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Abstract

We present a novel object-specific segmentation method
which can be used in view-based object recognition systems.
Previous object segmentation approaches generate inexact
results especially in partially occluded and cluttered envi-
ronment because their top-down strategies fail to explain
the details of various specific objects. On the contrary, our
segmentation method efficiently exploits the information of
the matched model views in view-based recognition because
the aligned model view to the input image can serve as the
best top-down cue for object segmentation. In this paper, we
cast the problem of partially occluded object segmentation
as that of labelling displacement and foreground status si-
multaneously for each pixel between the aligned model view
and an input image. The problem is formulated by a maxi-
mum a posteriori Markov random field (MAP-MRF) model
which minimizes a particular energy function. Our method
overcomes complex occlusion and clutter and provides ac-
curate segmentation boundaries by combining a bottom-up
segmentation cue together. We demonstrate the efficiency
and robustness of it by experimental results on various ob-
jects under occluded and cluttered environments.

1. Introduction

During recent years, image segmentation has been inter-
leaved with object recognition by various approaches [15,
1, 14, 6, 7]. The main reason of the interaction is that with-
out specific constraints to guide the attention, image seg-
mentation problem is intrinsically ambiguous. Images in
real world are fundamentally ambiguous and our perception
of an image depends on a lot of complex factors. There-
fore, segmentation by itself is an ill posed problem without
means of guiding and judging the result. In that sense, com-
bining segmentation and recognition is expected to make
a well posed approach and to be of practical use because
object recognition can provide a meaningful constraint for
segmentation. Also, the approach can improve the perfor-

mance of both recognition and segmentation since there is
intertwined correlation between them.

1.1. Related Works

Previous object specific segmentation [15, 5] and ob-
ject class category segmentation [1, 6, 7] approaches com-
bine various top-down strategies with bottom-up segmen-
tation approaches. Deformable Templates [16] and Active
Appearance Models [3] can be used to object segmenta-
tion. But, they need a prior shape and a trained statistical
model of the target object that requires laborious supervi-
sion. Moreover, they are very sensitive to partial occlusion.
The recent works of object-specific segmentation were pro-
posed by Yu and Xhi [15] and Ferrari et al. [5]. Yu and
Xhi demonstrate that using graph theoretic framework a
specific object can be detected and segregated from back-
ground. However, their results generate coarse boundaries
in segmentation and cannot manipulate severe occlusion es-
pecially when occlusion splits the object. Ferrari et al. give
a simultaneous object recognition and segmentation method
which explores around initial local feature correspondences,
resulting in dense correspondences over target objects. Al-
though their method is robust and applicable even to de-
formable objects, it only gives rough segmentation by a set
of blobs.

The latest researches of object segmentation are focused
on object category or class rather than specific objects.
Borenstein et al. [1] use a discrete set of possible low-level
segmentations in order to minimize a cost function that in-
cludes a bias towards the holistic shape. Kumar et al. [6]
in their OBJ CUT algorithm make use of a trained layered
pictorial structure as top-down information for a graph cut
energy minimization. Levin et al. [7] propose a more ef-
ficient learning framework that simultaneously takes into
account low-level and high-level cues using Conditional
Random Field formulations. And, Tu et al. [14] in their
image parsing framework adopt AdaBoost object detection
as a proposal distribution over possible segmentation for a
data-driven Monte-Carlo sampling. They try to construct an
image hierarchy including categorical level. All these ob-
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ject category segmentation approaches indeed improve the
quality of achieved segmentations. But, they still gener-
ate coarse segmentation in occluded and cluttered environ-
ments.

1.2. View-Based Recognition as Top-Down Cue

The main problem of previous object segmentation ap-
proaches is that their top-down strategies fail to explain the
details of various specific objects. However, if we have both
the matched model view of the target object and the approx-
imated pose of it in the input image, we can expect more
exact segmentation by exploiting the very specific detailed
information of the model view aligned to the input image.
When it comes to a perspective of combining top-down and
bottom-up framework, we can simply say that the model
view aligned to the input image serves as the best top-down
cue for object segmentation.

Our approach is supported by the fact that a variety
of local invariant features bring about remarkable progress
of view-based object recognition. View-based approaches
using local features such as SIFT [8], Harris-Affine &
Hessian-Affine [10], and MSER [9] now give a practical
and robust solutions to automatic modelling and recogniz-
ing a wide range of 3D objects in cluttered and occluded
environments at about real-time speed. In this paper, we
propose the object segmentation method in thee view-based
recognition system. The problem of segmentation is cast
into that of labelling displacement vector and foreground
status simultaneously for all pixels in input image. We for-
mulate it by a MAP-MRF which minimizes a particular en-
ergy function. The inference is performed by loopy belief
propagation algorithm in this paper.

This kind of method is primarily for object-specific seg-
mentation rather than object ’category’ segmentation. Even
though object category segmentation is challenging prob-
lem and plays an important role, efficient object-specific
segmentation still have significance and also can provide a
cornerstone to object category segmentation.

2. Problems of Segregation After Alignment
One could think that if the matched model view and the

estimated pose are obtained by view-based object recog-
nition, the segmentation of the target object is easily per-
formed by simply measuring pixel-wise similarities after
aligning the matched model view to an input image. How-
ever, in practice, it is still difficult to segregate the recog-
nized object finely from the image due to several reasons.

For example, we can try to segment the target object
by thresholding the color difference between correspond-
ing pixels. First of all, given a set of model views, view-
based object recognition is performed on an input image.
In our experiment, we used Lowe’s method with SIFT [8].

(a) Model view matching

(b) Aligned image pair
Figure 1. Object recognition result and the aligned image pair. (a)
a red outlined region in the input is estimated pose of the matched
model view. (b) the aligned image pair consists of the matched
model view aligned to target object in the input (left) and the cor-
responding object part cropped from the input image (right).

Fig.1(a) illustrates a recognition result with given various
model views and an input image in which the target ob-
ject is cluttered and partially occluded. Fig.1(b) shows the
aligned image pair obtained by transforming the matched
model view to the input image.1 Then, we calculate color
dissimilarities for the corresponding pixels in the two im-
ages by measuring the distance in RGB color space. And,
it is binarized with appropriate thresholds to obtain the ob-
ject segmentation. The results are shown in Fig.2. In these
results, we ignore the pixels falling into background of the
aligned model view because there is no valid color informa-
tion for segregation.

The results in Fig.2 show poor segregation between fore-
ground and background. Partially, the illumination change
and noise might have caused the simple color difference
to be ineffective. However, those are not the main causes
because illumination conditions are similar and the noise
is negligible in this experiment. Considering the fact that
most of errors occurred on the region around the bound-
aries of different colors, the poor results must be mainly
due to alignment error. This alignment error partly comes

1In principle, our approach is compatible with any object recognition
method which provides sufficient pose information for alignment of model
view. We go on with this kind of aligned image pairs for proposed algo-
rithm in the following sections



Figure 2. Segmentation results by binarization of RGB color dif-
ference. 4 results are selected among lots of results generated by
various thresholds. In each pair, the left image describes pixels on
the target object by red color and the segmented result is shown
in the right. Lower right image shows zoomed part of bottom left
which is the best one among them.

from numerical error and insufficient information for align-
ment (e.g. insufficient correspondences of local features).
But, the more fundamental problem on the alignment is due
to the difference of viewing direction to 3D object between
the matched model view and the input image. In general,
images of non-planar 3D object cannot be aligned exactly
by any linear transformation unless the two images are ob-
tained exactly from the same viewing angle.2 In-depth rota-
tion of non-planar 3D object makes non-linear transforma-
tion and some self-occlusions between corresponding pix-
els. The results in Fig.2 explain these intrinsic alignment
problems of non-planar object.

3. Displacement-Foreground Labelling
The foregoing discussion suggests a conclusion that for

finer object segmentation it is needed to estimate some non-
linear transformation compensating the alignment error due
to the difference of viewing direction and the like. And, in
order to obtain good estimation, it is important that fore-
ground labelling should be inferred simultaneously with the
estimation of non-linear transformation in the process be-
cause they are innately correlated: if the foreground pixels
are known exactly, the displacement between corresponding
pixels can be solved with relative ease, and vise versa.

We consider estimating non-linear transformation be-
tween aligned image pair of non-planar 3D object as a kind
of optical flow problem, in which foreground status of each

2In more detail, especially in case of Lowe’s method that we used, it
only estimates an affine transformation, not a perspective one, so even a
planar object wouldn’t be accurately aligned at all angles.

pixel is estimated together for object segmentation. In this
manner, we cast object segmentation problem into a la-
belling problem. This kind of formulation has been used in
stereo correspondence problem. But, our method labels the
displacement vector and foreground status simultaneously
at each pixel of the input view with respect to the model
view in the aligned image pair. This method is illustrated in
Fig.3. Displacement denotes the vector from pixel position
in the aligned model view to the corresponding position in
the input image. Foreground status has a binary value rep-
resenting whether the pixel is on foreground or not in the
input image. Once we label correct displacement vector and
foreground status on all the pixels in the input image, opti-
mal object segmentation can be obtained by simply taking
all the foreground pixels.

4. Proposed Algorithm
We formulate Bayesian displacement-foreground la-

belling in a MAP-MRF framework. MAP-MRF modelling
and its variants have been successfully applied to various
vision problems. Our formulation was inspired by MAP-
MRF model for stereo matching problem in [13], and we
extended and modeified it to the displacement-foreground
labelling problem for object segmentation.

Figure 3. Displacement-foreground labelling. Given aligned im-
age pair, we label displacement vector and foreground status for
each pixel on the input image (upper right). In the bottom figures,
some corresponding regions are zoomed for illustration. The ar-
rows show the matched pixels by labelling the displacement of the
pixels in the input image (lower right). The dotted arrow repre-
sents that the pixel in the input is matched to a background pixel
or invisible pixel in the model view. While, the solid arrow means
a foreground or visible corresponding pixel.



We model the displacement-foreground labelling by a
coupled MRF: the observation nodes of our MRF model
correspond to the image pixel lattice of the input image in
the given aligned image pair. One observation node has the
some color information from the given aligned image pair
I , which is needed for estimating the displacement of the
pixel at the node position. D is the displacement vector
nodes defined on the observation nodes, and F is the fore-
ground status nodes also defined on them. Fig.4 illustrates
this coupled MRF. D consists of 2-dimensional vector val-
ues for each pixel. In F , each foreground status has the
value 1 for foreground, 0 for background.

Using Bayes’ rule, the joint posterior probability over D
and F given an aligned image pair I can be factorized as:

P (D,F |I) =
P (I|D,F )P (D,F )

P (I)
(1)

4.1. Likelihood Term

Assuming that the image noise follows an independent
identical distribution and S denotes the set of pixels in the
input image of the aligned image pair and, we can define
the likelihood as follows:

P (I|D,F ) ∝
∏

s∈S

exp (−φ(s, ds, fs, I)). (2)

where φ is an evidence function which relates how compat-
ible a displacement vector ds and foreground status fs at
pixel s is with the color information observed in the aligned
image pair I . Our likelihood estimates color dissimilarity of
corresponding pixels considering not only displacement but
also foreground status of the pixel s because the likelihood
of background pixels should not be determined in the same
way of foreground pixels.

We define, the evidence function φ as follows.

φ(s, ds, fs, I) = σφL(s, ds, I)fs +Kφ(1 − fs), (3)

Figure 4. MRF for displacement-foreground labelling. Two latent
nodes, displacement and foreground status are connected to each
observation node. Observation nodes correspond to the input im-
age pixels in the given aligned image pair.

where L(s, ds, I) is the matching cost function of the pixel
s with displacement ds given the aligned image pair I . If
the pixel is on background ( fs = 0 ), φ ignores the match-
ing cost and adopts a constant penalty energy Kφ which
prevents the background regions from prevailing.

4.2. Prior Term

The Markov random field has the property that the con-
ditional probability of a site in the field depends only on its
neighboring sites. Assuming N are the edges in the four-
connected image grid graph, the prior probability P (D,F )
can be expanded as:

P (D,F ) =
∏

(s,t)∈N

exp (−ψ(ds, fs, dt, ft)), (4)

where ψ is the compatibility function of pixels s and t , ds
and dt are the displacement vectors, and fs and ft is the
binary foreground status of the neighboring pixels s and t.
To enforce spatial interactions between s and t, we define ψ
as follows:

ψ(ds, fs, dt, ft) = γ(ds, dt) +Kψδ(fs − ft) + ρ(fs, ft),
(5)

where the first term γ penalizes the difference of displace-
ment assignments of neighboring pixels. The penalty means
the assumption that the neighboring pixels have similar dis-
placements. In other words, the object is assumed to be
smooth. The second term imposes constant penalty Kψ for
the change of foreground status so that foreground regions
and background regions tend to be clustered. The third term
ρ encodes region similarities incorporating bottom-up seg-
mentation result of the input image into our model. It pe-
nalizes the occurrence of boundaries in homogeneous re-
gions of the bottom-up segmentation. This bottom-up seg-
mentation cue encourages the boundaries to be placed along
bottom-up segmentation boundaries as possible.

We define γ function as a simple version of robust func-
tion used in [13]. Thus, we define γ by

γ(ds, dt) = min(σγ |ds − dt|,Kγ), (6)

where we model displacement discontinuity implicitly by
adopting the upper bound of penalty Kγ because abrupt
change of displacement can occur at object edges in non-
planar object. Therefore, if the difference of neighboring
displacements exceeds Kγ , γ regards it as displace discon-
tinuity implicitly and imposes the constant penalty which
controls the excess of the discontinuities.

Function ρ incorporating the bottom-up segmentation
cue is expressed as

ρ(fs, ft) =

{

Kρ if fs 6= ft and seg(s) = seg(t)

0 otherwise
(7)



where seg(s) denotes the label of the bottom-up segmen-
tation result at pixel s. This function penalizes the change
of foreground status between two neighboring pixels when
the pixels are in the same segmented region. For this pur-
pose, segmentation cue needs to be highly over-segmented
enough not to miss the boundary of the target object. But,
any bottom-up method can be used for this cue.

4.3. Inference Algorithm

Integrating all the detailed terms in eqs. (3), (5)-(7) into
the likelihood in eq.(2) and the prior in eq.(4), our Bayesian
displacement-foreground labelling model in eq.(1) is es-
tablished on MAP-MRF. There are several inference algo-
rithms to solve this MAP-MRF such as belief propagation,
graph cut, MCMC sampling and so on. In this paper, we
solve it efficiently by loopy belief propagation algorithm.
Belief propagation is an iterative inference algorithm that
propagates messages in Bayesian networks, which can ob-
tain an exact solution of directed acyclic graph. To find
the approximation of MAP solution of MRF with network
loops, the loopy belief propagation [13] ignores the exis-
tence of loops in the networks. It has been applied success-
fully for the solutions of various MAP-MRF problems [11].
Moreover, the efficient method [4] for belief propagation
substantially improves running time for inference. We use
the efficient loopy belief propagation algorithm to search for
the optimal labels of displacement and foreground status in
our implementation. 3

The inference process assigns individual energy for each
label in all the nodes in the proposed combined MRF model,
which can be actually interpreted as a scaled probability. In
that sense, our final decision for foreground status can be
interpreted as a probabilistic approach integrating bottom-
up and top-down cues, and consider contextual plausibility
in foreground segregation rather than the method used in
section 2.

5. Experimental Results
The proposed algorithm has been tested on several

aligned image pairs obtained by Lowe’s object recognition
method [8]. For the pixel matching cost function L of
eq.(3), we simply use the Euclidean distance in RGB color
space. Maximum length of displacement vector was set to
5 pixels long as we assumed that the initial alignment error
is not so big. The highly over-segmentation result of mean
shift color segmentation method [2] was used as the bottom-
up segmentation cue in function ρ of eq.(7). The parameters
of the proposed algorithm in our experiments are: σφ=0.07,
Kφ=3.65, Kψ=6.75, σγ=0.72, Kγ=25, Kρ=30.

3Note that in the respect of optimization rather than running time,
graph cut might produce better results than loopy belief propagation as
D. Scharstein and R. Szeliski have shown for stereo matching [12].

The results of our experiments are displayed with four
ways: (i) the displacement field (ii) the foreground status
field (iii) segmented object (iv) object image synthesized
from the model view using optimal displacement field.

Fig.5 presents the results obtained by our proposed al-
gorithm to the Mickey image appeared in section 2. The
algorithm was implemented in C++ and the time needed
for the segmentation was about 2 minutes on a machine
with Pentium IV 2.4GHz CPU and 2.0GB RAM with 64
iterations of belief propagation. As shown in Fig.5 (f) the
segmentation result is quite satisfactory despite clutter and
occlusions. Our segmentation corrects the naive pixel cor-
respondences of the previous binarization method in Fig.2
and makes accurate segmentation boundaries integrating a
bottom-up segmentation cue. From the synthesized image
(g), we can identify the displacements are well approxi-
mated because the synthesized object image using the la-
belled displacements has a strong resemblance to the object
in the input image.

Note that our algorithm detects and includes small in-
visible parts due to self-occlusion into the final segmenta-
tion in several parts of our test images. For example, the
self-occluded region around the Mickey’s nose is correctly
segregated unlike the result in Fig.2. Actually, in our for-
mulation, a local part that is invisible in the model view can
be incorporated into the segmentation if it is close to visi-
ble part with similar color. This is because the pixels in the
input are matched to pixels in the model according to the
proximity of color, distance, and bottom-up segmentation
boundaries.

In Fig.6, we demonstrate the performance on more tar-
get objects and input images. The results show the proposed
algorithm is robust to severe occlusions which split the ob-
jects as shown in the phone and drill and koala examples.
It is because the detailed appearance and pose information
from the aligned model view helps our segmentation al-
gorithm to segregate topologically complex occlusion and
clutter with estimated displacements.

Some results show our method is relatively sensitive to
color variation. When illumination changes, foreground
part of the object can be labelled background as shown
in the ramenbox example. In cup example, some part in
clutter is incorrectly labelled foreground because the part
is very similar with the model in color and position. The
shadow of cluttering objects in drill example disturbs the
boundaries of segmentation around it. However, consid-
ering the complexity of occlusion, clutter, and our simple
color similarity measure, the segmentation results of these
examples demonstrate the power of our formulation.

6. Conclusion and Future Work
We presented a new approach to object-specific segmen-

tation which exploits the information of the model view



(a) Recognition result (b) bottom-up segmentation cue (c) Color code map

(d) Displacement (e) Foreground (f) Segmentation (g) Synthesis
Figure 5. Segmentation of the Mickey image. (a) aligned image pair. (b) over-segmented bottom-up segmentation cue. (c) color code map
where the color represents the orientation and magnitude of the displacement vector from the input to the model view in the aligned image
pair. (d) displacement field shown in color coded fashion. (e) foreground status field covered on the input where blue pixels represent
foreground. (f) segmented object by the foreground status field (g) synthesized object image where encodes matched pixel colors of the
model view using the displacement field.

aligned to an input image in view-based recognition. We
demonstrated a difficult point in this kind of object seg-
mentation, which cannot be solved using a naive approach
of binarizing the color differences between the aligned im-
ages. Thus, the segmentation problem is reformulated into
displacement-foreground labelling problem, in which both
displacement and foreground status are simultaneously es-
timated for some non-linear transformation mainly caused
by the difference of viewing direction in two views of non-
planar 3D target object. We use the matched model view
and pose as top-down cue for object-specific segmentation
in our MAP-MRF framework. Then, Belief propagation
was used for inference of the solution. Finally, the exper-
iments demonstrate that our method is able to obtain good
segmentation despite severe occlusion and clutter.

In contrast to previous methods, our method provides
strong robustness to partial occlusion and clutter. But, it
is relatively sensitive to color variation (e.g. illumination
change or shadow) because our method uses simple pixel-
based measure of color similarity. Also, severe view-point
change and deformation can distract our method. Therefore,
in our future work, we will extend our algorithm to have
more robustness to color variation and shape deformation
of the target object. For illumination change, we can em-
ploy an adaptive parameter setting scheme that exploit the
color distributions around initially matched local features.
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