
Using Segmentation to Verify Object Hypotheses

Deva Ramanan
Toyota Technological Institute at Chicago

Chicago, IL 60637
ramanan@tti-c.org

Abstract

We present an approach for object recognition that com-
bines detection and segmentation within a efficient hypoth-
esize/test framework. Scanning-window template classifiers
are the current state-of-the-art for many object classes such
as faces, cars, and pedestrians. Such approaches, though
quite successful, can be hindered by their lack of explicit
encoding of object shape/structure – one might, for exam-
ple, find faces in trees.

We adopt the following strategy; we first use these sys-
tems as attention mechanisms, generating many possible
object locations by tuning them for low missed-detections
and high false-positives. At each hypothesized detection, we
compute a local figure-ground segmentation using a win-
dow of slightly larger extent than that used by the classifier.
This segmentation task is guided by top-down knowledge.
We learn offline from training data those segmentations that
are consistent with true positives. We then prune away those
hypotheses with bad segmentations. We show this strat-
egy leads to significant improvements (10-20%) over estab-
lished approaches such as ViolaJones and DalalTriggs on a
variety of benchmark datasets including the PASCAL chal-
lenge, LabelMe, and the INRIAPerson dataset.

1. Introduction
One of the open issues in object recognition is the role

of segmentation. Several issues remain unclear. Can one
quantitatively demonstrate that segmentation improves de-
tection performance? If so, how does one computationally
detect/segment in an efficient manner?

We address these issues with a simple but surprisingly
effective hypothesize-and-test framework. We leverage the
successful work on sliding-window pattern-recognition de-
tectors. We use these as attention mechanisms that propose
many hundreds of object hypotheses per image. By com-
puting a local figure-ground segmentation at hypothesized
detections, we show one can prune away many false hy-
potheses. We quantitatively show this strategy significantly
boosts the performance of the baseline sliding-windows de-

Figure 1. Window-based classifiers are the state-of-the-art for ob-
ject detection across many categories. These approaches typically
compute some linear function of edge-like features (such as thresh-
olded Haar wavelets or oriented gradients). Such approaches,
though quite successful, can suffer from a lack of explicit encod-
ing of object structure. We show typical false positives above. On
the left, the face detector becomes confused by edges in foliage.
The pedestrian detector (top) mistakens strong vertical edges for
a person, while the car detector (right) likes to fire on strong hor-
izontal edges. We propose to use figure-ground segmentation cues
in conjunction with edge-based window classifiers. For example,
one can remove the last false-positive person by explicitly reason-
ing about what pixels belong to the object versus the background.

tectors.
In this work, we use well-known state-of-the-art base-

lines – ViolaJones [16] for finding faces and DalalTriggs [3]
for finding pedestrians and cars. Such window-based clas-
sifiers perform quite well in practice - the DalalTriggs de-
tector yields the top score across many object classes (in-
cluding people and cars) from the PASCAL 2006 Visual
Object Challenge [4]. However, such “pattern-recognition”
approaches could be limited by their lack of encoding of
object shape/structure - one might find faces in trees or mis-
take pillars for pedestrians (Fig. 1).

To address these limitations, we use a verification stage
that computes a local figure-ground segmentation around
the candidate detection window. Though image segmen-

1

1-4244-1180-7/07/$25.00 ©2007 IEEE

Build fg/bg color models

Low

ScoreWindow−based

Detector

High

Score

graph cuts

Segment with

Local context with shape prior Linear shape classifier

Figure 2. Our algorithm for combined detection and segmentation. Given a putative detection window, we first double the size of the
detection to obtain local context. We build image-specific color models of the putative object and its local background using a category-
specific shape prior (middle). We show in Fig.3 how to automatically learn such priors. We use the prior to compute a weighed color
histogram for the object and its local background. These color models are fed into a graphcut algorithm to produce a fg/bg segmentation.
We then use the segmentation mask as a feature vector (fed into a linear SVM) to classify the putative detection as a true positive or false
positive. We visualize the linear classifier on the right, with light areas corresponding to positive weights and dark areas corresponding to
negative weights. The classifier is learned from training data, as shown in Fig.4.

tation is in general a hard problem, it is much easier with
top-down knowledge. The initial detection window defines
a rough scale and location of a known object category. This
information makes segmentation considerably easier. The
resulting segmentation identifies those pixels in the detec-
tion window that actually lie on the object.

This in turn allows us to use explicit shape cues to ver-
ify that an object is actually present. We learn a category-
specific shape classifier that distinguishes good segmenta-
tions from bad segmentations (obtained from false positive
windows). We show that such a strategy leads to state-
of-the-art performance (10-20% improvement over exist-
ing systems) across a number of difficult datasets, such
as the Pascal VOC2006 challenge [4], the INRIAPerson
database [3], and LabelMe [14].

2. Related Work
There are a number of approaches that combine recog-

nition with segmentation [12, 15, 11, 18, 10]. We focus on
segmentation, not as a goal in of itself, but as a mechanism
that quantitatively improves recognition performance. In
this way, our approach follows the spirit of [15, 10]. How-
ever we compute a local figure-ground segmentation rather
than a global image parse. Our work is more related in ap-
proach to [19] and the concurrent work of [13]. We differ in
that we employ shape classifiers to remove false-positives
and in our limited use of shape priors during segmenta-
tion (as described in Sec.4). Our evaluation component is
more involved, since we compare performance across mul-
tiple object classes with established baselines on benchmark
datasets.

The strategy of detection followed by verification dates

back to the hypothesis-and-test paradigm for model-based
vision [9, 7]. Such algorithms were introduced originally
for model alignment. Hypothesized 3D poses are veri-
fied with edge features computed from an image. Similar
ideas have also proved useful for category-level recogni-
tion [12]. These strategies require efficient mechanisms of
searching through hypotheses, and accurate tests that ver-
ify correct matches. We use scanning-window classifiers
as efficient attention mechanisms to generate candidate hy-
potheses, and verify matches with segmentation cues.

An important component of our verification stage is a
shape model that can distinguish between good and bad seg-
mentations (where bad ones are associated with false posi-
tive windows). Shape models in computer vision have a sto-
ried history, dating back at least to the deformable models
of [5, 6]. Our approach is different than most in that shape
is encoded discriminatively. Rather than scoring a segmen-
tation using an explicit model of face shape, we learn a clas-
sifier for face/non-face segmentations.

3. Overview

To overcome the typical false positives associated with
window-based detectors (Fig. 1), we would like to augment
the detector with a segmentation cue. This is computation-
ally difficult. As it is, window-based approaches need to be
fairly efficient, since one performs an explicit search over
hypotheses such as scales and translations. Enlarging the
search space to the set of all segmentations seems com-
putationally infeasible. We propose a simple hypothesize-
and-test framework to address these computational issues
(shown graphically in Fig. 2):

• Given an image, we run a baseline detector tuned to
generate many candidates (i.e., tuned for low missed-
detections and high false-positives). We typically en-
counter a few hundred candidates per image.

• At each hypothesized detection, we wish to obtain a
local figure-ground segmentation.

– To exploit top-down knowledge, we use a
category-specific shape prior to learn image-
specific color models for the object and the local
background. This prior is learned off-line from
training data, while the color-models are learned
“on-the-fly” at run-time.

– These color models are used in a graphcut frame-
work to segment the candidate image window
into figure/ground.

• We use a category-specific shape classifier to label a
putative segmentation as a true positive versus a false
positive. This classifier is learned off-line from train-
ing data.

4. Algorithm
At each hypothesized detection window, we wish to

identify those pixels that belong to the object. We first en-
large the detection window to examine the local image con-
text. We do not bother enlarging the window if the baseline
detector already uses an enlarged window with context (as
does DalalTriggs). We segment the pixels within the en-
larged window into object (foreground) versus background
using a binary graphcut [1]. A graphcut segmentation min-
imizes the following energy

E(l1, . . . , lK) =
∑

x

c(lx) + α
∑

x,y∈N

I(lx 6= ly) (1)

where lx is a binary label for pixel x, I is the identity
function, and N is the set of 4-connected neighbors. The
first term is a unary potential that defines to what extent an
individual pixel favors a foreground (fg) versus background
(bg) label. The second pairwise term defines to what ex-
tent neighboring pixels should agree. Here, we use an Ising
model [1].

Unary term: To score the unary potential, we need a
pixel-based model of the fg and bg. We use a color his-
togram. We first normalize each detection to a canonical
coordinate frame. Assume that for each pixel in given de-
tection window, we have a prior distribution that it will be
foreground – we call this pfg(x). We describe in Section 4.1
how to learn such distributions. We use the distribution
to calculate a foreground and background histogram color
model for a given detection window by

with box prior
Build fg/bg model

Average mask
fg mask

examples
Positive training

Figure 3. Learning a shape prior from unsegmented training data.
We run our detector on our training set (which known ground-
truth face locations). We use the positive detections to learn a
shape prior. We build a foreground color histogram from the de-
tected window, and build a background color histogram from a
local context window surrounding the detection. We use the color
models to classify the pixels as foreground/background. We av-
erage the masks across the positive training set to define a shape
prior.

Pr(fg(k)) ∝
∑

x

pfg(x)I(im(x) = k) (2)

Pr(bg(k)) ∝
∑

x

(1− pfg(x))I(im(x) = k) (3)

where im(x) is the bin number for pixel at location x.
We use 16 bins along each of the R,G, and B axes. In theory,
the bin index k could vary from 1 to 163 = 4096. In prac-
tice, we only consider bins with non-zero entries to avoid
numerical issues. Typically, we find only a few hundred
distinct colors at each detection window. The unary cost
will be negative log probabilities under the model:

c(lx = 1) = − log(Pr(fg(im(x)))) (4)
c(lx = 0) = − log(Pr(bg(im(x)))) (5)

Role of prior pfg: Typically, shape priors for graphcuts
appear explicitly in the unary term (usually in the form of
an unsigned distance function to a contour [13, 11]). In our
case, they only appear implicitly through the learned fg/bg
color models. We opted for this approach because we want
a strong low-level signal present in the final segmentation.
We do not want the segmentation to always look face-like
because we could be evaluating a false-positive detection.
We want to discover whether the resulting segmentation is
produced by a face. We do this by using our shape classi-
fier to determine if the segmentation indeed looks face-like.
This tension between the role of the prior and utility for ver-
ification is likely worth examining further.

Pairwise term: In our model, the pairwise term is a
single constant. We used α = .4 for all our experiments.
Possible extensions would be to make the term by contrast
dependent [1] or category-specific (tuned by say, cross val-
idation). We found this was not necessary.

Given the pairwise and unary term, we compute the
minimum-energy labeling of pixels as fg/bg, under Eq. 1.
This can be efficiently solved with a min-cut max-flow al-
gorithm [1]. This defines a binary segmentation mask that

we rasterize into a feature vector. We then perform linear
classification on the feature vector to verify that the hypoth-
esized detection was in-fact correct (Sec. 4.2).

4.1. Learning the shape prior

Our top-down prior for a fg/bg segmentation is a pixel-
based independent Bernoulli model. Each pixel x within
the detection window has a prior probability pfg(x) of be-
ing foreground, and a prior probability of 1− pfg(x) of be-
ing background. Given T training images with ground-truth
segmentations lt, the maximum likelihood estimate (MLE)
of pfg is the sample average:

pfg(x) MLE=
1
T

∑
t

ltx (6)

Unfortunately, there does not exist much segmented
training data. However, it is common to have bounding box
locations for positive training examples (as in PASCAL).
This allows us to construct a crude box-prior:

p0
fg(x) = I(x ∈ detection window) (7)

We use this initial shape prior to segment the training
examples by optimizing Eq.1 with graphcuts. The yields a
set of segmentations lt that we interpret as “ground-truth”.
Following Eq.6, we compute pfg by averaging them (see
Fig.3). This simple approach is similar to the unsupervised
algorithm from [17], though it avoids an explicit registration
step by leveraging ground-truth bounding boxes.

4.2. Learning the shape classifier

To learn the segmentation-mask classifier, we first ap-
ply our window-based detector to images from our training
set, where we know ground truth locations of objects. This
produces a set of true-positive and false-positive candidate
detections.

We then perform the graph-cut segmentation from Eq. 1
on the detected windows, using the prior learned from
Eq. 6. This produces a collection of true-positive and false-
positive segmentation masks. We define a feature vector
for each window consisting of the rasterized segmentation
mask appended by the raw score of the baseline detector:

fwindow =
[
l1 . . . lK rdet

]
(8)

We learn a linear SVM that separates the true and false-
positives. We tried various other nonlinear extensions (e.g.,
a Nearest Neighbor classifier, a Gaussian kernel SVM), but
saw no significant improvement. The linear model also pro-
vides an intuitive understanding of what the shape cues the
classifier is using. For example, from Fig.4, it is clear that
the classifier learns to penalize foreground pixels above the

examples
Positive training

Negative training
examples

learned prior
fg mask with

Linear classifier

Figure 4. Learning a shape classifier. We first run our baseline de-
tector on training images with known ground truth locations. This
yields a set of positive and negative detections. We learn image-
specific fg/bg color models for each detection, using the the shape
prior defined in Fig. 3. We use these color models to segment each
detection window, mimicking the run-time algorithm from Fig.2.
We then interpret the segmentation masks as features, and learn a
linear classifier the separates the positive training examples from
the negatives. We visualize the learned shape classifier on the
right, with light areas corresponding to positive weights and dark
areas corresponding to negative weights. In this case, the clas-
sifier favors segmentations that seem to capture the forehead and
neck. The classifier also penalizes foreground pixels above the
head and to the side.

head and beside the lower jaw. The classifier also favors
foreground pixels at the forehead, neck, and ears. These
simple constraints help separate true faces from false posi-
tives (from textured regions such as trees).

We show results in Fig.5 for applying the same learning
procedure to a window-based classifier for pedestrians and
cars. To learn a pedestrian shape-prior, we apply the proce-
dure from Fig. 3 to images of pedestrians. To learn a pedes-
trian shape-classifier, we apply the procedure from Fig. 4
to both positive and negative training images of pedestri-
ans. We similarly repeat for the car detector. The pedestrian
shape classifier favors foreground pixels at the head and pe-
nalizes foreground regions above the head. This constraint
helps removes false positives from long cylindrical objects
such as lamp posts. The car shape classifier penalizes fore-
ground pixels to the left and right of the car. This removes
false positives due to objects with long horizontal edges.

5. Results
We tune our baseline detection systems to yield low

missed detections and high false positives. For ViolaJones,
we prematurely truncated the last 5 stages of the cascade of
classifiers from the OpenCV implementation [2]. For Dalal-
Triggs, we lowered the bias threshold in the linear SVM
by 1. The shape priors and shape classifiers for ViolaJones
frontal/profile face detector were trained from the LabelMe

High

Score

Score
Low

graph cuts

High

Score

Segment with

Score
Low

Detection
Hypothesized

Detector

Window−based

Build image−specific fg/bg
color models with

category−specific shape prior
linear shape classifier

Category−specific

Figure 5. Algorithm for segmentation-based verification applied to people and car detection. Since the baseline window-based detector
includes local image context, we do not enlarge the window after detection (as in Fig. 2). The people classifier seems to learn the foreground
pixels along the head are important, and heavily penalizes foreground pixels above the head and bordering the legs. This removes false
positives with long vertical edges, such as pillars. The car classifier penalizes foreground pixels to the left and right of the putative car
detection. This eliminates false positives due to long horizontal edges, such as shrubs.

training set. The shape prior/classifier for the DalalTriggs
person detector was trained on the INRIAPerson training
set. Finally, the prior/classifier for the DalalTriggs car de-
tector was trained using the PascalCar training set. When
learning the prior/classifier, we use the same canonical win-
dow size as the baseline detector (except for ViolaJones, we
used twice the size due to to the enlarged window context).

Scoring: For all our experiments, we precisely followed
the evaluation methodology outlined in the PASCAL chal-
lenge [4]. A putative detection is considered true if the area
of overlap between the predicted window and the ground
truth window exceeds 50% of the area of the union of the
two windows. At most one putative detection can be as-
signed to a given ground truth object – any additional over-
lapping detections are labeled as false. As in the PAS-
CAL challenge, we summarize performance with the aver-
age precision (AP) computed from a precision recall (PR)
curve (see Table 1). Following conventions, it is com-
puted by averaging the precision at recall values spanning
{0, .1, .2, . . . , 1}.

LabelMeFaces: Since our procedure relies on comput-
ing a segmentation using color cues, we cannot use stan-
dard benchmarks for face detection (which are grayscale).
Instead, we collected all the face and head detections from
LabelMe (as of Aug 2006), re-verifying all detections man-
ually. This yields a quite large and varied dataset of 1,186
images containing 2,184 faces (see Fig. 9). We split the
images randomly into a train and test set. We use the train-
ing set to learn a separate shape prior and shape classifier
for frontal and profile faces. We use the test set to evaluate
both frontal and profile face detection.

We plot the PR curve for the LabelMe test set in Fig. 6.
Our segmentation-based verification stage improves perfor-
mance by 8.9% for frontal face detection, and 15.7% for
profile detection. These results are impressive given the
quality of our baseline ViolaJones detector. Segmentation
particularly improves profile detection. Profile face detec-
tion is known to be hard because the face contour plays a
crucial role. Typical frontal face detection algorithms focus
on internal edges, which are more reliable to extract. Our
segmentation procedure explicitly recovers the face/nonface

boundary (see Fig.9), and furthermore the segmentation-
mask classifier explicitly exploits it as a feature (see Fig. 2).

Pascal2006Cars: We show results using the car images
from Pascal2006. We use the designated training images to
learn the segmentation prior and classifier. We plot the PR
curve for the test set in Figure 7. The second row in Figure 9
shows some image results. The average precision for our
algorithm (.538) clearly outperforms the state-of-the-art of
.444 [4].

Pascal2006Person: We show results from the people
images in PASCAL. This is a very challenging dataset, with
current leading methods yielding a low AP of .164 [4]. Our
procedure again improves the state-of-the-art, yielding a
score of .188. We train our system using the training im-
ages from the INRIAPerson dataset. We show example test
images in the third pair of rows from Figure 9. We see that
many of the missed detections arise from people surrounded
by clutter around their lower body. Scenes involving people
riding motorcycles or horses prove difficult for a template-
based detector, since the edge responses generated by those
objects could confuse the detector. Again, explicit reason-
ing about segmentation helps in these challenging cases.

INRIAPerson: We plot the PR curve for testset perfor-
mance in Fig.7. We obtain an AP of .774, which is con-
siderably better than the default score of .708 we obtained
running the raw detector. The last pair of rows from Fig-
ure 9 shows some image results. Here, missed detections
often arise from non-standard body poses. This suggests
that a more sophisticated shape prior/classifier would help.

LabelMePerson and LabelMeCars: We also per-
formed experiments using the LabelMe test data from [8].
We use the car and pedestrian detector trained from the Pas-
calCar and INRIAPerson training images. Here, using all
the ground truth labels in the test set, our segmentation pro-
cedure provides very little improvement - 2.2% for people
and 6.0% for cars. When scoring large people and cars (of a
scale equal to the minimum scale of the baseline detector),
we see a noticable improvement of 8.42% and 12.5% re-
spectively. This data is harder than our other datasets since
people and cars tend to occur at smaller scales in the street
scenes. This suggests that it is indeed difficult to recognize
small objects using local information – as eloquently argued
in [8]. However, at larger scales, we argue (and demon-
strate) that local segmentation cues are still quite useful.

6. Discussion
Looking at Table 1, we tend to see a performance boost

between 10-20% across our datasets. This is impressive
given the quality of our baseline detectors. One might argue
the success of our approach comes from the use of color,
which is often ignored as a cue for recognition. For exam-
ple, our baseline detectors work mostly with grayscale data.
This is because color as a high-level object cue is not par-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

Det (0.276)

Det + Seg
 (0.335)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

Det (0.36)

Det + Seg
 (0.392)

LabelMeFace−frontal LabelMeFace−profile

Figure 6. PR curves for face detection on 1186 images from La-
belMe. On the left, we score performance for the ViolaJones
frontal-face detector implemented in OpenCV. On the right, we
score performance for the profile detector implementation. Our
segmentation-based verification improves frontal face detection by
8.9%, and improves profile detection by 15.7%. Our segmenta-
tion stage helps more in the high-precision/low-recall regime, and
proves to be quite effective for profile faces. This is because our
face segmentations tend to capture the face contour (see Fig.9),
which likely plays a useful role in profile face detection.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

ci
si

o
n

Det (0.708)

Det + Segment (0.774)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

ci
si

o
n

Det (0.427)

Det + Seg
 (0.538)

PascalCar INRIAPerson

Figure 7. PR curves for the DalalTriggs detector augmented with
a segmentation-verification step. On the left, we show results on
the PascalCar dataset. Our AP of .538 is considerably higher than
the best reported result of .444 [4]. On the right, we show results
on the INRIAPerson dataset. Our AP of .774 is also noticeably
better than the score of the initial detector (.708).

ticularly useful - not all cars are red. However, color can
be extremely helpful as a low-level segmentation cue – if a
particular car is red, we can identify car image regions by
looking for nearby red pixels. This in turn allows us to use
high-level shape cues for recognition.

We posit our argument applies to other low-level cues
such as grayscale intensity and texture. One important
caveat is that such an approach works best for medium to
large-scale detections - in our case, we observe that the min-
imum dimension of a detection needs to be roughly 30-40
pixels. When objects are smaller, it is likely that a large
spatial context plays a crucial role in recognition.

Dataset Det Det+Seg % increase
LabelMeFace-Frontal .360 .392 8.9
LabelMeFace-Profile .276 .335 15.7
Pascal-Car .427 .538 26.0
Pascal-CarBig .496 .644 29.9
LabelMe-Car .369 .391 6.0
LabelMe-CarBig .457 .514 12.5
INRIA-Person .708 .774 9.3
Pascal-Person .171 .188 9.9
Pascal-PersonBig .253 .294 16.2
LabelMe-Person .316 .323 2.2
LabelMe-PersonBig .582 .631 8.42

Table 1. Average Precision (AP) results across many datasets. Det
refers to the baseline detector, while Det+Seg refers to our ap-
proach of detection followed by segmentation-based verification.
The ‘Big’ datasets count a ground truth object location if it is not
truncated and larger than the minimize size of the baseline de-
tector. We score Person and Car detection on LabelMe using the
dataset from [8]. Our results on PascalCars (.538) and PascalPer-
son (.188) prove favorable to the best-reported results of .444 and
.164 [4]. Generally speaking, our segmentation-based verification
tends to boost performance from 10-20%, with a larger increase
for the ‘Big’ datasets.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

ci
si

o
n

Det (0.253)

Det + Seg
 (0.294)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

ci
si

o
n

Det (0.171)

Det + Seg
 (0.188)

PascalPerson PascalPersonBig

Figure 8. PR curves for person detection on PASCAL 2006. On
the left, we show results on the original testset. On the right, we
show results on an ’Big’ version of the dataset that only scores
large un-truncated objects. On the Big dataset, we show a large
improvement of 16.2%.

Broadly speaking, we argue that existing object detec-
tion systems operating in the mid to large-scale regime can
be improved by incorporating low-level segmentation cues.
We have proposed a simple and efficient hypothesize and
test mechanism for implementing such an agenda. We have
rigorously demonstrated state-of-the-art performance, im-
proving performance 10-20% over established baselines on
on several benchmark datasets.

Acknowledgments: Thanks to Navneet Dalal and Derek
Hoiem for discussions and code and Xiaofeng Ren for his
ViolaJones implementation.

References
[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. In ICCV (1), pages 377–
384, 1999.

[2] G. Bradski, A. Kaehler, and V. Pisarevsky. Learning-based
computer vision with intel’s open source computer vision li-
brary. In Intel Technology Journal, 2005.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[4] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool.
The pascal visual object classes challenge 2006 (voc2006)
results. In Selected Proceedings of the Second PASCAL
Challenges Workshop, 2006.

[5] M. A. Fischler and R. A. Elschlager. The representation and
matching of pictorial structures. IEEE Transactions on Com-
puter, 1(22):67–92, January 1973.

[6] U. Grenander, Y. Chow, and D. Keenan. Hands: a pattern
theoretic study of biological shapes. Springer-Verlag, 1991.

[7] W. Grimson and D. Huttenlocher. On the verification of hy-
pothesized matches in model-based recognition. In Euro-
pean Conference on Computer Vision, pages 489–498, 1990.

[8] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in
perspective. In CVPR, June 2006.

[9] D. Huttenlocher and S. Ullman. Object recognition using
alignment. In ICCV, page 102, 1987.

[10] C. R. J. Shotton, J. Winn and A. Criminisi. Textonboost:
Joint appearance, shape and context modeling for mulit-class
object recognition and segmentation. In ECCV, 2006.

[11] M. Kumar, P. Torr, and A. Zisserman. Objcut. In CVPR,
2005.

[12] B. Leibe and B. Schiele. Interleaved object categorization
and segmentation. In BMVC, 2003.

[13] J. Rihan, P. Kohli, and P. H. S. Torr. Objcut for face detection.
In ICVGIP, pages 576–584, 2006.

[14] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman.
Labelme: a database and web-based tool for image annota-
tion. Technical report, MIT, 2005.

[15] Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Image parsing:
Unifying segmentation, detection, and recognition. In Proc
ICCV, 2003.

[16] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001.

[17] J. Winn and N. Joijic. Locus: Learning object classes with
unsupervised segmentation. In ICCV, 2005.

[18] S. Yu, R. Gross, and J. Shi. Concurrent object recognition
and segmentation with graph partitioning, 2002.

[19] L. Zhao and L. Davis. Closely coupled object detection and
segmentation. In ICCV, pages 454–461, 2005.

Figure 9. Results on test images from various datasets. For each pair of rows, the top row displays results from the original window-based
detector. The bottom row shows detections obtained with a segmentation-verification step. Since we compute an explicit segmentation, we
visualize that as well. The green boxes denote true positive detections, while the red boxes denote false positives. The top pair of rows
show results from the LabelMe face dataset. The second and third rows show results from Pascal VOC2006 dataset (for cars and people,
respectively). The forth row shows results from the INRIAPerson dataset.

