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Abstract

There is a need to restore color images that suffer from

distance-dependent degradation during acquisition. This

occurs, for example, when imaging through scattering me-

dia. There, signal attenuation worsens with the distance

of an object from the camera. A ‘naive’ restoration may

attempt to restore the image by amplifying the signal in

each pixel according to the distance of its corresponding

object. This, however, would amplify the noise in a non-

uniform manner. Moreover, standard space-invariant de-

noising over-blurs close by objects (which have low noise),

or insufficiently smoothes distant objects (which are very

noisy). We present a variational method to overcome this

problem. It uses a regularization operator which is distance

dependent, in addition to being edge-preserving and color-

channel coupled. Minimizing this functional results in a

scheme of reconstruction-while-denoising. It preserves im-

portant features, such as the texture of close by objects and

edges of distant ones. A restoration algorithm is presented

for reconstructing color images taken through haze. The al-

gorithm also restores the path radiance, which is equivalent

to the distance map. We demonstrate the approach experi-

mentally.

1. Introduction

Attention is increasingly being directed towards imag-

ing through scattering and attenuating media, such as haze

[5, 13, 15, 18, 23], water [9, 12, 14, 16, 21, 22, 27] and

tissue [6, 7]. It is important to overcome image degra-

dation problems associated with such media. In the open

air, this is needed for human activities such as driving and

flight [18], as well as for computer vision algorithms such

as recognition, tracking, and remote sensing. Underwater

imaging is used for research in marine biology, archaeology

and mapping, as well as for various industrialized applica-

tions [2, 17, 26]. Needless to say, imaging through tissue is

important for physicians.

While we mention very different imaging media and

modalities, they do share common challenging aspects. In

such media, the signal from a scene point is significantly al-

tered due to scattering and absorption. One of the main ef-

fects is the decay of this signal with distance. Since objects

in the field of view are at different distances from the im-

ager, image degradation is spatially varying. Several meth-

ods have been proposed to restore image taken through scat-

tering and attenuating media [9, 12, 14, 15, 16, 27], some of

which account for part of the spatially varying degradation

effects.

Although significant progress has been achieved, a ma-

jor problem that still needs to be addressed is noise. When

attempting to amplify attenuated signals, noise is also am-

plified. Since the degradation of the image is spatially vary-

ing, noise amplification is spatially varying as well. There-

fore, standard denoising of the image might over-blur close

by objects (which have low noise), or insufficiently smooth

distant objects (which are very noisy). As a result, noise

suppression should be adaptive to the distance map of the

objects. This distance map may be estimated using prior

knowledge, range finders or from the image itself. Since

the estimation of the distance map might be noisy, caution

should be taken in the adaptive denoising process. In the

case of color images, special care should be taken to pre-

serve color fidelity and edges.

In this paper, recovery is posed as an optimization prob-

lem, in which both the restored image and the path radiance

(which is a function of the distance map), are regularized.

The regularization operator is spatially weighted in order

to achieve dependency on object distances and edges. The

regularization operator itself, when used on color images,

exhibits special coupling between the color channels and

preserves the gradient directions. Restoration is achieved

by minimizing a functional. It results in a reconstruction-

while-denoising scheme.

We demonstrate our method by reconstructing images

taken through haze. They are based on frames taken us-
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ing a polarizer. The restoration process preserves important

features, such as texture of close by objects, edges of distant

ones and gradient directions of the color channels.

2. Distance-Dependent Degradation

A major way in which object distance affects image

degradation stems from the falloff of radiation reaching the

object at the distance, or the object radiance falloff due to

a disturbing medium. Here we describe a few examples.

Consider the use of an active illuminator, such as flash in

photography. Then, the object irradiance is approximately

inversely proportional to r2, where r is the distance of the

illuminator from the object. This relation applies to photog-

raphy in an open, clear environment. However, if the scene

is embedded in an attenuating medium, the problem is ex-

acerbated. The medium between the illuminator and the ob-

ject has a transmissivity of T lighting ≈ exp(−cr), where c
is the medium’s extinction coefficient [5]. This effect, as the

1/r2 falloff mentioned above, affects the object irradiance,

hence the radiance.

Even if the object irradiance is uniform, the object ra-

diance may fall off with the distance, if the object is

viewed through an attenuating medium. The radiation em-

anated from the object towards the camera is attenuated by

T = exp(−cz), where z is the distance between the object

and the imager. Any of these effects reduces the wanted sig-

nal as the object becomes more distant. Thus, reconstruc-

tion of objects is liable to be more noisy as distances in-

crease. Let R be the ideal object radiance, as measured if no

distance-dependent disturbances existed. Due to a distance-

dependent falloff characterized by T , the detected object ra-

diance is D = RT . Generally, the distance varies with the

image coordinates (x, y). Furthermore, the medium proper-

ties as well as the object radiance depend on the wavelength

band (or color), indexed by λ. Hence, we write

Dλ(x, y) = Rλ(x, y)Tλ(x, y). (1)

If the medium is scattering, it induces an additional dis-

turbance. Some radiation unrelated to the object is scattered

towards the camera. Its origin is the surrounding lighting,

part of which is intercepted by particles in the medium and

scattered. This creates an additive disturbance Aλ(x, y),
which is termed airlight [15] or path radiance when imaging

in haze. A similar effect exists in other media, e.g., under-

water, where it is called backscatter [9, 21, 22, 27]. Then,

the overall sensed radiance is

Iλ(x, y) = Rλ(x, y)Tλ(x, y) + Aλ(x, y). (2)

The path radiance and T are interdependent. In case of vi-

sion under natural lighting [15], Aλ = a∞

λ (1 − Tλ), where

a∞

λ is an environmental parameter, expressing the path ra-

diance when Tλ → 0, i.e, when the object is very distant.

This parameter can be extracted based on the raw image

data, and can be assumed to be constant across the field of

view. Note that 0 ≤ Aλ(x, y) ≤ a∞

λ , since 1 ≥ Tλ ≥ 0.

This stems from the fact that Tλ = exp(−cλz) and z > 0.

This relation between path radiance and Tλ yields a useful

estimation [23] of Tλ:

T̂λ(x, y) = 1 −
Aλ(x, y)

a∞

λ

. (3)

Coupled Unknowns

Eq. (3) means that if we have an estimate of Aλ(x, y),
then we can derive Tλ at each pixel. This facilitates in-

version of Eq. (1), hence restoring the object radiance

Rλ(x, y). In vision in haze or underwater [21, 22, 23, 24],

an estimate of Aλ(x, y) can be obtained by mounting a po-

larizing filter on the camera. Then, two images are taken

with the filter, in each of which the polarizer is oriented in a

different direction. One image is dimmer than the other and

is termed Imin
λ . The brighter image is termed Imax

λ . The

physical model of these images is1

Imin
λ (x, y) = Rλ(x, y)Tλ(x, y)+Aλ(x, y) (1 − pλ) , (4)

Imax
λ (x, y) = Rλ(x, y)Tλ(x, y)+Aλ(x, y) (1 + pλ) . (5)

Here pλ ∈ [0, 1] is an environmental parameter, which can

be automatically extracted [24] from these raw images.2

The unpolarized image is defined as the sum of the polar-

ized images:

Iλ = Imin
λ + Imax

λ . (6)

For illustration, such image data is simulated in Fig. 1. The

increase of degradation with distance is evident.

Eqs. (3,4,5) provide sufficient constraints to make the

joint estimation of Rλ(x, y), Aλ(x, y) and Tλ(x, y) well

posed, though it may be noisy. However, such a joint es-

timation introduces coupling between these unknown. As

we show later in this paper, this means that regularization

should be jointly applied to all the unknown fields.

3. Noisy Restoration

Let us add noise nλ(x, y) to a sensed image expressed by

Eq. (2). Then, suppose for the moment that both Tλ(x, y)
and Aλ(x, y) are perfectly known, i.e., these variables are

noiseless. In this case, a direct inversion of Eq. (2) yields

R̂λ(x, y) =
Iλ(x, y) − Aλ(x, y)

Tλ(x, y)

= Rλ(x, y) +
nλ(x, y)

Tλ(x, y)
. (7)

1The filter itself attenuates the image globally, but this scalar multipli-

cation is disregarded.
2It expresses the degree of polarization of the path radiance.



Figure 1. Simulated imaging through haze using a polarizer. There

is random image noise (PSNR=40 dB). [Left] Imax. [Right] Imin.

[Plot] The transmittance, T , as a function of y. It is plotted for the

red, blue and green color channels with respective plot colors. The

haze becomes dense where the transmittance is low.

The noise is amplified since generally Tλ(x, y) < 1. More-

over, noise amplification is spatially varying through its dis-

tance dependency. Different pixels generally correspond to

different object distances z, as described in Sec. 2. This af-

fects 1/Tλ(x, y), hence the noise amplification. At very dis-

tant objects, where Tλ(x, y) → 0, the restoration becomes

highly ill-conditioned.

The problem of noise is exacerbated by the fact that

Tλ(x, y) itself is typically unknown, and should be esti-

mated somehow. Such an estimate is noisy as well, and

this eventually increases the error and noise in the estimated

radiance R̂λ(x, y). We can see this specifically when look-

ing at polarization-based vision through haze, modelled in

Sec. 2. There, an unregularized estimation of the path radi-

ance is obtained from Eqs. (4,5) as

Âλ(x, y) =
Imax
λ (x, y) − Imin

λ (x, y)

pλ

= Aλ(x, y) + npath
λ (x, y). (8)

Here npath
λ (x, y) is the noise in the path radiance estimate.

Its variance is σ2
path = 2(σ/pλ)2, where σ2 is the noise

variance in each of the acquired images Imin and Imax.

Here, the raw images have independent noise. Based on

Eq. (3), the unregularized estimation of T is

T̂λ(x, y) = 1 − Âλ(x, y)/a∞

λ

= Tλ(x, y) + [npath
λ (x, y)/a∞

λ ] . (9)

When this noisy estimate of T is used in Eq. (7), it affects

R̂λ(x, y).

Figure 2. Noisy restoration based on the simulated images in Fig. 1

using Eqs. (7,8) and (9). [Left] Original ground truth image.

[Right] Restored image. The restoration is noisy in upper rows,

which correspond to low transmittance (see the plot in Fig. 1).

[Plot] The PSNR of the reconstructed image as a function of y, for

each color channel.

An example for the effect of noise in an unregularized

dehazed image is shown in Fig. 2. Clearly, the noise inten-

sity varies spatially with the scene distance.

4. A Variational Approach

Noise can be suppressed by regularization [20] which

can be based on a variational framework [8, 28]. This

framework employs the action of partial differential equa-

tions (PDEs) on images, serving the function of smooth-

ing operators. By a proper choice of these operators, this

smoothing can filter out the noise and still be edge preserv-

ing. Our approach has several interesting aspects. The PDE

formulation adapts to the spatially varying medium trans-

mittance T (implicitly, to z), to counter the intrinsic prob-

lem of noise amplification in the restoration process. In

addition, the formulation affects coupled fields which have

different natures: Rλ(x, y), Aλ(x, y) and Tλ(x, y). Finally,

this formulation applies to color (or spectral) images, hence

smoothing should be consistent in different channels λ. In

the following, we describe this framework in the context of

vision under hazy conditions.

Define {R̂} ≡ {R̂λ}all λ as the set of estimated fields

corresponding to the object radiance in all the wavelength

bands. Specifically, for color images, {R̂} ≡ {R̂λ}r,g,b,

where λ = r, g,b denote the red, green and blue color chan-

nels, respectively. Similarly, define {Â} ≡ {Âλ}all λ as the

estimated path radiance distribution in these bands. These

are the fields that we seek to optimize. The estimated trans-

mittance field T̂λ(x, y) is not explicitly included. Rather, it

is derived directly from Âλ(x, y) based on Eq. (3). Con-



sider a cost functional over these fields

J =

∫∫

Ω

F

(

{R̂}, {Â}
)

+ αR

(

{R̂}, {Â}
)

dxdy , (10)

where Ω is the image domain. Here F({R̂}, {Â}) is

a fidelity term, which measures how the observed data

fits the physical model given in Eqs. (3,4,5). The term

R({R̂}, {Â}) expresses regularization of the sought fields.

We focus on this term in Sec. 4.2. The parameter α weights

the regularization term relative to the fidelity term.

Minimizing J is accomplished by reaching ∂J/∂R̂λ = 0
and ∂J/∂Âλ = 0, or equivalently, solving its Euler-

Lagrange equations

∂F

(

{R̂}, {Â}
)

∂R̂λ

+ α
∂R

(

{R̂}, {Â}
)

∂R̂λ

= 0 (11)

∂F

(

{R̂}, {Â}
)

∂Âλ

+ α
∂R

(

{R̂}, {Â}
)

∂Âλ

= 0 (12)

for every λ. A common practice of PDE-based methods

is to apply the Euler-Lagrange equations in iterative steps.

Similarly, here we apply Eqs. (11,12) iteratively, one field

of Âλ or R̂λ at a time.

4.1. The Fidelity Operator

The fidelity term is derived from the physical model of

image formation, given in Eqs. (4) and (5). If we use the

mean-squared error criterion, then3

F({R̂}, {Â}) =

= 1
2

∑

λ

[

Imin
λ − R̂λ(1 − Âλ/a∞

λ ) − Âλ(1 − pλ)
]2

+ 1
2

∑

λ

[

Imax
λ − R̂λ(1 − Âλ/a∞

λ ) − Âλ(1 + pλ)
]2

.

(13)

The Euler-Lagrange equations require partial derivatives.

These are

∂F({R̂}, {Â})

∂R̂λ

= (1 − Âλ/a∞

λ ) · (14)

·
[

2Âλ − Imin
λ − Imax

λ + 2R̂λ(1 − Âλ/a∞

λ )
]

and
∂F({R̂}, {Â})

∂Âλ

= pλ(Imin
λ − Imax

λ + 2Âλpλ)+

+

(

1 −
R̂λ

a∞

λ

)[

2Âλ − Imin
λ − Imax

λ + 2R̂λ

(

1 −
Âλ

a∞

λ

)]

.

(15)

3For simpler notation, we omitted the (x, y) notation in these terms.

Yet, the underlying (x, y) dependency is maintained.

4.2. The Regularization Operator

The regularization term is based on Beltrami-flow, but

it is adapted to the spatially-varying nature of the noise.

Ref. [25] interprets an image as a manifold (surface) em-

bedded in a high dimensional space, where x, y are two co-

ordinates of this space, and the intensity at each of the λ
channels is represented as an additional dimension. Hence,

a color image is a manifold embedded in a 5-dimensional

space. From this viewpoint, image denoising can be inter-

preted as a process that minimizes the surface area of this

manifold.

Here we deal with two major fields. One is the object

radiance, which we wish to obtain per channel λ and loca-

tion x, y. We denote its corresponding manifold as R. The

other is the path radiance, having a corresponding manifold

A. The surface area of R is measured by the Polyakov ac-

tion [19], which4 is

∫∫

Ω

S(R)dxdy =

∫∫

Ω

√

det(GR)dxdy. (16)

Here GR is a 2× 2 matrix. Each of its elements depends on

the spatial location x, y. The element values are given [11]

by

gR11 = 1 + β2
∑

λ

(∂R̂λ/∂x)2

gR12 = gR21 = β2
∑

λ

∂R̂λ

∂x

∂R̂λ

∂y

gR22 = 1 + β2
∑

λ

(∂R̂λ/∂y)2 , (17)

where β is a parameter that sets the scale of intensity di-

mensions. Following Ref. [10], the use of Eq. (16) in the

regularization forces the color channels to spatially align.

Specifically, consider places where an edge exist at multi-

ple color channels at the same position x, y in the raw im-

ages. Then, its location will be maintained in {R̂}, in all the

relevant channels. This cross-channel coupling suppresses

color distortions.

Minimization of Eq. (16) is aided by its partial deriva-

tives.

∂S(R)

∂R̂λ

= D
[

√

det(GR)(GR)
−1∇R̂λ

]

, (18)

where ∇R̂λ is the spatial gradient of Rλ and D is the diver-

gence operator.

Now, we would like to incorporate an adaptation to the

medium transmittance. Hence, smoothing of R should not

be performed in close by scene regions, but should increase

4This expression holds for Euclidian spaces.



as the physical attenuation in the medium becomes more

significant. In addition, we would like the enhance the edge

preservation, in places where smoothing does take place.

We achieve this by using a weighting function

w(x, y) = wtrasmittance(x, y)wedge(x, y) (19)

in the smoothing operator, as we describe next. Then the

regularization derivative is set to be

∂R({R̂}, {Â})

∂R̂λ

= w(x, y)
∂S(R)

∂R̂λ

. (20)

Following Eq. (7), if no regularization is performed, the

noise variance of R̂λ is

σ2
R(x, y) ∝

σ2

[Tλ(x, y)]2
= σ2

[

a∞

λ

a∞

λ − Aλ(x, y)

]

, (21)

where Eq. (3) is used. Hence, we set

wtrasmittance(x, y) =

[

Âλ(x, y)

a∞

λ

]2

, (22)

where Âλ is an estimate of the path radiance. Note that

at image locations x, y where Aλ(x, y) → 0, i.e., at close

distances, wtrasmittance(x, y) = 0. Hence, no regulariza-

tion is preformed in these locations, as desired. On the

other hand, as Aλ(x, y) → a∞

λ , i.e., at very large dis-

tances, wtrasmittance(x, y) = 1, implying that regulariza-

tion is fully employed there. Eq. (22) monotonically adapts

to the estimated transmittance, between these two cases. A

similar idea, of adapting a smoothing operator to a distance

map by a weighting function was presented by [1] in the

context of rendering effects of defocus.

To enhance the edge preservation in places where

smoothing does take place (large object distances), we use

wR

edge(x, y) = [det(GR)]
−1/2, (23)

where GR depends on x, y as defined in Eq. (17). The

term
√

det(G) is a multi-channel edge indicator. The

use of Eq. (23) jointly with Eq. (20) (without the use of

wtrasmittance) is known as the Beltrami operator.5

Now, we address the estimated path radiance, Âλ, having

a manifold A. We define GA in analogy to Eq. (17), where

R̂λ is substituted by Âλ. The surface area of this manifold

is given similarly to Eq. (16), by

∫∫

Ω

S(A)dxdy =

∫∫

Ω

√

det(GA)dxdy, (24)

5This operator was also used for the processing of movies, color and

textures in [11].

and its partial derivatives are

∂S(A)

∂Âλ

= D
[

√

det(GA)(GA)
−1∇Âλ

]

. (25)

The noise in Âλ, is not amplified as a function of the trans-

mittance, as can be seen in Eq. (8). Therefore, adaptation of

the regularization to the transmittance is not needed. How-

ever, edge preservation is important, since it maintains dis-

tance discontinuities, such as mountain ridges. Similarly to

R̂λ, the enhancement of edge preservation is obtained by

using

wA

edge(x, y) = [det(GA)]
−1/2, (26)

and the regularization derivative is

∂R({R̂}, {Â})

∂Âλ

= wA

edge(x, y)
∂S(A)

∂Âλ

. (27)

A coupling between R̂λ and Âλ is imposed by the Eu-

ler Lagrange equations. Particulary, optimizing R̂λ requires

an estimate Âλ. Therefore, we use an iterative scheme, in

which optimization of R̂λ uses the estimate Âλ from the

previous iteration, and vice versa.

4.3. Minimization Scheme

We prefer to use an Alternating Minimization scheme as

was used by [4]. It iteratively propagates the derivatives to

solve the Euler-Lagrange equations:

1. Perform a noisy restoration (Sec. 2). Denote the re-

sults as Â
(0)
λ and R̂

(0)
λ . Let them initialize the follow-

ing steps.

2. Use Â
(t)
λ and R̂

(t)
λ obtained in the previous iteration t.

3. For every λ, solve R̂
(t+1)
λ by:

∂F({R̂(t+1)}, {Â(t)})

∂R̂
(t+1)
λ

+ αw
∂S({R̂(t+1)})

∂R̂
(t+1)
λ

= 0.

(28)

4. For every λ, solve Â
(t+1)
λ by:

∂F({R̂(t+1)}, {Â(t+1)})

∂Â
(t+1)
λ

+αwA

edge

∂S({Â(t+1)})

∂Â
(t+1)
λ

= 0.

(29)

5. Repeat steps 2,3,4 until convergence.

Eqs. (28,29) are nonlinear PDEs. Rather than solving

them directly, we use the Fixed Point Lagged Diffusive

method, which was used in [29]. More details can be found

in the appendix.



Figure 3. Variational-based restoration of the images simulated in

Fig. 1. [Left] Original ground truth image. [Right] Restored im-

age. The restoration has very low noise and the edges are sharp.

[Plot] As a function of y, the PSNR of the reconstructed image is

much higher than in Fig. 2.

5. Results

The minimization scheme presented in the previous sec-

tion was applied to the simulated example of Fig. 1. The

results are presented in Fig. 3. It can be seen that the recon-

structed object radiance resembles the original and it has

low noise. The edges are sharp and the colors are clear. The

PSNR as a function of the image row number is almost con-

stant and much better than that of the ‘naive’ reconstruction

(Fig. 2).

In order to compare our method to a state-of-the-art de-

noising algorithm, the Non-Local Means algorithm [3] post-

processed the ‘naive’ result (shown in Fig. 2).6 The postpro-

cessing result is shown in Fig. 4. The restored image suffers

from an artifact of blurred texture (e.g. the trees in the yel-

low bounding box). The PSNR is constant as a function of

y but it is worse than that of our method.

Our method was tested on real images taken in a hazy

day by a Nikon D100 having a linear radiometric response.

A polarizer was mounted on the camera and two consec-

utive frames were taken with different polarization states.

The captured images are depicted in Fig. 5. The ‘naive’ re-

construction is shown in Fig. 6. The reconstruction is noisy

especially in distant pixels. Our variational-based recon-

struction7 is shown in Fig. 7. It can be seen that the im-

age has low noise. Important features, such as texture for

the close fields and edges for the distant mountains are pre-

6Acknowledgements to G. Peyre for implementing the algorithm and

making it available via the MATLAB File Exchange.
7The object radiance of pixels where Âλ ≈ a∞

λ
cannot be restored.

Therefore, they were replaced by the noisy restoration of the path radiance.

Figure 4. Non-Local Means denoising of the ‘naive’ restoration of

Fig. 2. [Left] Original ground truth image. [Right] Restored and

denoised image. A major artifact: texture is blurred (e.g. the trees

in the yellow bounding box). [Plot] As a function of y, the PSNR

of the reconstructed image is worse than in our method .

served. The restored path radiance is shown in Fig. 8. It is

equivalent to the distance map.

6. Discussion

Our proposed method estimates coupled unknowns:

scene radiance and path radiance. Instead of a noisy esti-

mate, we obtained a regularized solution. This is obtained

using a minimization scheme, which adapts to important

characteristic of the scene: edges and distances. We believe

that this framework can deal with other non-uniform degra-

dation models. This would require changing the fidelity

term according to the physical model. Also the weights

should change according to the distance dependency.

Note that apart from attenuation and scene radiance, the

raw image is also blurred due to multiple scattering. We

now explore removal of this blur using distance-adaptive

deconvolution, within the same framework.
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Figure 5. Real polarization filtered images taken in a hazy day.

[Left] Imax. [Right] Imin.

Figure 6. Noisy restoration of the images in Fig. 5 using Eqs. (7,8)

and (9). The restoration is noisy, especially in pixels correspond-

ing to the distant mountain.

Appendix

The minimization scheme in Sec. 4.3 involves a nonlin-

ear PDE. This PDE can be solved by lagging the nonlinear

term of the Belrtami operator one iteration behind. Then,

for example, by knowing R̂
(t)
λ in some iteration t , R̂

(t+1)
λ

can be found by solving a linear PDE.

In operator form, we give the following operator defini-

tions:

LR(R̂
(t)
λ )R̂

(t+1)
λ ≡ 2

(

1 −
Â

(t)
λ

a∞

λ

)2

R̂
(t+1)
λ (30)

−
α(Â

(t)
λ )2D

[

√

det(G
R(t))(GR(t))

−1∇R̂
(t+1)
λ

]

(a∞

λ )2
√

det(G
R(t))

,

Figure 7. Variational-based restoration of the scene in Fig. 5. The

restoration has low noise, without excessive blur.

Figure 8. The estimated path radiance. Dark pixels indicate higher

path radiance and a larger distance to the objects shown in Fig. 5.

LA(Â
(t)
λ )Â

(t+1)
λ ≡ 2Â

(t+1)
λ





(

R̂
(t+1)
λ

a∞

λ

− 1

)2

+ p2
λ



 (31)

−
αD

[

√

det(G
A(t))(GA(t))

−1∇Â
(t+1)
λ

]

√

det(G
A(t))

,

KR ≡
(

1 − Â
(t)
λ /a∞

λ

)(

Imin
λ + Imax

λ − 2Â
(t)
λ

)

(32)

KA ≡
(

R̂
(t+1)
λ /a∞

λ − 1
)(

2R̂
(t+1)
λ − Imax

λ − Imin
λ

)

+

+pλ

(

Imax
λ − Imin

λ

)

.
(33)



Eqs. (28) and (29) can be written as

LR(R̂
(t)
λ )R̂

(t+1)
λ −KR = 0 (34)

and

LA(Â
(t)
λ )Â

(t+1)
λ −KA = 0, (35)

respectively. A direct solution for these equations, as re-

quired by each minimization step, would be

R̂
(t+1)
λ = LR(R̂

(t)
λ )−1KR = 0 (36)

and

Â
(t+1)
λ = LA(Â

(t)
λ )−1KA = 0. (37)

Since it is difficult to find and invert LR(R̂
(t)
λ ) and LA(Â

(t)
λ ),

the steps dR̂
(t)
λ and dÂ

(t)
λ are introduced

R̂
(t+1)
λ = R̂

(t)
λ + dR̂

(t)
λ , Â

(t+1)
λ = Â

(t)
λ + dÂ

(t)
λ . (38)

These steps can be found by

LR(R̂
(t)
λ )dR̂

(t)
λ = KR − LR(R̂

(t)
λ )R̂

(t)
λ , (39)

and

LA(Â
(t)
λ )dÂ

(t)
λ = KA − LA(Â

(t)
λ )Â

(t)
λ . (40)

Eqs. (39) and (40) can be solved using the conjugate gradi-

ent algorithm.
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