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Abstract

Pattern variation is a major factor that affects the perfor-
mance of recognition systems. In this paper, a novel mani-
fold tangent modeling method called Discriminant Additive
Tangent Spaces (DATS) is proposed for invariant pattern
recognition. In DATS, intra-class variations for traditional
tangent learning are called positive tangent samples. In
addition, extra-class variations are introduced as negative
tangent samples. We use log-odds to measure the signifi-
cance of samples being positive or negative, and then di-
rectly characterizes this log-odds using generalized additive

models (GAM). This model is estimated to maximally dis-
criminate positive and negative samples. Besides, since tra-
ditional GAM fitting algorithm can not handle the high di-
mensional data in visual recognition tasks, we also present
an efficient, sparse solution for GAM estimation. The re-
sulting DATS is a nonparametric discriminant model based
on quite weak prior hypotheses, hence it can depict various
pattern variations effectively. Experiments demonstrate the
effectiveness of our method in several recognition tasks.

1. Introduction

Recognizing objects is a basic task in computer vision

and pattern recognition. Nevertheless, it is also a difficult

one. Taking face recognition as an example, face images

have inherent complex patterns and lie in high-dimensional

feature spaces. Moreover, their features are very sensitive to

the change of environment and the pose of subjects. In fact,

pattern variation is one of the most critical factors that af-

fects the performance of classifiers. People have been striv-

ing to develop invariant algorithms.

Manifold learning is very useful in developing such al-

gorithms. Intuitively, small variations will not change a

pattern’s identity, and they lie “smoothly” in the feature

space. Nonlinear dimensionality reduction methods like

ISOMAP [22] and LLE [20] greatly help us inspect the

structure of data. It is now commonly accepted that im-

ages of an object under changing conditions are on low-

dimensional manifolds. This structural information can be

used to derive effective invariant methods. Several manifold

learning methods have been proposed in recent years, such

as Laplacian Eigenmaps [3] and manifold tangent methods.

Readers are referred to [4] for more details.

Manifold tangent are effective in describing the local

structure of manifolds to facilitate classifications. Intu-

itively, manifold tangent refers to the direction in which the

manifold lies, and this direction is represented by tangent
vectors. As a forerunner, Simard et al. [21] proposed to

use tangent distance as a new distance measure that is in-

variant to common transformations and achieved promising

results in handwritten digit recognition. Hastie et al. [10]

suggest the concept of tangent subspace as a compact rep-

resentation of tangent vectors. In [13] Lee et al. presented

a unified framework called PTS for tangent subspace learn-

ing. They proposed to approximate tangent vectors by pat-

tern variations and model them by Probabilistic PCA [23].

Encouraging results were obtained using PTS.

However, existing manifold tangent learning methods

only consider intra-class variations and ignore the extra-

class information. In this paper, a discriminant model is

proposed to integrate both of them. We first take the intra-

class variations as the approximation of traditional tangent

vectors, which we call positive tangent samples. In addi-

tion, extra-class variations are considered and called nega-

tive tangent samples. Provided both positive and negative

samples, we use log-odds [5] to measure how significant

a pattern variation lies in the tangent space of a reference
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Figure 1. Tangent (TD) and Euclidean distance (ED). Mr is the

reference manifold at xr , and M ′
r is its first order approximation.

sample. This log-odds is then characterized by an additive

model which is trained to maximize its discriminant power.

The proposed approach is thus called Discriminant Addi-

tive Tangent Space (DATS). DATS is a flexible model since

it makes no hypothesis on the distribution of data, and esti-

mates the model in a nonparametric way. Besides, the curse
of dimensionality is seldom a problem in additive models.

Further, it is shown that this additive model for log-odds

is essentially a generalized additive model (GAM [11]). In

other words, we discriminatively model tangent spaces us-

ing GAM. When estimating the DATS model, we found that

existing GAM fitting methods usually have difficulties in

dealing with high-dimensional data. To solve this problem,

we present a novel direct sparse fitting algorithm which is

fast and memory efficient.

The rest of this paper is organized as follows. In section

2 we introduce tangent spaces and propose our discriminant

additive tangent space model. Section 3 gives a detailed

explanation on the direct sparse fitting procedure for GAM.

Experiments are presented in section 4. Discussions are in

section 5 and conclusions are drawn in section 6.

2. Additive Tangent Space
2.1. Tangent Methods Revisited

Letting x be a pattern and t(x, α) be an intra-class vari-

ation with parameter α, we have a class manifold Mx =
{t(x, α)} in the feature space. The tangent direction, repre-

sented by tangent vector, is T = ∂t(x, α)/∂α. With above

notions, Simard et al. [21] defined tangent distance (TD)

TD(x, xr) = min
α

‖xr + αT − x‖ (1)

where x is the test sample and xr is the reference. An il-

lustration of TD is shown in Figure 1. TD approximates the

reference manifold Mr by its first order Taylor expansion
and calculate the distance from x to Mr. In other words,

TD is the distance from test samples to “reference classes”

instead of single samples, thus it is insensitive to intra-class

variations. However, it has to traverse all the tangent vectors

so the computation load is high. TD has also been applied

to other classifiers e.g. serves as a kernel for SVMs [19].

Traditional tangent algorithms rely on prior knowledge

to obtain tangent vectors. For Optical Character Recogni-

tion (OCR) tasks, this knowledge is affine transformations.

Yet other variations (e.g. change of perspective) are often

very hard to model in prior. Lee et al. [13] proposed to

use local pattern variations to approximate tangent vectors.

These variations, which we call tangent samples, can be ob-

tained by computing the difference between reference sam-

ple xr and its intra-class neighbors, as:

Tr = {t|t = xi − xr, c(xi) = c(xr), xi ∈ Nk(xr)} (2)

where c(x) is the label of x and Nk(x) is x’s k nearest

neighbors. In this paper we adopt the same approach to

develop a general recognition algorithm.

Usually, obtained tangent vectors are redundant so a

compact and effective representation is favorable. Hastie et
al. [10] proposed the tangent subspace model, in which sin-
gular value decomposition (SVD) is performed on tangent

vectors to reduce the dimensionality. Lee et al. [13] used

Probabilistic PCA (PPCA [23]) to model the tangent vec-

tors and construct a probabilistic tangent subspace (PTS).

Then the projection residual of a pattern variation is cal-

culated as TD. However, PTS assumes that the global tan-

gent space can be depicted by a single Gaussian distribu-

tion. This is a rather strong assumption. Although they pre-

sented two kernel approaches to deal with complex cases,

the model’s clearance and efficiency are inevitably compro-

mised. Thus a flexible and efficient method is desirable.

Another important point is that existing algorithms char-

acterize manifold tangent only by tangent vectors that de-

scribe intra-class variations without considering samples

from other classes. Put it another way, they are devel-

oped from a generative view. Thus, the quality of estimated

model is heavily relied on the properness of model’s hy-

pothesis and the noise level.

2.2. Discriminant Additive Tangent Space

2.2.1 Discriminant Additive Modeling

Denote xr as the reference sample. Tangent dis-

tance/subspace methods are essentially the same: they both

calculate how far a test sample xt is from xr’s tangent

space. Traditionally, tangent spaces are derived using intra-

class variations, which may be obtained either from knowl-

edge or examples. However, in practice there are also extra-

class samples near xr. To obtain good performances, an al-

gorithm should be able to discriminate intra-class and extra-

class variations. Meanwhile, the latter can help model tan-

gent spaces more precisely when noise exists. Therefore,

we model the tangent space in a discriminative way incor-

porating both positive and negative tangent samples.

Denote t as a tangent sample obtained from the neighbor-

hood of each reference sample, we assign positive tangent

samples with label y=1, and negative tangent samples with

y=0 i.e.

T+ = {(t, y = 1)|t = xi − xr, xi ∈ N (xr), if c(xi) = c(xr)}
T− = {(t, y = 0)|t = xi − xr, xi ∈ N (xr), if c(xi) �= c(xr)}



where T+ and T− are positive tangent sample set and neg-

ative tangent sample set respectively.

Given a test sample xt we need to determine whether

xt lies in the tangent space of xr. In statistics, this yields

the null hypothesis H0 : y = 1. Denote t = xt − xr,

the probability that H0 is satisfied as P (y = 1|t), and the

probability that H0 is violated as P (y = 0|t) = 1 − P (y =
1|t). We adopt the log-odds [5] to measure how significant

the null hypothesis is true:

η(t) = log
P (y = 1|t)
P (y = 0|t) = log

P (y = 1|t)
1 − P (y = 1|t) . (3)

This significance actually serves as a probabilistic (inverse)

distance measure. The larger η is, the higher possibility that

xt is in xr’s tangent space i.e. xt and xr belong to the same

class.

To maximally discriminate intra-class and extra-class

variations, our goal is to maximize the following objective:

max
(
L(t) =

∑
ti∈T+

η(ti) −
∑

tj∈T−
η(tj)

)
(4)

Note that L = yL+(1−y)L, it is easy to show that equation

(4) is equivalent to

max
∏

i

P (yi = 1|ti)yiP (yi = 0|ti)1−yi , (5)

which is in fact the maximization of the likelihood of bino-
mial variables.

To achieve this goal, traditional Bayesian learning ap-

proaches need to estimate the posterior probabilities P (y =
1|t) and P (y = 0|t) or their corresponding conditional

probabilities. In this paper, we directly characterize the log-
odds η(t), and assume that it follows an additive model

η(t) = log
P (y = 1|t)

1 − P (y = 1|t) =
p∑

j=1

fj(tj) + ε (6)

where ε is a Gaussian noise with zero mean, p is the number

of features, tj is the j-th feature of t with fj as the corre-

sponding base function, whose form can be arbitrary.

A closer look at (6) shows that it is in fact a well-

known statistic regression model: generalized additive
model (GAM [11]). From the perspective of GAM, y is

the response with binomial distribution, η in (6) is the

systematic component and the logit function logit(μ) =
(μ/(1 − μ)) is the link. Then this model becomes a GAM

regression problem for the posterior probability of binomial

distributed responses. The estimation of this GAM model

will be further studied in section 3. Since this approach is

based on GAM and import discriminative information, it is

named Discriminant Additive Tangent Space (DATS). The

DATS method is summarized in Algorithm 1.

Algorithm 1: Discriminant Additive Tangent Space

Input: Training set Train = {xi} ⊂ RN . Size of neigh-

borhood k.

Training:
• Construct the tangent sample sets T+ and T−.

• Combine T+ and T− to obtain T as the tangent train-

ing set.

• Estimate binomial GAM model on T .

Testing:
• Given test sample xt, compute η(t) = η(xt − xr) at

each reference xr.

• Adopt nearest neighbor rule for classification.

For simplicity, we assume that tangent spaces are glob-

ally homogeneous as in [13]. This assumption inevitably

compromises the model’s accuracy. But hopefully the flex-

ibility of GAM will reduce the loss as possible. The ad-

vantage is that computation is reduced and there are more

tangent samples available for estimation.

2.2.2 Discussion on DATS

DATS has many advantages in modeling tangent spaces.

Here, four points should be emphasized.

• It is discriminant. Unlike traditional manifold tangent

methods which only consider intra-class variations,

DATS incorporate extra-class variations to model tan-

gent spaces more precisely.
• It is flexible. DATS does not impose any assumption

on conditional probabilities, and can model the log-

odds in a nonparametric way. Hence it is capable of

representing various distributions, and to some extent,

pattern variations.
• It is resistant to the curse of dimensionality. Under

additive assumption, samples are projected onto each

single dimension in the link function space. Usually,

the number of samples is plenty for one-dimensional

estimations, so the growth of dimensionality has little

impact on the requirement of training samples.
• It can easily be interpreted. Its additive form allows

us to inspect the impact of each feature to the prob-

lem. This information can further be utilized to do fea-

ture selection and visualization (details can be found

in section 4.1).

Other efforts have also been made on modeling mani-

folds discriminatively. Chen et al. [7] proposed local dis-
criminant embedding (LDE), in which not only is the local

data structure preserved, but also the extra-class samples are

kept far away. This embedding strategy is more suitable for

classifications. Impressive results are obtained by LDE.



3. Direct Sparse GAM
This section presents a GAM fitting algorithm for DATS

which can handle high-dimensionality efficiently.

3.1. GAM Revisited

As mentioned in section 2.2, the estimation of DATS is

in fact the fitting of a GAM model. First we give a brief

review on GAM. Details can be found in [11].

A GAM model consists of 3 parts: a random response,

a systematic component, and a link function g(·) linking the

above two. The response y are assumed to follow the expo-

nential family density [16]

ρ(y, θ, φ) = exp{yθ − b(θ)
a(φ)

+ c(y, φ)}, (7)

where θ is the natural parameter, φ is the scale parameter,

and a,b,c are terms for different densities. Many familiar

distributions, such as Gaussian, Poisson and binomial, be-

long to this density family.

For example, in the DATS model (6), the label y is the re-

sponse with binomial distribution (5). η(t) is the systematic

component. The expectation of response μ = P (y = 1|t)
is related to η(t) by the logit link function g(μ) = logit(μ),
which is the canonical link for binomial distributions. The

use of canonical link leads to lemma (1) [16].

Lemma 1 When using canonical link in GAM, we have:

(1) θ = η;

(2) ∂b(θ)
∂θ = μ = P (y = 1|t);

(3) 1/a(φ) = ∂μ
∂θ

1
var(y) , where var(y) is the variance of y.

The GAM model is estimated by fitting the system-

atic component according to maximum likelihood criterion.

Specifically, we want to estimate the base functions fj to

maximize the likelihood. Various algorithms have been pro-

posed for this task. However, according to [24] and our

own experiments, they all have difficulties in handling high-

dimensional problems. Therefore we develop a new GAM

fitting method to estimate DATS.

3.1.1 Base Functions

Various base functions can be used in GAM. Here we fo-

cus on two types of base functions which can be estimated

directly without the use of back-fitting [11].

(1) Linear coefficients. This choice degrade the GAM

model to generalized linear models (GLM [16]):

η(t) =
p∑

j=1

βjtj = βT t + ε (8)

In this case, (6) becomes logistic regression which can be

efficiently solved by iterated reweighed least square [16].

(2) B-spline is another popular kind of base function in

GAM. Notations used here are as follows. n is the num-

ber of samples, m is the number of coefficients for each

spline, and p is the number of features/dimensions. Usu-

ally, i = 1, · · · , n indexes samples, j = 1, · · · , p in-

dexes features/dimensions/splines, and k = 1, · · · ,m in-

dexes splines basis functions. For the j-th spline fj , let

Bj
k(tij) be the basis functions, ZT

j = [z1j , · · · , znj ] with

zT
ij = [Bj

1(tj), · · · , Bj
m(tj)] be the n × m collocation ma-

trix, and γj be the coefficients. Then fj = Zjγj and

η =
p∑

j=1

fj =
p∑

j=1

Zjγj = Zγ (9)

where Z = [Z1, · · · ,Zp], γT = [γT
1 , · · · , γT

p ]. This base

function is advantageous because it achieves nonparametric

behavior while retains the parametric form that is easy to

manipulate. Readers are referred to [8] for more details.

3.2. Direct Sparse Solution

We aim at developing a GAM fitting method that can

process a large number of features effectively. Here we fo-

cus on B-spline GAM. Based on previous notations, the pe-

nalized negative log-likelihood (deviance) of model (6) is

lp(γ) = −
n∑

i=1

[(yiθi − b(θi))/a(φ) + c(yi, φ)] +
λ

2
γT Λγ

(10)

where Λ = diag(Λ1, · · · ,Λp) is the ridge matrix to ensure

smoothness, and λ indicates the penalty strength. Then, γ
is estimated to minimize the deviance lp.

We propose to use the Newton descend method to di-

rectly optimize lp. Using Lemma 1, it can be proved that

the gradient is (see Appendix)

s(γ) = ∂l
∂γ = −ZT DΣ−1(y − u) + λΛγ

= −ZT WD−1(y − u) + λΛγ.
(11)

where Σ = diag(var(yi)), D = diag(∂μi

∂ηi
). And W =

DΣ−1D acts as the weight for each sample. Further, the

second order derivative (Hessian) is

H(γ) = ZT WZ + λΛ (12)

Then, the descend direction d can be derived by solving the

linear system

Hd = −s. (13)

It is easy to see that H is positive definite (Λ is positive def-

inite to be a valid ridge term), so the optimization problem

is convex and global optimum is guaranteed.



However, H has size mp × mp so solving (13) by reg-

ular methods is expensive (O(m3p3)). To overcome this

problem, we exploit the special structure of H to achieve an

efficient solution, which is based on two observations. First,

H can be naturally partitioned into blocks {Hab} with

Hab =
∂2l(γ)

∂γa∂γT
b

=
{

ZT
a WZa + λΛa a = b

ZT
a WZb otherwise

(14)

where γa is the parameter of the a-th splines and Λa is

the corresponding ridge matrix. And second, the diago-

nal blocks Hjj is dominant in H i.e. elements in Hjj is

much larger than those in Hij , i �= j. This is because that

1) the correlation between Za and itself is much stronger

than Zb, b �= a, 2) W becomes very small as the iteration

goes while the ridge matrices Λa remain unchanged. Above

observations implies that parameters of different splines in

(13) are weakly coupled to each other.

To exploit this structure, we propose to solve (13) by

block Jacobi iteration [9]

d(l+1) = Ĥ−1Ed(l) − Ĥ−1s (15)

where Ĥ = diag(H11, · · · ,Hpp) is a block diagonal ma-

trix extracted from H, and E = H − Ĥ is the residual.

Ĥ−1 can be calculated very fast using block-wise inverse,

so the iteration can be calculated in O(p2) time. Besides,

since elements in E are small compared to Ĥ, the above it-

eration is supposed to converge fast [9]. The complexity is

now reduced from cubic to near-quadratic.

To further simplify, we assume that (15) converges to

the true solution fast enough so one iteration is adequate,

resulting the solution

d̂ = −Ĥ−1s, (16)

where d̂ is the approximate solution. With a little sacrifice

of precision, the complexity is now only linear. (16) sug-

gests that Ĥ can be used as a sparse approximation of H.

Thus we call this approach sparse Newton and the corre-

sponding GAM fitting algorithm direct sparse GAM (DS-

GAM). Using Ĥ, spline parameters are decoupled so we

can decompose (16) into p small problems

Hjjdj = −sj , j = 1, · · · , p (17)

each of which can be solved in constant time. Further, these

small problems can be dispatched to multiple processors to

achieve parallel computation. The algorithm is summarized

in Algorithm 2. In DATS, binomial distribution are em-

ployed so D = Σ = diag(μ1(1 − μ1), ..., μn(1 − μn)).
Note that Ĥ is also positive definite so the convergence

is still guaranteed. The convergence speed is determined by

E: the smaller elements in E is, the faster the optimization

converges. In practice the performance of this sparse solu-

tion is comparable to pure Newton. Some empirical perfor-

mances are presented in section 4.2. Detailed analysis on

its convergence can be found in [25].

Algorithm 2: Direct Sparse GAM (DS-GAM)
Input: Training samples xi and responses y. Form of dis-

tribution and the link function. Ridge term Λ.

Initialize: splines’ collocation matrices {Zj}, parameters

{γj}.

While not convergent do:

1. Estimate descend direction.
For j = 1, ..., p, compute update dj for each spline

2. Line-search for optimum step length l.
3. Update parameters.

For j = 1, ..., p, update γj = γj + ldj

4. Check convergence.

3.3. Related Work

Solving large scale linear systems by approximate de-

composition of weakly coupled matrices has been applied

in various problems e.g. [1]. In fact, algorithms have been

developed to turn a normal matrix into its weakly coupled

form [25]. Usually in GAM the Hessians are inherently

weakly coupled so decompositions can be applied directly

to accelerate the computation.

We compare DS-GAM to two similar GAM fitting meth-

ods: direct penalized GAM (DP-GAM) [15] and GAM-
Boost (GB) [24]. DP-GAM proposed the usage of B-spline

with penalized likelihood. Then it applies normal Newton

method to estimate the model. The convergence of DP-

GAM is very fast once the descend function is computed.

However, the storage of DP-GAM is m2p2, and the compu-

tational cost of each iteration is O(p2n + p3m)). In prac-

tice, the number of coefficient per spline m is usually 10
or above. Thus the above two requirements become pro-

hibitive for common computers when dealing with hun-

dreds of features (images larger than 16 × 16). On the

other hand, DS-GAM decomposes the model and treats

each spline separately. With a little sacrifice of precision,

the storage problem is eliminated and the computational

cost is now O(pn + pm)) (O(n + m) if using p proces-

sors). This improvement is significant when p is large.

GB was developed based on the idea of likelihood boost-

ing. It also treats the base functions separately so runs

fast. However, GB only update one of them each iteration.

Essentially, GB is a coordinate descend method [6] with

greedy direction search. Its convergence is much slower

than Newton update. Besides, GB tends to focus on a few

features while others are suppressed, so it is vulnerable to

noises, especially when the training set is small.

In sum, DS-GAM integrates the optimality of DP-GAM

and the efficiency of GAMBoost. Its computation of each

iteration is significantly faster than DP-GAM and the de-

scend speed is much higher than GB. In our experiments

DS-GAM can handle images with thousands of features and

always converges.



4. Experiments

To evaluate the performance of DATS in visual recogni-

tion tasks, experiments are conducted on several data sets.

Specially, GLM models are applied to face data to gain an

intuitive representation of tangent samples.

The following data sets are used in our experiments.

They are all featured for their manifold structures.

• UMIST (cropped): A face data set of 20 persons. Each

person has about 30 images with different poses. Im-

ages are resized to 28 × 23.

• COIL-20 (processed): This data set contains images of

20 objects. Each object has 72 images from different

view points. Images are resized to 32 × 32.

• ORL: A face data set of 20 persons. Each person has

10 samples with different poses and expressions. Im-

ages are resized to 28 × 23.

Experiment settings are as follows. PCA (EigenFace)

is used as the baseline. Linear Discriminant Analysis [12]

(LDA, FisherFace [2]) is also used for comparison. To il-

lustrate the effectiveness of DATS, results of PTS [13] are

presented. As pointed out in [13], PTS is quite similar to

Bayesian Face Model [18, 17] when the training set is small.

In all experiments nearest neighbor classifiers are employed

to test the effectiveness of different distance measures.

For DATS, we manually select the neighborhood size

(between 3 and 7) to obtain tangent samples. The ridge

penalty λ is roughly tuned by cross validation (we find

that it has little impact on the performance in a rather

large range). Each feature is normalized to 0-mean and

1-variance. DATS models are estimated by both GB and

DS-GAM to compare their performance. 20 independent

runs are performed. In each run, training samples are drawn

randomly from each class, while the rest are used for test-

ing, and training and testing data are kept the same for all

algorithms. Mean performance of the 20 runs are reported.

4.1. Linear Model and Interpretation

First, we use generalized linear model (GLM) described

in (8) as a simplified alternative of B-spline GAM to model

the tangent space of faces. We call this tangent space model

logistic discriminative tangent space (LDTS). The advan-

tage of LDTS is that its estimation is very fast and the model

can easily be interpreted.

This experiment is conducted on the ORL face data. Per-

formance of LDTS is compared to LDA and PTS(BFM).

Mean performances are presented in Table 1.

Even with the loss of flexibility, promising result is ob-

tained by LDTS. And if coefficients β of the derived LDTS

models (see (8) for more details) are drawn as an image, it

resembles a human face as shown in Figure 2. Since the

Training # per class 2 3 4 5

LDA 81.10 88.14 91.03 92.33
PTS 87.05 92.47 95.03 96.28
LDTS 86.75 92.14 95.39 97.24
DATS 90.14 95.04 96.65 98.48

Table 1. Recognition accuracy (%) on ORL data set.

LogFace EigenFace FisherFace
Figure 2. LogFace for ORL data set. It is actually an typical repre-

sentation of positive tangent samples. EigenFace and FisherFace

for the same data are also presented.

coefficients lies in the log-odds space, we call this repre-

sentation LogFace. LogFace is in fact an “typical” positive

tangent sample for the data set, considering the fact that the

correlation between LogFace and a test tangent sample de-

termines the log-odds.

LDTS can also be used as a feature selection method.

Features corresponding to small LDTS coefficients have lit-

tle influence on the calculation of log-odds. Therefore they

can be removed without much impact to the performance.

4.2. General Performance

Extensive experiments are conducted on UMIST, COIL

and ORL. We use B-spline for DATS with 10 knots per

spline. The penalty λ is 10. Results are presented in Figure

3, from which we can conclude that:

1. DATS using DS-GAM remarkably outperforms other

methods on all the data sets. This result confirms the

effectiveness of our discriminative and nonparametric

modeling for manifold tangents.

2. PTS does not perform well on COIL data. This is

probably because that COIL samples actually lie on a

circle-shaped manifold [14]. Under the global homo-

geneous assumption, its tangents will most likely form

a Gaussian model with no directional tendency. There-

fore PTS is degraded to a naive nearest neighbor clas-

sifier in essence. On the other hand, results show that

this complexity can be handled by DATS effectively.

3. DATS estimated by DS-GAM is superior to that esti-

mated by GB. Typically in GB, after 100 iterations the

models deviance is stable, with about 50 features uti-

lized, while other features are discarded. This is not

desired for visual tasks.



2 4 6 8 10 12
65

70

75

80

85

90

95

100

# Labeled sample per class

A
c
c
u
r
a
c
y
 
%

Classification on UMIST

PCA
LDA
PTS
DATS−GB
DATS−DSG

4 5 6 7 8 9 10
75

80

85

90

95

100

# Labeled sample per class
A
c
c
u
r
a
c
y
 
%

Classification on COIL

PCA
LDA
PTS
DATS−GB
DATS−DSG

2 2.5 3 3.5 4 4.5 5
80

82

84

86

88

90

92

94

96

98

100

# Labeled sample per class

A
c
c
u
r
a
c
y
 
%

Classification on ORL

PCA
LDA
PTS
DATS−GB
DATS−DSG

Figure 3. Experiment results of DATS on UMIST, COIL and ORL. DATS outperforms other algorithms remarkably. It is also shown that

results obtained by DS-GAM are superior to those obtained by GAMBoost.
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Figure 4. Convergence curves of optimization methods for DATS

on COIL. For each iteration, the time consumption of gradient,
sparse Newton, GB and Newton is about 1 : 2 : 2 : 90 (imple-

mented in Matlab R©).

Figure 4 shows the convergence speed of DATS with

different optimization methods including gradient descend,

Newton (DP-GAM), GB, and sparse Newton (DS-GAM).

This experiment is conducted on COIL using 10 samples

from each class as the training set. Images are resized to

16 × 16 (about 3000 variables in the GAM model) to make

DP-GAM feasible. The convergence of GB is slow since it

follows a coordinate descend strategy. DS-GAM descends

very fast using near-optimum directions and the computa-

tion is very efficient. Although DP-GAM descends faster

in each iteration, its computation is very slow (see Figure

4), and it rapidly grows infeasible as the dimensionality in-

creases.

5. Discussion

5.1. Relaxation

The basic assumptions of DATS that tangent spaces are

globally homogeneous can be relaxed to obtain stronger

models. We can estimate separate DATS model for different

samples or regions. In this way the performance is expected

to be enhanced, while the drawback is that it will bring

DATSPTS

Figure 5. PTS and DATS for a noisy manifold. Gray circle is the

reference sample. + and Δ represent different classes. PTS is

generative and ignores extra-class samples, while DATS considers

them. PTS is Gaussian, while DATS is nonparametric. DATS can

characterize this structure more precisely.

heavier computation burden and storage requirements.

5.2. Comparison to PTS

From the perspective of GAM regression, DATS model

(6) yields the posterior probability P (y = 1|t) with logit

link function. This notion coincides with PTS[13], which

uses PPCA to estimate a density for tangent samples. Con-

sidering the fact that in general tangent samples are obtained

by centralizing reference points’ neighbors, both methods

are actually modeling the local distribution of data. There

are mainly two differences between them: (1) PTS is gen-

erative while DATS is discriminative. PTS aims at estimat-

ing a Gaussian model for positive tangent samples. On the

other hand, the goal of DATS is to maximize the model’s

discriminative power. In training, negative tangent sam-

ples are utilized to obtain more accurate model. (2) PTS

restricts the local distribution to be a single Gaussian while

DATS assumes no prior knowledge. For complex manifold

structures PTS is obviously not an adequate model, whereas

DATS’s nonparametric model allows for maximum adapt-

ability. These two points are illustrated in Figure 5.



6. Conclusion
In this paper, we propose a novel manifold tangents

modeling method called discriminant additive tangent space

(DATS), and apply it to object recognition tasks as an invari-

ant classification algorithm.

To model manifold tangents effectively, DATS propose

to utilize both positive and negative tangent samples and

measure the significance of their difference by log-odds.

Then the log-odds are directly modeled by GAM which is

optimized to maximize the discriminant power. In this way,

a discriminant nonparametric model for manifold tangents

is derived. In order to apply GAM to visual tasks, we also

presented an efficient fitting algorithm called DS-GAM for

high-dimensional tasks. This algorithm is highly efficient

and possesses good convergence properties.

DATS is very flexible to model various pattern variations

and is resistant to the curse of dimensionality. Experiments

on several object recognition tasks demonstrate its effec-

tiveness.
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Appendix
Using canonical link and Lemma (1), we have

θi = ηi =
∑
j

fj(xi) =
∑
j

zT
ijγj ,

s(γj) = ∂lp
∂γj

= ∂lp
∂θ

∂θ
∂η

∂η
∂γj

+ λΛjγj

= −
n∑

i=1

[(yi − ∂b(θi)
∂θi

) 1
a(φ)

∂θi

∂ηi

∂(
pP

j=1
zT

ijγj)

∂γj
] + λΛjγj

= −∑
i

[(yi − ui)
∂h(ηi)

∂ηi

1
var(yi)

zij ] + λΛjγj

= −ZT
j DΣ−1(y − μ) + λΛjγj

(18)

in which h(·) is the inverse function of the link g(·).
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