sign-
ers. Most studies published to date assume that an almost
perfect detection and segmentation is available [16].

Solving the problem of signature detection and segmen-
tation is pivotal for signature-based document indexing and
retrieval. Equally important is that a solution will also bene-
fit off-line signature verification and identification in a range
of domains. In addition, the ability to robustly detect signa-
tures and extract them intact from volumes of documents is
needed in many business and government applications.

In this paper, we propose a new multi-scale approach to
detecting and extracting signatures from document images.
Rather than viewing a signature as a collection of local fea-
tures, we treat it as a global symbol that exhibits character-
istic structural saliency. Computation in the proposed multi-
scale framework for joint object detection and segmentation
is carried out efficiently in a coarse-to-fine scheme on con-
tour fragments. We employ a novel saliency measure based
on a signature production model, which assumes two gen-
eral degrees of freedom. The model enables us to capture
the dynamic curvature in a signature without recovering its
temporal information—a task shown to be difficult for un-
constrained off-line handwriting due to structural changes
[6]. The signature detection approach can also be applied to
on-line handwritten notes collected on a PDA or Tablet PC,
where the trajectories of the pen are readily available.
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Figure 1. The result of edge detection over different scales. (b) and (c) are edges computed from (a) at the scale of 2.0 and 4.0, respectively.

Our multi-scale detection framework is general and has
the advantage that it does not embed explicit assumptions
on local features of the object, such as the granulometric
size distributions [18] and the sets of stroke-level features
[8] for signatures. Therefore, it can be robust against many
forms of variations that are challenges in shape-based ob-
ject detection problems, and be generally applicable in spite
of differences across languages. Computationally, the algo-
rithm is tractable and highly parallelizable.

The structure of this paper is as follows: The next section
reviews related work. In Section 3, we describe the multi-
scale structural saliency detection approach. We introduce
a saliency measure for capturing the dynamic curvature for
signatures in Section 4. We discuss experimental results on
real world English and Arabic document datasets in Section
5 and conclude in Section 6.

2. Related work

The Saliency Network by Sha’ashua and Ullman [20]
considers boundary-based image segmentation and tries to
jointly solve the two aspects of this problem iteratively, i.e.
identifying salient structures and grouping contours. They
defined a saliency function which monotonically increases
with the length of the curve and monotonically decreases
with the total squared curvature. To reduce the exponen-
tial search space, Sha’ashua and Ullman assumed the exis-
tence of a recurrent structure in the optimal solution, which
they called extensibility, so that they can search the expo-
nential space of possible curves in polynomial time by dy-
namic programming. However, greedily reducing the so-
lution space by such a recurrent formulation involves hard
decision at each step, and theoretically, a single mistake can
result in the convergence to a wrong solution.

Alter and Basri [3] gave a comprehensive analysis of
the saliency network and showed that its time complexity is
O(k2N2), where N is the total number of pixels and k is
the number of neighboring elements considered in forming

a locally connected network. They proved that the salient
network has a few serious problems due to the extensibility
assumption, and the convergence rates vary significantly de-
pending on the object structure. These are difficult to over-
come without fundamentally changing the computation.

There is a body of literature on contour grouping and
contour-based learning in computer vision. Here we point
out some of the work more related to ours, which includes
Parent and Zucker’s [15] work using relaxation methods,
and Guy and Medioni’s [9] work using voting patterns. El-
der and Zucker [7] have developed a method for finding
closed contours using chains of tangent vectors. Williams
and Jacobs [23] and Williams and Thornber [24] discuss
contour closure using stochastic completion fields. Shotton
et al. [21] demonstrate a learning-based method for object
detection using local contour-based features extracted from
a single image scale. Such approach, however, is inherently
restricted to rigid objects having 1-D contours, for which
the ordering of points is explicit.

3. Multi-scale structural saliency
3.1. Theoretical framework

We consider identifying salient structure and grouping
its structural components separately. There are clear moti-
vations for decoupling these two tasks as opposed to solving
them jointly. First, we have a much broader set of func-
tions that can be used as measures of saliency. For ob-
ject detection, choosing saliency measures that fit high-level
knowledge of the object gives globally more meaningful
results than jointly optimizing a fixed set of low-level vi-
sion constraints. Once the salient structures are identified,
grouping becomes simpler with constraints like proximity
and good continuation. Second, we can effectively formu-
late structural saliency across image scales, as apposed to
single-scale approaches like the saliency network, for which
a coarser representation will generally pose a harder prob-
lem. Multi-scale detection is important for non-rigid objects



like signatures, whose contours can be severely broken due
to poor ink condition and image degradations. Last, multi-
scale saliency computation creates detection hypotheses at
the natural scale where grouping among a set of connected
components becomes structurally obvious. This provides
a unified framework for object detection and segmentation,
useful for both object recognition and retrieval.

From computational point of view, using connected com-
ponents as the unit of computing saliency makes the com-
putation tractable and highly parallelizable. Our serial im-
plementation runs in O(N), where N is the total number
of edge points. This is significantly faster than the saliency
network approach that has O(k2N2) time complexity. We
also incorporate global context to improve detection. The
idea is to estimate the length and inter-line spacing of text
lines, and use that information to locate the bottom region
of the document, where signatures are more likely to appear.
In our evaluation, we show results of signature detection run
on whole documents, as well as by exploring global context.

3.2. Signature detection and segmentation

Unconstrained off-line signatures have large intra-class
variations, and signatures from different individuals visu-
ally exhibit wider variability compared to other forms of
handwriting because of their role in distinctively represent-
ing each person [8]. Another notable source of variation
comes from intersession variability [18], the phenomenon
that the signer cannot repeatedly write the same signature
with exquisite precision over time. This factor greatly hin-
ders the feasibility of posing signature detection and recog-
nition as a straightforward pattern recognition problem.
Large variations make classification approaches based on
local features ineffective on real data. As shown in Fig. 2,
local features, including size, aspect ratio, and spatial den-
sity, are not discriminative enough to separate signatures
(red pluses) from non-signature objects (blue dots), on a
groundtruthed collection of 1290 real-world documents.

In this section, we describe the structural saliency ap-
proach to signature detection that searches over range of
scales S = σ1, σ2, · · ·, σn. We select the initial scale σ1

based on the resolution of the input image. We define the
multi-scale structural saliency for a curve Γ as

Φ(Γ) = max
σi∈S

f(Φσi(Γσi), σi), (1)

where f : R2 → R is a function that normalizes the saliency
over its scale, and Γσi

is the obtained connected component
corresponding to the curve at the scale σi. Using multiple
scales for detection relaxes the requirement that the curve Γ
be connected at a particular scale.

Detection at a particular scale σi proceeds in three steps.
First, we convolve the image with a Gaussian kernel Gσi

,
re-sample it using the Lanczos filter [22] at the factor dσi

,

Figure 2. Local features, including size, aspect ratio, and spatial
density, are not discriminative enough to separate non-signature
objects (blue dots) from signatures (red pluses).

Figure 3. Example of histogram of orientation difference.

and compute its edges using the Canny edge detector [4].
This is effectively obtaining a coarse representation of the
original image in which small gaps in the curve are bridged
by smoothing followed by re-sampling (see Fig. 1).

Second, we form connected components on the edge im-
age at scale σi, and compute the saliency of each compo-
nent using the measure presented in Section 4, which char-
acterizes the dynamic curvature in the curve. We define
the saliency of a connected component Γk

σi
as the sum of

saliency values computed from all pairs of edges on it. We
also makes use of the distribution of pair-wise orientation
difference, which is a global translation, rotation, and scale
invariant shape descriptor. Using the histogram of pair-wise
orientation difference, we can identify cases as shown in
Fig. 3 to further reduce computation and false alarms.

Third, we identify the most salient curves and use a
grouping strategy based on proximity and curvilinear con-
straints to obtain the rest of the signature parts within
their neighborhood. Figs. 6 and 8 show examples of de-
tected signatures from the Tobacco-800 and Maryland Ara-
bic datasets, together with their saliency maps. The top
three most salient components are shown in red, green and
blue on the saliency maps.

Our joint detection and segmentation approach considers
identifying the most cursive structure and grouping it with
neighboring elements in two steps. By recognizing the most
salient part of a signature, we effectively focus our attention
on its neighborhood. Subsequently, a complete signature is
segmented out from background by grouping salient neigh-
boring structures.

Separating saliency detection from grouping signifi-
cantly reduces the level of complexity. If we let the total
number of edge points be N and the length of the largest



connected component be Lc, the saliency computation is of
order O(NLc). Since Lc is effectively bounded above by
prior estimate of the signature dimensions and the range of
searched scales n is limited, they can be considered as con-
stants. The complexity in saliency computation is linear in
N . Gaussian smoothing and forming connected component
both require O(N) time. The total complexity in the signa-
ture detection algorithm is therefore O(N).

4. Measure of saliency for signatures

In this section, we consider the problem of recognizing
the global saliency of a signature using dynamic curvature,
without attempting to recover the temporal order among
point sets on a 2-D curve. As shown in Fig. 4, among the
infinite number of geometric curves that pass two given end
points E1 and E2 on a signature, very few are realistic. This
is because the wrist is highly constrained in the degrees of
freedom when producing a signature. Furthermore, a sig-
nature segment rarely fits to a high-order polynomial, as
shown by the dotted curve in Fig. 4.

We propose a signature production model that incorpo-
rates two general degrees of freedom in Cartesian coordi-
nates. We assume that the pen moves in a cycloidal fashion
with reference to a sequence of shifting virtual baselines.
Local baseline changes as the wrist moves its position with
respect to the document. Within a short curve segment, we
assume that the baseline remains unchanged. In addition,
the locus of the pen maintains a proportional distance from
the local center point (focus) to the local baseline (directrix).
This is equivalent to viewing handwriting approximated by
a piece-wise concatenation of small elliptic segments. In a
similar spirit, Saint-Marc et al. [19] have used quadratic
B-splines to approximate complex-shaped contours. The
model imposes an additional constraint that limits the group
of second-order curves to smoother ellipses.

We model piece-wise segments of a signature by a fam-
ily of second-order curves that satisfy constraints imposed
by signature production. In addition, we incorporate the lo-
cal gradient directions at the two end points, which can be
viewed as soft constraints on the segment of the curve im-
posed by the global structure of the signature instance. In
the Cartesian coordinate system, the family of a quadratic
equation in two variables x and y is always a conic section.
Fig. 5 shows how the orientations of the gradients at the
two edge points greatly limit the inference on local curve
segment to a family of conics, under the second-order sig-
nature production model.

We can formalize this intuition geometrically. For a pair
of edge points E1 at (x1, y1) and E2 at (x2, y2), we obtain
estimates of their local gradients N1(p1, q1) and N2(p2, q2)
during edge detection. For definiteness, we suppose both
E1 and E2 point into the angular section between the tan-

Figure 4. Among the large number of geometric curves can pass
the two end points E1 and E2 on a signature, few are realistic.

Figure 5. Conic sections inferred by a pair of edge points.

gent lines containing the other point, as shown in Fig. 5.

p1(x2 − x1) + q1(y2 − y1) > 0 and
p2(x1 − x2) + q2(y1 − y2) > 0 (2)

The two tangent lines at E1 and E2 are normal to their
local gradients and are given by

t1(x, y) ≡ p1(x− x1) + q1(y − y1) = 0 (3)

and
t2(x, y) ≡ p2(x− x2) + q2(y − y2) = 0. (4)

The straight line l(x, y) that passes through E1 and E2

can be written as

l(x, y) ≡

∣∣∣∣∣∣
x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = 0. (5)

Note that t1(x, y), t2(x, y) and l(x, y) are all first-order
linear functions in x and y. This family of second-order
curves that are bounded within the angular section between
t1(x, y) and t2(x, y) can be expressed in the canonical form
in Equation (6), where parameters a, b, c, f , g, h are first-
order linear functions in λ and the parameter set (x1, y1),
(x2, y2), (p1, q1), (p2, q2). Interested readers can refer to
Maxwell’s classic geometry text [13] for details.

C(x, y) ≡ l2(x, y)− λt1(x, y)t2(x, y) = 0

= ax2 + 2hxy + by2 + 2gx + 2fy + c = c (6)

Given a parameter set (x1, y1), (x2, y2), (p1, q1), (p2, q2),
which is equivalent to fixing the set of three straight lines
t1(x, y), t2(x, y) and l(x, y), it is interesting to see how



Figure 6. Examples of detected signatures from the Tobacco-800 dataset, together with their saliency maps. The top three most salient
parts are shown in red, green, and blue, respectively.

monotonic increase in λ for λ ∈ [0,+∞) affects the cur-
vature within the bounded segment of the quadratic curve
defined by (6). When λ = 0, Equation (6) degenerates into
the straight line l(x, y) and the total squared curvature of the
bounded segment is zero. When λ monotonically increases
from 0 within certain range (0 < λ < λ0), the curve seg-
ment bounded by E1 and E2 exhibits more and more curva-
ture. This is because the second-order curves given by (6)
for λ ∈ [0, λ0) are ellipses with monotonically increasing
eccentricities. As λ → λ0, the center of the ellipse recedes
to infinity, so that the ellipse tends to a parabola at λ = λ0.
When λ ≥ λ0, the conic of (6) becomes a hyperbola. Even-
tually as λ → +∞, the hyperbola degenerates into the two
intersected straight lines t1(x, y) and t2(x, y). We can show
that λ0 is given as

λ0 =
4[p1(x2 − x1) + q1(y2 − y1)]

(p1q2 − p2q1)
×

[p2(x1 − x2) + q2(y1 − y2)]
(p1q2 − p2q1)

. (7)

The value of λ0 provides a second-order estimate of the
dynamic curvature given the parameter set (x1, y1), (x2, y2),
(p1, q1), (p2, q2) that fits the signature production model.
We use λ0 as the saliency value Λσi

(Ei, Ej) for a pair of
points at scale σi. The cursive saliency of a connected com-
ponent Γk

σi
at scale σi is the sum of saliency defined by

Equation (7) computed from all the pairs of points on it.

Φσi
(Γk

σi
) =

∑
Ei,Ej∈Γk

σi

Λσi
(Ei, Ej). (8)

It is straightforward to show that the right hand side of
(7) is 4a2, where a = |OE1| = |OE2|. This result allows

us to normalize saliency over scale, whereas the relation-
ship between the scale and the saliency measures reported
in [24] are largely unclear. Obviously, the proposed mea-
sure of saliency is translation and rotation invariant as it
only uses local gradient directions.

The analysis so far considers the continuous case. To
account for the discretization effect on the image grid, we
impose two conditions. First, the absolute values of the
two functions on the left hand side of Equation (2) must
be strictly large than ε. Second, the denominator term in (7)
must be strictly large than ε. In our implementation, we use
ε = 0.1. For robustness, we weight the saliency contribu-
tion by the gradient magnitude of the weaker edge.

5. Experiments
5.1. Datasets

To evaluate the structural saliency approach for signature
detection on multiple languages, we used two large collec-
tions of real world documents—Tobacco-800 dataset and
the University of Maryland Arabic dataset. Tobacco-800
is a public subset of the IIT CDIP Test Collection [1, 11],
based on 42 million pages of documents (in 7 million multi-
page TIFF images) obtained from UCSF [2] and released
by tobacco companies under the Master Settlement Agree-
ment. Tobacco-800 is a realistic dataset for document anal-
ysis and retrieval as these documents were collected and
scanned using a wide variety of equipment over time. In
addition, a significant percentage of Tobacco-800 are con-
secutively numbered multi-page business documents, mak-
ing it a valuable testbed for various content-based document
retrieval approaches. The Maryland Arabic dataset consists
mainly of Arabic handwritten business documents. Using
public datasets gives more realistic evaluation in contrast to



Table 1. Summary of the English and Arabic evaluation datasets.

Tobacco-800 Maryland Arabic

Document Types Printed/handwritten Mostly handwritten
Total Pages 1290 169

Resolution (in DPI) 150–300 200
Labeled Signatures 900 149

common published evaluations using self collected datasets
that captures much less variations. Typical dimensions of
documents range from 1200× 1600 to 2500× 3200 pixels
in Tobacco 800 and 1700× 1200 to 2000× 2600 pixels in
Maryland Arabic.

The groundtruth of signatures were manually labeled
in rectangular boxes using our developed Java editor [17].
Whenever possible, we also label the identity of the signer
by reconciling the document context. This enables quan-
titative evaluation on signature retrieval, where the identi-
ties of the signers are required. Since the number of sig-
natures vary significantly across documents, we assume no
prior knowledge on the distribution of signatures per doc-
ument. In our evaluation, we use all the documents in the
Tobacco-800 and Maryland Arabic datasets.

5.2. Evaluation

We focused on two aspects in our evaluation. First, we
use the detection probability PD and false-alarm probabil-
ity PF as metrics. PD and PF represent the two degree
of freedom in a binary hypothesis test and they do not in-
volve a prior probabilities of the hypothesis. To factor in the
“quality” of the detection, we consider a signature correctly
detected and complete if the detected region overlaps with
more than 75% of the labeled signature region. We declare
a false alarm if the detected region does not overlap with
more than 25% of any labeled signature region.

Fig. 7 shows the ROC curves on the Tobacco-800 and
Maryland Arabic datasets. Fisher classifier using size, as-
pect ratio, and spatial density features serve as a baseline for
comparison, with all other procedures remaining the same
in the comparison experiment. We use two scale levels in
multi-scale detection experiments. Parameters involved in
obtaining the ROC curves, including the cutoff threshold in
saliency and estimated signature dimensions, are tuned on
10 documents. We use the following approach to compute
each operating point on an ROC curve. After we compute
the saliency of each signature candidate, we store it with
the internal zone representation of the candidate. We ap-
ply a reasonably low global decision threshold for detection
and sort the ranked list of detected candidates from the en-
tire test set by their saliencies. To plot a new point on the
ROC curve, we move down the ranked list by one and look
at the portion of the ranked list from its top to the current po-
sition, which is equivalent to gradually lowering the global

(a)

(b)

Figure 7. ROC curves for (a) Tobacco-800 dataset and (b) Mary-
land Arabic dataset.

decision threshold. The entire sets of ROC curves computed
by this scheme as shown in Fig. 7 are highly densely packed
and include every operating point.

Multi-scale saliency approach gives best overall detec-
tion performance on both English and Arabic datasets. Us-
ing document context, our multi-scale signature detector
achieves 92.8% and 86.6% detection rates for the Tobacco-
800 and Maryland Arabic datasets, at 0.3 false-positives per
image (FPPI). Encouragingly, the advantage of multi-scale
approach becomes more obvious on a more diverse dataset,
like Tobacco-800. Exploring global context is more effec-
tive on machine printed documents as geometric relation-
ships among text lines are more uniform.

Second, we test how discriminative is our proposed
saliency measure in capturing the global cursive pattern em-
bedded in signatures. The handwritten Maryland Arabic
dataset serves better for this purpose, because variations
among local features including size, is not discriminative,
as evident from the poor performance of Fisher classifier.

Figs. 6 and 8 show samples of detected signatures from
Tobacco-800 and Maryland Arabic datasets, together with
their saliency maps. We show the top three most salient
parts in red, green, and blue, respectively. In our exper-
iment, a cursive structure is normally more than an order



Figure 8. Examples of detected signatures from the Maryland Arabic dataset, together with their saliency maps. The top three most salient
parts are shown in red, green, and blue, respectively.

of magnitude more salient than printed text of the same di-
mensions. However, we did find a few instances of printed
text among false alarms that obtain saliencies comparable to
signatures because of their highly cursive fonts, as shown in
Fig. 9(a). A limitation of our proposed method is that the
detected and segmented signature may contain a few touch-
ing printed characters when signatures overlap with very
strong background. Nevertheless, the quality of segmented
output by structural saliency is considerably better.

For better interpretation of the overall detection per-
formance, we summarize key evaluation statistics. On
Tobacco-800, 848 signatures out of the 900 labeled signa-
tures are correctly detected, by the multi-scale saliency ap-
proach using document context in Fig. 7(a). Among cor-
rectly detected signatures, 83.3% are complete. Their mean
percentage area overlap with the groundtruth is 86.8% with
a standard deviation of 11.5%. As shown in Figs. 6 and 8,
the quality of detected signatures is comparable to manually
cropped versions. This demonstrates that using connected
components give extracted signatures of impressive quality,
and it does not necessarily limit the detection probability
when used in a multi-scale approach. In fact, these figures
are close to the machine printed text word segmentation
performance level from leading commercial OCR product
on Tobacco-800 documents. The results on the Maryland
Arabic dataset are also very encouraging as the collection
consists mainly of unconstrained handwriting in complex
layouts and backgrounds.

5.3. Discussion

On the saliency maps, an edge detector generates two
parallel contour segments from a stroke since both of them
are local maxima in gradient magnitude. A ridge detector

can reduce the level of saliency computation and give more
compact segmentation output, since it generates only one
contour response for each stroke. However, a ridge detec-
tor [12] performs much worse in signature detection in our
experiments. This is because the Canny edge detector pro-
vides good localization that guarantees accurate estimation
of local gradient directions, even under significant amount
of degradation. Another factor in favor of using edges is that
saliency computation takes only a small portion of the total
computation, as compared to obtaining the coarse-scale rep-
resentations of the image and running edge detection.

Some examples of false positives from the Tobacco-800
set are shown in Fig. 9(a), which include cases of hand-
writing. The classification between signature and handwrit-
ing is sometimes not well posed by considering only shape.
Highly cursive handwritten words may not have any ob-
vious visual differences from signatures, as illustrated by
handwriting shown in Fig. 9(a). Using document context
could not effectively resolve such intricacies because they
are primarily handwritten annotations that are semantically
associated with the printed content in the document. To
some extent, semantics should be exploited to solve the am-
biguity in this case.

Fig. 9(b) shows examples of false negatives in detection.
These missed signatures are so severely broken, that a step
edge operator like Canny could not form reasonable con-
tour fragments, even at a coarse scale. As shown on most
signatures, however, using multiple scales for detection par-
tially overcome the limitations of connected-components-
based approach by relaxing the requirement that the con-
tour fragment be well connected at a particular scale. This
improvement is more clearly observed on the Tobacco-800
dataset, which contains more highly degraded images at low
resolution.



(a)

(b)

Figure 9. Examples of (a) false alarms and (b) missed signatures
from the Tobacco-800 dataset.

6. Conclusion

In this paper, we propose a novel signature detection ap-
proach based on the view that object detection can be a pro-
cess that aims to capture the characteristic global structural
saliency of the object over multiple scales. This is differ-
ent from the common object detection framework that fo-
cuses on sets of local properties of the object. The results
on signature detection on multi-language datasets show that
our approach is very effective on real document collections
that have large variations. One advantage using multi-scale
saliency approach for joint detection and segmentation is
that it provides a general framework for which detection and
segmentation degrades gracefully as the problem becomes
more challenging. In addition, detected and segmented out-
put looks both structurally and perceptually meaningful.
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