
Consistent Temporal Variations in Many Outdoor Scenes

Nathan Jacobs, Nathaniel Roman, and Robert Pless

Department of Computer Science and Engineering

Washington University in St. Louis St. Louis, MO, 63117

{jacobsn,ngr1,pless}@cse.wustl.edu

Abstract

This paper details an empirical study of large image sets

taken by static cameras. These images have consistent cor-

relations over the entire image and over time scales of days

to months. Simple second-order statistics of such image

sets show vastly more structure than exists in generic nat-

ural images or video from moving cameras. Using a slight

variant to PCA, we can decompose all cameras into com-

parable components and annotate images with respect to

surface orientation, weather, and seasonal change. Experi-

ments are based on a data set from 538 cameras across the

United States which have collected more than 17 million

images over the the last 6 months.

1. Introduction

What can we learn from a static camera that observes

the same environment over long time periods? The statis-

tics of image variations observed from such cameras has not

been well studied, despite the fact that an enormous num-

ber of fixed cameras are capturing images every minute.

Here we characterize patterns of variation common to nat-

ural sequences from any static camera. Our study is based

on a data set of images taken every half hour over the last

6 months from 538 cameras distributed across the United

States.

We initially follow the methods and approach of work

characterizing the statistics of arbitrary natural image

patches and windows of short video clips. But for video

taken from a single viewpoint, the same analytic tools find

much more specific statistical correlations. These corre-

lations relate to important scene features. For example,

image regions that share geometric features such as sur-

face normal and depth have correlated responses to light-

ing changes. Clustering of appearance changes [4] and ex-

plicit modeling of the physics of scattering media [5] have

shown impressive results on segmenting scene structure and

weather patterns of long sequences of images from a static

camera [6]. We claim that these structures are available in

Figure 1. The components of the canonical day decomposition

code for lighting variations. The above shows a collection of pairs

of an example image from a camera, and a false color image made

from the first 3 components of the canonical day decomposition.

The colors indicate sky (light blue), trees (light green), eastward

facing wall (orange), westward facing wall (blue).

data from static cameras without complicated algorithms or

physical modeling, using only principal component analysis

over time scales of days, weeks, and months. Furthermore,

static cameras show surprisingly similar types of variation

which can be unified into a canonical decomposition. This

supports the automatic annotation, in any static camera, of

the scene structure at a pixel location. Figure 1 shows an

example of this automated annotation for data taken for a

month from 12 cameras with colors indicating sky (light

blue), trees (light green), eastward facing wall (orange),
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westward facing wall (blue).

1.1. Background and Related Work

Studies of natural images have considered second-order

statistics through the PCA decomposition [3], and, more re-

cently, using higher order statistics and Independent Com-

ponents Analysis (ICA). When ICA is applied to natural

image patches to find optimal sparse codes, it gives basis

images that appear very similar to receptive fields in the vi-

sual cortex (for example [8, 10]). However, these statistics

are only computed for relatively small patch sizes because

in natural images there are only weak correlations between

pixels that are far apart.

In replicating these studies on image patches taken from

the same location in a static camera, we find empirical evi-

dence (see Section 3) that location specific bases are much

more informative than patch bases developed on generic

natural image patches. These bases reflect stronger corre-

lations between distant pixels, and these strong correlations

exist over extremely large patches.

Correlations between multiple images have been studied

for natural video where the dominant cause of image change

is camera motion. In this case, small space time patches

have non-separable spatial and temporal correlations [2],

and in optimal sparse codes designed for such time-varying

natural imagery, nearly all of the basis functions code for

motion [7]. These are also studied largely on small patches

as correlation between pixels decrease with longer spatial

and temporal distances.

In Section 4 we explore temporal correlations in natural

video sequences at time scales of a day and longer. We find

strong correlations that exist in every static camera across

the entire image and throughout the entire 6 month length

of our data set.

2. AMOS: Archive of Many Outdoor Scenes

The AMOS dataset1 consists of over 17 million images

captured since March 2006 from 538 outdoor webcams.

This dataset is unique in that it contains significantly more

scenes than in previous datasets [6] of natural images from

static cameras. This enables us to empirically answer ques-

tion that were previously untenable.

The cameras in the dataset were selected by a group of

graduate and undergraduate students using a standard web

search engine. Images from each camera are captured sev-

eral times per hour using a custom web crawler that ignores

duplicate images and records the capture time. The images

from all cameras are 24-bit JPEG files that vary in size from

316×240 to 2048×1536, with the majority being 320×240.

1The dataset is available to the community at

http://www.cse.wustl.edu/amos/.

Figure 2. The covariant structure of multiple patches from the

same location in a scene is much more informative than the co-

variant structure of arbitrary patches in natural scenes. This is

apparent from the structure of the first 16 principal components,

comparing (top left) patches taken at random locations from an

image sequence, and (top right) patches taken from the same loca-

tion in 1999 images from a static camera. This effect holds over

many components and at many scales, the singular values of the

SVD are significantly lower (in the log-plot on the bottom left),

and the mean-squared error of the pixel intensity reconstruction

stays nearly constant as the patch size increases.

In addition to a large amount of image data, each cam-

era is assigned latitude and longitude coordinates; in most

cases the coordinates are assigned by a human but in some

cases the coordinates were estimated based on the camera

IP address. The majority of cameras are located in the con-

tinental United States.

3. Natural vs. Location-specific Statistics

We compare the second-order statistics of natural image

patches and location-specific patches. One goal of this is

to discover how much benefit there is to make a representa-

tional basis that is specialized to a particular location, and

to measure how this benefit scales with patch size. For all

basis computations in this work we use the singular value

decomposition (SVD) if memory permits and otherwise use

incremental SVD [1].

In this section, we characterize the singular values of

the SVD and reconstruction error for varying patch sizes

and linear basis functions. For each camera in the AMOS

database, we have approximately 2000 images taken dur-

ing October and November. Location-specific statistics are

created by randomly choosing a patch location, and for

each image collecting the pixel values of that patch in a

column vector Ij . We collect these vectors in a matrix



I = I1, . . . , In and compute the SVD I = UΣV T. We

compute the reconstruction error for 200 randomly selected

patch locations to determine the mean and standard devi-

ation. The natural (non-location specific) image statistics

were computed by selecting one patch from a random lo-

cation (uniformly across the image) in each image of the

scene. This naturally enforces the goal of using the same

number of patches, and sampling from images throughout

the day. This was also repeated 200 times, to determine

the mean and standard deviations of the singular values and

reconstruction error.

The results are shown in Figure 2; at the top are ex-

ample results from (left) natural image patches, and (right)

location-specific patches. The principal components of one

set of 2000 natural image patches resemble a 2D frequency

decomposition, as has been widely reported (see, for exam-

ple [9]). These components look qualitatively similar be-

tween different repetitions. In contrast, the principal com-

ponents for the location specific patches are drastically dif-

ferent from the natural components and between repetitions,

because they reflect the structure of the scene in view at that

location.

For a fixed patch size, the difference in the magnitude of

singular values remains large out to as many values as we

have computed, Figure 2 (bottom left) shows the mean and

variance of the singular values for a 16× 16 patch. The dif-

ferences become even more dramatic for larger patch sizes.

Using a fixed number of components (30), Figure 2 (bot-

tom right) reports the mean and standard deviation of the

mean-squared reconstruction error. This reconstruction er-

ror grows very slowly as a function of patch size, because

most variations in appearance from a fixed camera are light-

ing changes that affect large parts the scene.

Since the reconstruction error remains small for large

patches, we continue our analysis by considering principal

components over the whole image. Here we take a 2000

frame sequence and compute both the principal components

and the coefficients used to linearly reconstruct each image.

Figure 3 shows for three example cameras, a sample image,

the first three principal components, and the coefficient val-

ues plotted as a function of their time of day (color coded

by which day). These coefficients are strongly correlated

with time of day and are surprisingly similar between cam-

eras. This highlights the fact that not only are the second-

order statistics of static cameras interesting over large spa-

tial scales, but there is also structure through time that is

similar between multiple cameras. The remainder of this

paper explores structure in the SVD of images at daily, and

longer, timescales.

4. Daily Variations of Outdoor Scenes

In this section we explore temporal variations due to the

time of day. To isolate variations due to transient phenom-

Camera Coef 1 Coef 2 Coef 3 Coef 4
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Figure 4. Coefficients of daily variations are similar for static

images of outdoor scenes. Each row shows a plot of the first

through fourth principal component coefficients for a different

camera for an average day (a set of 48 half-hour average images

from June 2006). The horizontal axis of each plot is the time of day

and the vertical axis is the coefficient value. The coefficients for

different cameras are similar despite the fact that the correspond-

ing scenes are very different. The primary differences between

the coefficients of different cameras are due to three factors: a

shift due to local dawn/dusk time, permutation due to the relative

strength of different types of variation in the scene, and inversion

due to the SVD decomposition.

ena such as weather and moving objects we construct an

average day, a set of 48 average images, one for each half-

hour of the day, from all of the images from the month of

June 2006.

The SVD of this set of images highlights that while the

the principal components are strongly dependent on the

scene, the coefficient matrices V of different cameras are

surprisingly similar. Figure 4 shows the first four prin-

cipal component coefficients of several cameras, plotting

columns of the coefficient matrix Vi which, by construction

of our image set, corresponds to time of day.

The variations are due to three factors: a shift due to lo-

cal dawn/dusk time, a column permutation due to the rela-

tive strength of different types of variation in the scene, and

inversion due to the non-uniqueness of the SVD.

We temporally align the coefficient matrices Vi by con-

sidering the first column as a function of time and comput-

ing the extrema of its derivative (this corresponds to finding

the rise and fall of coefficient one in Figure 4). All coef-

ficient matrices are then linearly interpolated to have the

same number of coefficients before dawn, during the day,

and after dusk.

For cameras with known latitude and longitude, the stan-

dard deviation of our estimates when compared to standard

civil twilight on June 15, 2006 was 19 minutes. This is a

reasonable error value since there is only one image for ev-

ery 30 minutes.

The remaining variation is in the order and sign of



Figure 3. The most significant principal components of outdoor video captured by a static camera are often dependent on the time of day.

(a) Coef 1 (b) Coef 2

(c) Coef 3 (d) Coef 4

Figure 5. The first four canonical component coefficients learned

from the AMOS dataset.

the columns of the coefficient matrices. Starting from

temporally-aligned coefficient matrices Vi, we solve for a

coefficient matrix V̄ that is a solution to the following prob-

lem
minimize

∑n

i=1maxp∈P
∥

∥V̄ TpVi
∥

∥

F

subject to V̄ TV̄ = I

whereP is the set of generalized permutation matrices with

entry values in the set {0, 1,−1} and only one non-zero en-

try in each row and column. Figure 5 shows the first four

canonical coefficients learned from a randomly selected set

of 145 coefficient matrices.

Using V̄ , we can now decompose images from any cam-

era, in a way that facilitates image and scene understanding.

Given images Ij from camera j we can solve linearly for an

orthogonal matrix of canonical components Ūj and a diag-

Figure 6. Average reconstruction error of half-hour average images

for all cameras using three components.

onal matrix of weights Σ̄j that are the solution to

Ij = ŪjΣ̄j V̄j
T

(1)

where V̄j is V̄ temporally-aligned to this camera.

The canonical day decomposition is not as good, in the

squared error sense, at reconstructing images as the camera-

specific SVD for the same number of components, but it is

better than a generic low frequency decomposition (using

DCT coefficients in place of V ) by a factor of two. Figure 6

shows the reconstruction error by time of day.

The remainder of this section explores ways of directly

comparing entries in the canonical day decomposition to aid

scene and image understanding.

4.1. Image Labeling

Using the canonical day decomposition we can label in-

dividual images from the scene. Given any image Ij taken

at time t from the scene we project it onto the canonical

day components to obtain a vector of weights cj = Ūi
T
Ij .

These weights are then compared to the corresponding val-

ues, based on time of day, of the canonical day coefficients.



Figure 7. Using canonical day decomposition to determine

weather conditions. The plot shows two types of coefficients for

a set of images from a single camera. The solid line represents

the values of the second canonical day coefficient (automatically

aligned with dawn and dusk). The dots represent individual im-

ages from the camera with the x-value corresponding to the time

when the image was captured and the y-value equal to the length

of the projection of the image onto the second canonical day com-

ponent. The dots are colored based on a function described in

Section 4.1.

As an example, Figure 7 shows a scatter plot of images

colored by c = |V̄i(t, 2)Σ̄i(2, 2)| − |Ūi(:, 2)
T
Ij |. This mea-

sure correlates with the cloudiness of the current image.

4.2. Scene Segmentation

One reason to create the canonical coefficient matrix is

so that the canonical components that are computed follow-

ing Equation (1) have a consistent meaning across all cam-

eras. This allows one annotation scheme to be applied to all

cameras. We create a false color image whose three color

channels [R,G,B] are the third, second, and the negative of

the first canonical components (this order was chosen so

that strongly negative parts of the first canonical compo-

nent are blue, mimicking the sky). This false color image

strongly correlates with scene structure, and example im-

ages are shown in Figure 1, separating trees and horizontal

surfaces (light green), eastward facing walls (orange/red),

westward facing wall (blue).

5. Variations at Longer Timescales

We have shown that consistent patterns of daily varia-

tion occur across many cameras viewing a broad range of

scenes. In this section, we show preliminary work explor-

ing longer time scales. We find significant variations due to

weather conditions, human activity, and the change of sea-

sons.

We begin by examining variations that occur from day

(a)

(b)

Figure 9. Seasonal variations in outdoor scenes. (a) A subset of

15-day-interval average images for an outdoor scene. (b) The first

principal component (left) encodes primarily for the presence of

trees, the second (right) for different types of trees.

to day. In order to reduce effects due to the time of day we

only look at images from one hour of the day. We create a

set of 30 images for each camera, one for each day of June

2006, by averaging all images captured between 12:00pm

and 1:00pm on each day. We then decompose this set of

images using the SVD. Empirically, there is less regular

temporal structure in this basis, in the V matrix, than in the

basis of half-hour average images but the first component

often has interesting structure. While the first component is

often weather dependent it is occasionally caused by human

activity (see Figure 8 for examples).

We now turn to variations at much longer time scales,

here we focus on scene variations that occur at the scale of

many months. Variations of this type include changes in

shadow positions, changes in weather conditions (i.e., snow

on the ground), and changes in plants (i.e., the presence or

absence of leaves on deciduous trees). To reduce the effect

of short term causes, we create a set of average images for

each camera that includes primarily long-term variations.

To do this we divide the year into 15-day intervals and cre-

ate an image for each interval. The image is the average

of all images within the interval captured between 12:00pm

and 1:00pm. While we do not have sufficient data to draw

meaningful conclusions, the SVD of this set of images is

often highly structured (see Figure 9 for an example). As

the AMOS dataset grows, we plan on developing decompo-

sitions that are similar to the canonical day decomposition

but which are defined over much longer timescales.



Figure 8. Images of day-to-day variations, described in Section 5, organized by the value of the first principal component coefficient. This

value changes from day-to-day and is often dependent on the weather; occasionally it is dependent on human causes. The first principal

component of the scene on the bottom is dependent on the presence of cars in the parking lot.

6. Conclusion

We have found that image sets from static cameras have

strong correlations over large spatial and temporal extents.

The principle components of these data sets, and their

temporally-aligned variants, are useful because they can be

compared between cameras and provide simple and auto-

mated tools to extract scene structure. We believe that un-

derstanding long scale spatial and temporal correlations in

static video sequences is vital better understanding classic

studies of the statistics of natural imagery. It may also di-

rectly affect the compression and transmission of surveil-

lance video creation and maintenance of surveillance back-

ground models.
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