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Abstract

A popular approach to problems in image classification
is to represent the image as a bag of visual words and then
employ a classifier to categorize the image. Unfortunately,
a significant shortcoming of this approach is that the clus-
tering and classification are disconnected. Since the clus-
tering into visual words is unsupervised, the representation
does not necessarily capture the aspects of the data that are
most useful for classification. More seriously, the seman-
tic relationship between clusters is lost, causing the overall
classification performance to suffer.

We introduce “discriminative cluster refinement”
(DCR), a method that explicitly models the pairwise re-
lationships between different visual words by exploiting
their co-occurrence information. The assigned class la-
bels are used to identify the co-occurrence patterns that are
most informative for object classification. DCR employs
a maximum-margin approach to generate an optimal ker-
nel matrix for classification. One important benefit of DCR
is that it integrates smoothly into existing bag-of-words in-
formation retrieval systems by employing the set of visual
words generated by any clustering method. While DCR
could improve a broad class of information retrieval sys-
tems, this paper focuses on object category recognition. We
present a direct comparison with a state-of-the art method
on the PASCAL 2006 database and show that cluster refine-
ment results in a significant improvement in classification
accuracy given a small number of training examples.

1. Introduction

The success of vector space models for text information
retrieval [2, 24] has motivated considerable interest in anal-
ogous techniques for computer vision applications, such as

content-based image retrieval and object category recogni-
tion. The basic idea behind all of these approaches is to
represent a document by the histogram of its words (typ-
ically termed a bag-of-words), which is treated as a high-
dimensional vector. Given such a representation, classifi-
cation and retrieval can be accomplished using a large vari-
ety of techniques including k-nearest-neighbor, naive Bayes
and support vector machines [7]. For text applications, the
mapping between a document and its vector space repre-
sentation is straightforward since the concept of a “word” is
universal. However, the notion of a “word” for computer vi-
sion documents is less obvious since images are not intrin-
sically composed of a concatenation of discrete word-like
elements. Consequently, there has been significant interest
in identifying low-level features in images that could serve
an analogous role.

An attractive approach to defining word-like objects for
images is to employ unsupervised clustering over the low-
level features extracted from a large corpus of natural im-
ages. Popular candidates for these low-level features in-
clude small patches [1, 23] and local descriptors [17] that
are obtained either at specific interest points or densely sam-
pled over the image. Clustering is typically performed us-
ing an algorithm such as k-means [12], which identifies a
good set of k cluster centers to represent the features ob-
served in the corpus. Subsequently, each of the features in
a new image is mapped to a cluster (corresponding to its
nearest cluster center in feature space), enabling any image
to be represented as a histogram over the clusters. Such
ideas have shown promise in several computer vision appli-
cations [6, 10, 22, 25, 27].

Unfortunately, since the clustering into visual words is
unsupervised, the representation does not necessarily cap-
ture those aspects of the data that are most important for
classification. In particular, the semantic relationships be-
tween related clusters is ignored, which is detrimental to

1-4244-1180-7/07/$25.00 ©2007 IEEE



overall classification performance, as shown in Section 4.
This problem becomes much more serious when the number
of training images is small and is insufficient for reliably es-
timating the association between classes and a large number
of clusters. To see the problem more clearly, consider two
features fa and fb corresponding to the same concept. Due
to the winner-takes-all nature of vector quantization, each
feature is assigned to its closest cluster; thus these two syn-
onym features are mapped to two distinct dimensions, say
clusters Ca and Cb, in the vector space representation. Now,
when the number of training images is small, it is likely that
only one of these clusters appears in the training set. 1 Con-
sider the scenario where Ca appears in the training images
while Cb does not. In this case, the information related to
cluster Cb will be wasted, and not used as a part of the clas-
sification scheme. However, if one could learn that the clus-
ters Ca and Cb were strongly correlated, then the problem
would be avoided. This paper introduces a method, termed
“Discriminative Cluster Refinement” (DCR) to automati-
cally learn the important relationships between clusters de-
spite limited availability of training data.

Before describing discriminative cluster refinement in
greater detail, we briefly discuss two intuitive approaches
to the problem, which are unfortunately inadequate. The
first idea is to employ a soft assignment of features to clus-
ters: rather than clustering using k-means, one could use
an expectation-maximization (EM) to associate each fea-
ture with a distribution over cluster centers. The hope would
be that two related features would generate similar weights
over nearby cluster centers even if k-means would assign
them to different clusters. However, since the soft assign-
ment is unsupervised, it still ignores class labels during
clustering and fails to capture the relationship between clus-
ters that are related to the same object category (as specified
by class label).

The second idea is to incorporate the label information
into the clustering procedure. The simplest approach is to
augment the feature space with additional dimensions rep-
resenting the class label and attempt to generate clusters that
respect both the similarity according to the feature descrip-
tor and also the class label. A more complicated variant is to
learn a distance metric from the labeled images (e.g., [28]),
and to cluster the feature descriptors using the learned dis-
tance metric. The problem with this approach is that due to
the winner-takes-all nature, the resulting clusters may still
separate two closely-related feature descriptors into two dif-
ferent clusters.

The failure of the above approaches motivates the central
problem addressed by this paper: how should one exploit
the class-label information from the training data in order to

1Note that the clustering procedure should not limit itself to the key
points of training examples; instead, the visual vocabulary is constructed
based on key points of all images in the entire dataset.

discriminatively refine the clusters and achieve better accu-
racy for object categorization? To address this fundamental
question, we propose a framework that automatically aug-
ments cluster membership with the pairwise correlation be-
tween clusters. The key idea is to exploit the co-occurrence
data of clusters. The underlying assumption is that two dif-
ferent clusters are likely to be related to the same concept
if they co-occur frequently in the same images. However,
directly using the co-occurrence information for cluster cor-
relation estimation may be undesirable since unrelated clus-
ters can also co-occur frequently in the same images. To re-
solve this problem, we exploit the label information to iden-
tify the informative co-occurrence patterns. More specifi-
cally, the co-occurrence patterns between two clusters are
deemed to be informative when a support vector machine
(SVM) classifier is able to maintain a large classification
margin by collapsing these two clusters. To this end, DCR
extends the theory of the SVM [4] to incorporate the clus-
ter co-occurrence patterns into the maximum-margin clas-
sification model. An efficient algorithm based on the Sec-
ond Order Cone Programming (SOCP) [3] technique is pre-
sented to improve the computational efficiency.

The primary contribution of our work is that it can im-
prove a variety of existing bag-of-words approaches that
are popular in object recognition, and that the general idea
of unifying clustering with classification could significantly
improve a broad class of algorithms in computer vision. It is
important to note that our work is orthogonal to the work in
data clustering. Indeed, it can be used to improve the clas-
sification results based on any clustering results. It is also
important to emphasize that our work is particularly useful
when the size of the training set is limited. This is because:
• The cluster co-occurrence information can be collected

from both the labeled and unlabeled images. This in-
formation becomes particularly useful when the num-
ber of training examples is small.

• When the number of training examples is small, we
will expect that many clusters will only appear in a few
training images. As a result, the association between
these clusters and class labels may not be learned reli-
ably from the training examples. The proposed algo-
rithm is able to improve the estimation for the cluster-
class association by exploiting the estimated cluster
correlation.

2. Related Work
There have been a small number of attempts to improve

descriptor vocabularies and to integrate their construction
into the classification model learning process [9, 15, 21, 22,
27]. Winn et al. [27] compress an initial large vocabulary by
pair-wise word merging. Larlus and Jurie [15] take a differ-
ent approach to the problem by enhancing the latent aspects
concept. In previous approaches to latent aspect modeling,



the problem was broken down such that images were a mix-
ture of topics and topics were a mixture of words. Larlus
and Jurie extend this so that words are a Gaussian mixture of
descriptors, thereby learning the descriptor clusters as part
of their model. Both of these approaches show that smaller
dictionaries and allowing word dependency can lead to bet-
ter classification. Farquhar et al. [9] propose to construct
class-specific visual vocabularies using the Maximum A
Posterior (MAP) approach. Moosmann et al. [21] propose
to build discriminative visual word vocabularies using ran-
domized clustering forests. Perronnin et al. [22] charac-
terize images using a set of category-specific histograms,
where each histogram describes whether the content can
best be modeled by the universal vocabulary or by its corre-
sponding category vocabulary. Our work differs from these
approaches in the sense that our algorithm post-processes
the clustering, and enhances the performance of classifica-
tion by incorporating clustering information.

There has also been some work on defining a kernel for
the similarity between two sets of image descriptors. Grau-
man and Darrell introduce the pyramid match kernel [11]
for this task, however they do not use the training class
labels to improve the discriminative power of the kernel.
Lyu [18] introduces a new type of Mercer kernel, but once
again it does not take advantage of training labels.

3. Discriminative Cluster Refinement
In this section, we introduce Discriminative Cluster Re-

finement (DCR) and present an efficient algorithm for its
computation.

Let D = {I1, I2, . . . , Ina
} denote the collection of la-

beled and unlabeled images. Assume that the first n im-
ages are labeled by y = (y1, y2, . . . , yn), where yi is +1
when image Ii contains a given object category and −1
when it does not. To represent the content of each im-
age, we first extract keypoints and describe them using the
SIFT descriptor [17]. The descriptors from all of the images
(including both labeled and unlabeled data) are grouped
into m clusters. Each image can now be represented by a
histogram of the clusters corresponding to its descriptors.
Let bi ∈ Nm be the histogram for image Ii, and B =
(b1,b2, . . . ,bn) denote the histograms of all of the train-
ing images. We further denote the cluster histogram of all
of the images (including both labeled and unlabeled ones)
by F = (f1, f2, . . . , fm), where fi = (fi,1, fi,2, . . . , fi,na

)
represents the occurrence of the ith cluster in all na images.
This F matrix will be used in this paper to explicitly cap-
ture the cluster co-occurrence information. As discussed in
the introduction, one major drawback with using the clus-
ter histograms directly for object categorization is that the
clustering and classification are disconnected. The goal of
DCR is to estimate the cluster correlation that exploits the
cluster co-occurrence information.

3.1. Discriminative Cluster Refinement Framework

Since our framework is an extension of SVM theory, we
briefly review the dual formalism for SVM. An SVM solves
the optimization:

max
α

α>e− 1
2
(α ◦ y)>K(α ◦ y)

s. t. α>y = 0
0 ≤ αi ≤ C, i = 1, 2, . . . , n, (1)

where α = (αi, α2, . . . , αn) are the weights assigned to
the training images, e is a vector with all elements being 1,
and the symbol ◦ denotes an element-wise product between
two vectors. K ∈ Rn×n is the kernel matrix whose ele-
ments Ki,j represent the similarity between image Ii and
Ij . Furthermore, we denote the value of the objective func-
tion in Equation 1 by ω(K). It is well known that ω(K)
is inversely-related to the classification margin [4]. So, to
improve classification performance, we need to maximize
the classification margin, which is equivalent to minimizing
ω(K).

With the cluster histogram representation for images, we
can compute the kernel matrix K as K = B>B. One major
problem with such a similarity measurement is that two im-
ages will have zero similarity if they don’t share any com-
mon clusters. This is problematic if clustering is not per-
fect and mistakenly divides a group of closely-related key
points into two separate clusters. To address this problem,
we introduce the cluster correlation matrix M ∈ Rm×m

where each element Mi,j represents the correlation between
the ith and the jth clusters. Then, the goal of discrimi-
native cluster refinement is to estimate this cluster corre-
lation matrix. To this end, we define the kernel matrix as
K = B>MB, and search for the optimal cluster correlation
matrix B by maximizing the classification margin, which is
equivalent to minimizing the quantity ω(K). We thus have
the following optimization problem M :

arg max
M�0

ω(B>MB). (2)

Note that the above restricts the cluster correlation matrix
M to be positive semi-definite. This is a necessary condi-
tion for the kernel matrix K to be positive semi-definite.

The main problem with the formalism in Equation 2 is
that it completely ignores the co-occurrence information in
F when computing the cluster correlation M . In particular,
one could assign a large value to the correlation between
any two clusters that were not observed to co-occur in a
training image — resulting in a serious overfitting problem.
Thus, it is important to regularize the choice of cluster cor-
relation matrix M according to the cluster co-occurrence
matrix F . To this end, we consider an internal represen-
tation of clusters Z = (z1, z2, . . . , zm) where each vector



zi is the internal representation of the ith cluster. Then,
the cluster correlation matrix can be computed as MZ>Z.
Now, if the internal representation Z carries an equiva-
lent amount of information as the co-occurrence matrix F ,
we would expect that the matrix F can be recovered from
Z by a linear transformation. In other words, if F and
Z are roughly equivalent representations of clusters, then
there exists a matrix H such as F = HZ. Note that this
is similar to the idea of non-negative matrix factorization
(NMF) [14], which has been successfully applied to data
clustering. Thus, we reformulate the problem in Equation 2
as

arg max
M,H,Z

ω(B>MB)

s. t. M = Z>Z, F = HZ. (3)

The key challenge in solving the optimization in Equa-
tion 3 arises in two aspects. First, ω(K) is not an analytic
function. Rather, it is a function that results from the opti-
mization problem in Equation 1. Second, the regularization
of M does not come directly from the feature matrix F .
Instead, the regularization comes indirectly through the in-
ternal representation Z. To overcome the first challenge, we
rewrite the maximization problem in Equation 1 into a min-
imization problem by computing its dual, which leads to the
following problem for ω(K):

min
t,η,δ,ρ

t + 2Cδ>e

s. t.
(

K ρ ◦ y + λe
(ρ ◦ y + λe)> t

)
� 0

ρ = e + η − δ

δi ≥ 0, ηi ≥ 0, i = 1, 2, . . . , n.

By merging the above optimization problem with the prob-
lem in Equation 3, we obtain the following problem:

min
t,η,δ,ρ,M

t + 2Cδ>e

s. t.
(

B>MB ρ ◦ y + λe
(ρ ◦ y + λe)> t

)
� 0

ρ = e + η − δ

δi ≥ 0, ηi ≥ 0, i = 1, 2, . . . , n

F = HZ, M = ZZ>. (4)

To address the second challenge, we combine the con-
straint F = HZ and M = ZZ> into the following positive
semi-definite constraint(

M F>

F T

)
� 0, (5)

where T = HH>. The proof that the above condition is
equivalent to the constraints F = HZ and M = ZZ> is

given in the Appendix. Using the constraint in Equation 5,
we pose the optimization problem in Equation 4 as follows:

min
t,η,δ,ρ,M

t + 2Cδ>e + Cmtr(M) + Cttr(T )

s. t.
(

B>MB ρ ◦ y + λe
(ρ ◦ y + λe)> t

)
� 0

δi ≥ 0, ηi ≥ 0, i = 1, 2, . . . , n

ρ = e + η − δ,

(
M F>

F T

)
� 0. (6)

Note that in the above, we introduce two regularization
terms, i.e., Cmtr(M) and Cttr(T ), into the objective func-
tion. These are useful in improving the stability of the opti-
mal solution. The parameters Cm and Ct are used to weight
the importance of the two regularization terms, respectively.
They are set to be small values (i.e., 0.01) in our experi-
ments. Since the problem in Equation 6 is a Semi-Definite
Programming (SDP) problem [3], in general it can be solved
effectively using packages such as SeDuMi [26]. We do
not impose uniqueness constraints on Z and H , because the
goal is to compute M and T , thus any valid (Z,H) is suffi-
cient.

Given the estimated cluster correlation matrix M , we can
compute the kernel matrix K as K = B>MB, and solve
the SVM classification model with kernel matrix K using a
standard package such as LIBSVM [5].

3.2. An Efficient Algorithm for DCR

Although discriminative cluster refinement, as expressed
in Equation 6, can be solved using SDP packages, this is
typically very computationally expensive and does not eas-
ily scale to a large number of training examples. This sub-
section presents a computationally-efficient and scalable al-
gorithm for DCR.

Let {vi, i = 1, 2, . . . , n} denote the right eigenvectors
of matrix F , sorted in descending order of their eigenvalues
θi. We then assume that the cluster correlation M can be
constructed from the top s right eigenvectors of F , i.e.,

M = γIm +
s∑

i=1

(αi − γ)viv>i , (7)

where Im is the m × m identity matrix, and αi ≥ 0, i =
1, . . . , s and γ ≥ 0 are non-negative combination weights.
The introduction of term γIm ensures that the matrix M
is non-singular; this property is important when comput-
ing the expression for matrix T . By using Equation 7 for
M , we convert the positive semi-definite constraint M � 0
into simple non-negative constraints, i.e., γ ≥ 0 and {αi ≥
0}s

i=1. Furthermore, the number of variables in M , which
was originally O(n2), is now reduced to s + 1. Finally, we
highlight two special cases of Equation 7:



1. When {αi = 0}s
i=1, we have M = γIm. Thus, M is

proportional to the identity matrix Im, which indicates
that the clusters are treated independently.

2. When γ = 0 and {αi = θ2
i }s

i=1, we have M =∑s
i=1 θ2

i viv>i ≈ F>F . Thus, the solution M is ba-
sically F>F , which computes the correlation between
any two clusters based on their visual features.

Given M as specified by Equation 7, we can obtain an
expression from T . We use the Schur complement to con-
vert the constraint in Equation 5 into the following inequal-
ity: T � FM−1F>.

Since there is only one term in the objective function re-
lated to T , i.e., Cttr(T ), we can show that the optimal solu-
tion for T is

T = FM−1F>.

To efficiently compute M−1, we note that M in Equation 7
can also be written as

M =
s∑

i=1

αivivi +
n∑

i=s+1

γviv>i .

Thus, M−1 can be computed as

M−1 =
s∑

i=1

1
αi

vivi +
n∑

i=s+1

1
γ
viv>i

=
1
γ

Im +
s∑

i=1

(
1
αi
− 1

γ

)
viv>i .

From this, we can obtain the following expressions for T
and tr(T ):

T =
1
γ

FF> +
s∑

i=1

(
θ2

i

αi
− θ2

i

γ

)
viv>i (8)

tr(T ) =
1
γ

(
tr(FF>)−

s∑
i=1

θ2
i

)
+

s∑
i=1

θ2
i

αi
. (9)

The next step is to simplify the constraint(
B>MB ρ ◦ y + λe

(ρ ◦ y + λe)> t

)
� 0.

Using the Schur complement, we can rewrite the above con-
straint into the following form:

t ≥ (ρ ◦ y + λe)>(B>MB)−1(ρ ◦ y + λe). (10)

We can compute the quantity (B>MB)−1 as

(B>MB)−1 = B>(BB>)†M−1(BB>)†B,

where † denotes the pseudo-inverse of a matrix. By defining

u = (BB>)†B(ρ ◦ y + λe),

we have

t ≥ (ρ ◦ y + λe)>(B>MzB)−1(ρ ◦ y + λe)

=
1
γ
u>u +

s∑
i=1

(
1
αi
− 1

γ

)
(u>vi)2. (11)

Finally, the term tr(M) in the objective function of Equa-
tion 6 can be computed as:

tr(M) = tr

(
s∑

i=1

αiviv>i +
n∑

i=s+1

γviv>i

)

= (m− s)γ +
s∑

i=1

αi. (12)

By combining Equations 9, 11, and 12, we obtain

min
η,δ,α,γ,u

1
γ
u>u +

s∑
i=1

(
1
αi
− 1

γ

)
(u>vi)2 + 2Cδ>e

+Cm

(
(m− s)γ +

s∑
i=1

αi

)

+
Ct

γ
tr(FF>) + Ct

s∑
i=1

(
θ2

i

αi
− θ2

i

γ

)
s. t. ηi ≥ 0, δi ≥ 0, i = 1, 2, . . . , n

αi ≥ 0, i = 1, 2, . . . , s, γ ≥ 0
u = (BB>)−1B (λe + y + y ◦ (η − δ)) .

Furthermore, we can convert the above problem into a Sec-
ond Order Cone Programming (SOCP) problem [3] as fol-
lows:

min
a,b,d,w,u,α,δ,η

a +
s∑

i=1

bi + 2Cδ>e + Ct

(
w +

s∑
i=1

di

)

+Cm

(
(m− s)γ +

s∑
i=1

αi

)
s. t. δi ≥ 0, ηi ≥ 0, i = 1, 2, . . . , n

αi ≥ 0, i = 1, 2, . . . , s, γ ≥ 0
u = (BB>)−1B (λe + y + y ◦ (η − δ))

g =

(
Im −

s∑
i=1

viv>i

)
u

fi = u>vi,

(γ, a,g) ∈ Rcone, (αi, bi, fi) ∈ Rconeγ, w,

√√√√tr(FF>)−
s∑

i=1

θ2
i

 ∈ Rcone

(αi, di, θi) ∈ Rcone, i = 1, 2, . . . , s

where “Rcone” refers to the rotation of quadratic cone [26].
It is well known that a SOCP problem can be solved signif-
icantly more efficiently than a SDP problem.



4. Evaluation

4.1. Evaluation Dataset and Metric

We evaluate our approach on the PASCAL VOC Chal-
lenge 2006 data set [8]. The challenging dataset contains
5304 images with 9507 annotated objects. Ten annotated
object classes are provided: bicycle, bus, car, motorbike,
cat, cow, dog, horse, sheep and person. The populations of
training/validation and test sets are well balanced across the
distributions of images and objects by class. As a multi-
object classification task, for each of the ten object classes,
the goal is to predict the presence/absence of at least one
object of that class in a test image. The binary classifica-
tion performance for each object class, is measured quanti-
tatively by the area under the ROC curve (AUR).

4.2. Local Detectors and Features

Our experiments closely follow the methodology de-
scribed in [19]. We employ two separate channels of image
representation, formed by two sets of SIFT [17] descrip-
tor features extracted at two complementary sets of inter-
est points: the Harris-Laplace detector [20], which captures
corner-like regions and the Laplacian detector [16], which
extracts blob-like regions. Following the notation in [19],
we denote these two channels as HS-SIFT and LS-SIFT, re-
spectively. The k-means clustering algorithm is applied to
the local patch descriptors to produce 1000 clusters for each
channel. Using the clusters of local feature descriptors, each
image is represented as a histogram of clusters. Each image
is represented by a concatenation of the histograms from
these two channels, denoted as (HS+LS)-SIFT.

4.3. The Baseline Method

We compare our algorithm against a state-of-the-art
method for object categorization [29], whose performance
within 1%−2% of the best in the object classification com-
petition of the PASCAL VOC Challenge 2006 [8]. The ba-
sic idea of this baseline method is to classify objects by an
SVM using the χ2 kernel [13] that is computed based on
the bag-of-features representation. To ensure that our im-
plementation of this baseline method is accurate, we first re-
produce the performance of object classification in the PAS-
CAL VOC Challenge 2006 as reported in [8]. For this initial
study, the χ2 kernel is first computed for the entire dataset
(i.e., 2618 training and 2686 testing images) based on the
dual channels of local descriptors. Then, the LIBSVM soft-
ware package [5] is used for object classification. Finally,
the posterior probability output of LIBSVM is used to to
compute the AUR. Table 1 compares our baseline imple-
mentation against the results reported for INRIA Marszalek
in [8]. Clearly, our baseline implementation achieves the
reported accuracy. The minor differences can be attributed

to potentially-different settings for the hinge loss parame-
ter C in the SVM. We find that the χ2 kernel is somewhat
sensitive to the choice of C; our experiments use C = 5.

4.4. Object Category Recognition with Limited
Training Data

This experiment focuses on the challenging problem of
object category recognition given a limited number of la-
beled images. We randomly select 100 images for training.
Both the baseline model and the proposed DCR algorithm
learn a classification model from this small training set. In
the implementation of the DCR algorithm, the top 200 right
eigenvectors of the F matrix are used for computing the M
matrix. The AUR is computed based on the prediction for
the 2686 PASCAL testing images. Each experiment is re-
peated eighty times, and the AUR averaged over these trials
is reported. Table 2 summarizes the AUR results of both
the baseline model and the DCR algorithm for the HS-SIFT
features, the LS-SIFT features, and the combined features.

First, we examine the classification results using the LS-
SIFT features. As one should expect, the classification ac-
curacy using the limited training set of 100 images is signif-
icantly worse than the results obtained from 2618 labeled
training images. However, we note that for a number of
categories, such as “bus”, “car”, and “bicycle”, one can
achieve a respectable classification accuracy even with this
limited training data. Second, we observe that the DCR al-
gorithm consistently improves over the baseline classifica-
tion accuracy. The most noticeable case is the “dog” object
category, whose area under the ROC curve is improved from
0.624 to 0.722 as a result of DCR. These results demon-
strate that the DCR algorithm is effective at improving the
accuracy of object classification when the training data is
limited.

A more careful examination of the classification results
indicates that DCR not only improves the classification ac-
curacy but noticeably reduces the standard deviation in the
classification accuracy. The standard deviations of DCR are
mostly less than 0.010, however, those of the baseline algo-
rithm are mostly between 0.010 and 0.020. The most signif-
icant case is category “sheep”, whose standard deviation in
AUR is reduced from 0.017 to 0.004. We hypothesize that
the large standard deviation in the classification accuracy of
the baseline model is mainly due to the small number of
training images. Given a small number of training images,
many feature clusters should only appear in a few training
images. As a result, the association between the feature
clusters and the class labels can not be reliably established.
In extreme cases, when the feature clusters do not appear in
any of the training images, no association can be established
between these clusters and the class labels. We estimate
that, on average, approximately 4 out of the 1000 LS-SIFT
feature clusters are not used by any of randomly-selected



Table 1. Validation of baseline implementation: comparison against the INRIA Marszalek entry in the PASCAL VOC Challenge 2006

Channel bicycle bus car cat cow dog horse motorbike person sheep
Baseline [HS-SIFT] 0.914 0.974 0.957 0.890 0.924 0.797 0.870 0.936 0.784 0.925
Baseline [LS-SIFT] 0.924 0.976 0.955 0.884 0.880 0.795 0.879 0.947 0.812 0.914

Baseline [(HS+LS)-SIFT] 0.934 0.980 0.964 0.913 0.926 0.834 0.901 0.964 0.833 0.934
(HS+LS)-SIFT [8] 0.929 0.984 0.971 0.922 0.938 0.856 0.908 0.964 0.845 0.944

Table 2. The AUR results on the PASCAL challenge 2006 dataset with 100 training examples.
LS-SIFT HS-SIFT (HS+LS)-SIFT

Object Class Baseline DCR Baseline DCR Baseline DCR
bicycle 0.784± 0.012 0.800± 0.006 0.764± 0.012 0.781± 0.004 0.793± 0.014 0.824± 0.003

bus 0.808± 0.021 0.842± 0.008 0.864± 0.016 0.888± 0.006 0.874± 0.016 0.881± 0.003

car 0.859± 0.005 0.863± 0.005 0.887± 0.003 0.897± 0.003 0.883± 0.003 0.891± 0.002

cat 0.725± 0.007 0.782± 0.001 0.778± 0.004 0.781± 0.003 0.776± 0.007 0.799± 0.001

cow 0.710± 0.010 0.735± 0.005 0.747± 0.011 0.767± 0.004 0.777± 0.010 0.779± 0.004

sheep 0.725± 0.017 0.796± 0.004 0.740± 0.012 0.765± 0.005 0.812± 0.008 0.842± 0.003

dog 0.624± 0.009 0.722± 0.002 0.654± 0.010 0.690± 0.003 0.674± 0.009 0.740± 0.002

horse 0.542± 0.014 0.601± 0.006 0.579± 0.016 0.659± 0.004 0.612± 0.016 0.655± 0.006

motorbike 0.737± 0.017 0.756± 0.010 0.717± 0.015 0.754± 0.004 0.750± 0.019 0.792± 0.007

person 0.596± 0.009 0.620± 0.003 0.595± 0.007 0.615± 0.002 0.622± 0.009 0.654± 0.002

100 images. Evidently, test images related to these miss-
ing feature clusters are likely to be classified incorrectly.
By contrast, the DCR algorithm can resolve the problem of
missing feature clusters by estimating the cluster correla-
tion. For a missing feature cluster, its association with the
class label can be reliably estimated through the correlation
with other clusters that appear frequently in the training ex-
amples.

We then examine the classification results using the HS-
SIFT features. Unlike the LS-SIFT features, for most cat-
egories the DCR algorithm only provides a slight improve-
ment over the baseline. An exceptional case is the “horse”
category, whose AUR improves from 0.579 to 0.659 with
DCR. For the standard deviation in classification accuracy,
we observe a similar result for the HS-SIFT as for the LS-
SIFT features, namely, for a number of categories, the DCR
algorithm significantly reduces the classification standard
deviation. Another interesting observation is that the base-
line model is able to improve the classification accuracy sig-
nificantly by switching from the LS-SIFT features to the
HS-SIFT features. However, the difference in classification
accuracy between the LS-SIFT and the HS-SIFT features is
marginal when using the DCR algorithm. This result indi-
cates that the DCR algorithm is less sensitive to the quality
of the local features.2 In particular, the DCR algorithm is
able to compensate for the weakness of a particular local
feature by exploiting the co-occurrence information of fea-
ture clusters.

2Here, feature quality refers not to the choice of descriptor (SIFT in
both cases) but to the value of an individual feature for classification.

Finally, we examine the classification results using the
dual channels of feature descriptors (i.e., (HS+LS)-SIFT).
Again, we observe that the proposed DCR algorithm con-
sistently improves both the accuracy and the reliability of
object classification for a number of categories. Based on
these results, we conclude that the proposed DCR algorithm
is effective both at improving the classification accuracy and
at reducing its standard deviation.

5. Conclusion
In this paper, we address an important problem for the

bag-of-feature image representation, namely that the local
features are clustered independently from the task of object
classification. In order to connect the feature clusters with
the class labels, we propose the discriminative cluster re-
finement (DCR) algorithm, which refines the cluster mem-
berships by automatically estimating the correlation among
clusters. To estimate cluster correlation, the DCR algorithm
effectively exploits the cluster co-occurrence data, which
can be collected from both the labeled and the unlabeled im-
ages. Furthermore, the DCR algorithm extends the theory
of support vector machines to effectively identify those co-
occurrence patterns that are most informative to the classi-
fication margin and ignore those that are irrelevant to object
classification. The most important feature of the DCR algo-
rithm is that it is orthogonal to the choice of the clustering
algorithm and thus can be used to improve the classification
performance for any clustering method. Empirical stud-
ies show that the proposed algorithm significantly improves
both the accuracy and the reliability of object classification



when the number of training images is small. Given the
practical difficulties involved in collecting large numbers
of labeled training images for object recognition, we be-
lieve that DCR will enable researchers to better exploit the
information contained in the limited training data. While
this paper presents DCR in the context of object category
recognition, the algorithm could be applied to a broad set
of classification problems. In future work, we plan to con-
duct experiment of DCR with more training samples, and to
evaluate the benefits of DCR in other domains.
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Appendix
In this appendix, we show that the condition in Equa-

tion 5 is equivalent to the constraint F = HZ and M =
Z>Z. First, it can easily be shown that, if F = HZ and
M = Z>Z hold, then Equation 5 will hold. This is be-
cause(

M F>

F T

)
=
(

Z>

H

)
(Z H>) � 0.

Second, we show that if Equation 5 holds, there exists H
such that F = HZ and M = Z>Z. This is because any
symmetric positive semi-definite matrix can also be written
as AA>. We can further write A = (Z>;H). By com-
paring the product AA> = (Z>;H)(Z,H>) to the ma-
trix in Equation 5, we obtain the constraint F = HZ and
M = Z>Z hold.
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