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Abstract

In this paper, we present a learning procedure called

probabilistic boosting network (PBN) for joint real-time ob-

ject detection and pose estimation. Grounded on the law of

total probability, PBN integrates evidence from two build-

ing blocks, namely a multiclass boosting classifier for pose

estimation and a boosted detection cascade for object de-

tection. By inferring the pose parameter, we avoid the ex-

haustive scanning for the pose, which hampers real time

requirement. In addition, we only need one integral im-

age/volume with no need of image/volume rotation. We im-

plement PBN using a graph-structured network that alter-

nates the two tasks of foreground/background discrimina-

tion and pose estimation for rejecting negatives as quickly

as possible. Compared with previous approaches, we gain

accuracy in object localization and pose estimation while

noticeably reducing the computation. We invoke PBN to

detect the left ventricle from a 3D ultrasound volume, pro-

cessing about 10 volumes per second, and the left atrium

from 2D images in real time.

1. Introduction

Real-time object detection and pose estimation are im-

portant to many computer vision applications ranging from

face detection to segmentation of anatomical structures in

medical images. The state-of-the-art of object detector is

from Viola and Jones [12]: They off-line learn a binary

classifier that differentiates the object of interest from the

background and then online exhaustively slide a scanning

window on the input image for object instances. The key

ideas in [12] include the use of boosting for feature selec-

tion, the use of the integral image for fast evaluation of local

rectangle features via the means of integral image, and the

use of cascade for quick negative elimination.

However, it is challenging to build a real-time detector

that also performs accurate pose estimation by using the

detector like [12] to exhaustively scan all possible transla-

tions and poses. Consider detecting the left ventricle (LV)

Figure 1. Detecting the LV and its pose in a 3D ultrasound volume

is important to automatically navigate multiple canonical planes

for clinical practices.

in a 3D echocardiogram (echo), which is an ultrasound vol-

ume of the human heart (Figure 1). Discovering the LV

configuration is helpful to navigate the 3D volume; for ex-

ample, from a known LV configuration, one can meet an

emerging clinical need to automatically display canonical

2D slices. Since the LV can occur at arbitrary location and

orientation, one needs six parameters1 to fully align the LV

rigidly: (tx, ty, tz) for translation and (θx, θy, θz) for ro-

tation. When extending [12] for LV detection in 3D vol-

ume, the computational cost increases exponentially with

the dimensionality of the configuration space. Further, vol-

ume rotation and integral volume computation are time con-

suming since their computation is linearly dependent on the

number of voxels. For example, it takes more than 1s to

rotate a volume of size 128 × 128 × 128 on a PC with a

2.4GHz CPU and 2GB memory!

In this paper, we present an algorithm called probabilis-

tic boosting network (PBN), which is able to jointly de-

tect the object quickly and estimate the pose accurately.

PBN estimates the pose β via a multiclass approximation to

the posterior probability p(β|I), learns the object detector

p(O|I, β) for each pose, and integrates the evidence from

the pose classifier and object detectors using the total prob-

ability law as an integrating rule:

1Ideally, one also needs three additional parameter (sx, sy, sz) for

compensating the different scale/size varying with patients.
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p(O|I) =

∫

β

p(O|I, β)p(β|I) dβ. (1)

The above integrating rule is an instance of combining the

generative mixture model with discriminative classification

models [11]. To train the multiclass classifier and binary

object detectors, PBN invokes boosting algorithm to per-

form feature selection based on a common feature pool. In

addition, PBN endows a network structure to support effi-

cient evaluation. Finally, PBN computes only one integral

volume/image; no volume/image rotation is needed.

In summary, we make the following contributions: (i)

We propose in Section 3 a multiclass approximation for

pose estimation and derive an accurate estimate for even

two continuous pose parameters. We learn the multiclass

classifier via the LogitBoost algorithm that embeds feature

selection and allows fast evaluation; (ii) We ground the pro-

cess of evidence integration on the total probability law,

which lays a solid theoretic foundation. As shown in Sec-

tion 4, we analytically compute the posterior probability of

being an object with no ad-hoc treatment; (iii) We imple-

ment in Section 4 two network structures (tree and graph)

to estimate pose and discriminate foreground from back-

ground efficiently. The implemented structure enables fast

rejection of patches both on the background and of wrong

poses with the aid of only one integral volume/image; and

(iv) We present in Section 5 a real-time algorithm that per-

forms object detection and pose estimation from a 3D vol-

ume. To the best of our knowledge, this is the first kind in

the literature. We also achieve real time performances on

object detection from 2D images.

We proceed to address the real time challenges in achiev-

ing joint fast object detection and pose estimation and then

motivate our approach.

2. Joint object detection and pose estimation

2.1. Previous approaches

Viola and Jones [12] proposed the first real time frontal-

view face detector by exhaustively scanning the location

(tx, ty) and scale s. However, only a sparse set of scales

is scanned and the same scale is used for both x and y di-

rections. There is no rotation variation involved.

While the fast evaluation of local rectangle features is

applicable when dealing with scale variation, it is not as

straightforward when applying it to the rotation variation.

A simple approach is to train one classifier by pooling to-

gether data from all orientations as positives: The variation

introduced by rotation is treated as intra-class. However, as

previously pointed out [5, 7, 8], this treatment causes a sig-

nificant increase in appearance variation, rendering a com-

plex detector and inaccurate detection. Also it is impossible

to recover rotation information. Another possibility [4] is to

rotate the image for each sampled orientation and compute

Figure 2. Different structures for multi-pose detection. The circle

represents a binary foreground/background classifier. The rectan-

gle represents a multiclass pose classifier.

its according integral image; but, as mentioned earlier, it is

computationally prohibitive for 3D volume.

A promising solution that requires only one integral vol-

ume/image is to train a collection of binary classifiers to

handle different poses. A variety of structures are proposed

to combine these classifiers. The most straightforward way

is a parallel structure (Figure 2(a)) that trains a classifier

for each discretized pose [13]. In detection, all classifiers

are tested for every scanning window. The computation lin-

early depends on the number of poses. To accelerate the

detection speed, the pyramid structure is proposed by Li

et al. [8]. This approach adopts a coarse-to-fine strategy

to train classifiers with increasingly narrower pose ranges.

For the parallel structure, several classifiers might fire up at

the same place when the actual pose is in-between the dis-

cretized poses. To estimate accurate pose needs additional

work due to the difficulty in comparing responses among

these classifiers. To discriminate different poses explicitly,

tree structure (Figure 2(b)) that uses multiclass classifier as

a differentiator is applied. In [7], a decision-tree is used to

determine the pose of a face, followed by the binary classi-

fier trained for that pose only. Most recently, Huang et al.

[5] proposed a tree structure to divide the pose space into in-

creasingly smaller subspaces. The foreground/background

discrimination and pose estimation are performed at the

same node using the VectorBoost algorithm.

In the above-mentioned detection approaches [5, 7, 8,

13], only a sparse set of orientations and scales are tested

to meet real time requirement. Unfortunately, the anatomi-

cal structure in medical image (such as the LV) can possess

arbitrary orientation and scale and the detection task needs

to accurately determine them. Under these circumstances,

it is challenging to build a rapid detector using the above

approaches. In general, the speed is inversely proportional

to the number of tested poses; in order to give an accurate

account of the pose, the speed has to be sacrificed.



2.2. Our approach

We explore along the promising line of the tree structure.

To avoid searching the whole configuration space, we break

the whole configuration space into two halves: For the first

half (such as translation), we still use exhaustive scanning;

for the second half (such as rotation and even scale), we di-

rectly estimate the parameters from the image appearance.

We refer to the parameters in the second half as pose. We

couple the exhaustive scanning with pose estimation; this

way we successfully remove the linear computational de-

pendency on the number of poses.

For the tree structure, usually only one branch is evalu-

ated based on the decision of the multiclass classifier [7] and

hence, the error made by the multiclass classifier has great

influence on the detection result. In [5], several branches

may be chosen, based on the hard decision provided by the

VectorBoost algorithm, for the purpose of reducing the risk

of possible errors in pose estimation. We handle the un-

certainty of pose estimation using probabilities as soft de-

cisions. The multiclass classifier is trained using the Logit-

Boost algorithm [3], which provides a sound theory of com-

puting the probability of the pose. This probability is used

to choose branches to evaluate. The final probability of be-

ing the object is computed by applying the total probability

law. In addition, we obtain a better estimation of the pose

by using the conditional mean of the pose distribution.

To further increase the efficiency of the tree structure, a

graph-structured network (Figure 2(c)) is proposed to reject

background as early as possible. The multiclass classifier is

decomposed into several sub-classifiers by taking advantage

of the additive native of the boosted classifier. The sub-

classifiers and binary detectors are coupled to form a graph

structure that alternates the two task of pose estimation and

object detection. Furthermore, we add a binary classifier as

a pre-filter of the graph to reject the background that can be

easily differentiated from the foreground.

3. Pose Estimation

Given a window containing the object of interest, we

want to estimate the pose parameter(s) of the object based

on the image appearance I in the window. We first discuss

the algorithm for one-parameter estimation and then use the

one-parameter estimation algorithm as a building block to

deal with two-parameter estimation.

3.1. One-Parameter Estimation

Because the object appearance variation is caused not

only by the rigid transformation we want to estimate, but

also by noise, intensity variations, and nonrigid shape de-

formation, etc., a robust algorithm is needed to guarantee

the accuracy of pose estimation. We handle the uncertainty

of the pose estimation by learning a probability p(β|I). This

probability can be used to estimate β accurately and to avoid

the early hard decisions that can cause errors in subsequent

tasks.

In practice, p(β|I) is approximated by the discretized

probability p(βj |I) using a discrete set of parameters

{β1, β2, . . . , βJ}. We implemented the image-based multi-

class boosting algorithm proposed by Zhou et al. [14]. This

algorithm is grounded on the multiclass version of the influ-

ential boosting algorithm proposed by Friedman et al. [3],

the so-called LogitBoost algorithm, which fits an additive

symmetric logistic model by the maximum likelihood prin-

ciple. This fitting proceeds iteratively to select weak learn-

ers and combines them into a strong classifier. The output

of the LogitBoost algorithm is a set of J response functions

{Fj(x); j = 1, . . . , J}; each Fj(x) is a linear combination

of a set of weak learners:

Fn
j (x) =

n
∑

i=1

fj,i(x), (2)

where fj,i(x) is a weak learner and n is the number of weak

learners. LogitBoost provides a natural way to calculate the

posterior distribution of class label:

pn
j (x) =

exp(Fj(x))
∑J

k=1 exp(Fk(x))
. (3)

Refer to [14] for implementational details.

One merit of the LogitBoost algorithm is that the

computed posterior probability approximates the true one

asymptotically [3]. This means that we can tradeoff the ap-

proximation accuracy with the computational cost by ad-

justing the number of weaker learners in the response func-

tions. This property is used to build the network structure

to reject background more efficiently at early stages.

We infer the parameter β by using the minimum mean

square error (MMSE) estimator, which is the conditional

mean.

β̂MMSE =

∫

β

βp(β|I) dβ ≈
∑

j

βjp(βj |I). (4)

This gives a better estimate than the maximum a posterior

(MAP) estimate from a discrete set of possible values of β

because the MMSE estimate can interpolate in between the

values in the discrete set. The MAP estimator is defined as

β̂MAP = max
β

p(β|I) ≈ max
{β1,...,βJ}

p(βj |I). (5)

Figure 3 compares the MMSE and MAP estimates for

the rotation parameter in the second experiment (section

5.2). We learned the multiclass classifier using the 299

aligned training images rotated from -30 to 30 degree with

10 degrees apart. During testing, we synthetically rotated

72 aligned testing data with one degree apart. Figure 3(a)

displays the rotation estimation result of a testing data. As

the MMSE estimate can interpolate between angles, it gives
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Figure 3. The estimation of the rotation parameter. (a) a single

testing data. (b) the MAE of all testing data. The red line is the

ground truth. The blue line is the MAP estimate. The green line is

the MMSE estimate.

a smoother curve. Figure 3(b) shows the mean absolute

error (MAE) in angle estimation of all testing data. The

MMSE estimate obviously outperforms the MAP estimate

except when the angle is close to the discretized values.

3.2. Two-Parameter Estimation

The LogitBoost algorithm that estimates one parameter

can be used as a building block to construct a graph struc-

ture for estimating two or more parameters. In this section,

we will focus on two-parameter estimation; the same prin-

ciple can be applied to situations with more than two param-

eters. Suppose that the two unknown parameters are γ and

β, we want to estimate p(β, γ|I) from the image I . Figure

4 given a graphical illustration of three possible structures

that can be used to fulfill the estimation task.

For the type-a structure, we treat the combination of

β and γ as a single variable and train p(β, γ|I) directly.

This approach is structurally simple and has good perfor-

mance when the number of the combination states is small.

However, when the number of combination states is large

or the appearance variations caused by both parameters are

too complex to learn using a single classifier, this approach

will give a poor performance. In this case, the divide-and-

conquer strategy is appropriate to estimate parameters se-

quentially by using multiple multiclass classifiers.

For the type-b structure, we assume β and γ are indepen-

dent. To train p(β|I) (or p(γ|I)), we treat the variation in γ

(or β) as intra-class. The joint distribution is approximated

as
p(β, γ|I) ≈ p(β|I) ∗ p(γ|I). (6)

The drawback of this approach is that the assumption of

independency of β and γ is usually not valid.

For the type-c structure, we apply the exact conditional

probability law:

p(β, γ|I) = p(γ|β, I) ∗ p(β|I) (7)

This can be represented as a tree structure. A root mul-

ticlass classifier is trained to learn p(β|I) by treating the

variation in γ as intra-class. Each child node corresponds to

the conditional probability p(γ|βj , I) for a discrete state βj .

To compute p(β, γ|I) efficiently, we omit branches whose

probability p(β|I) is below a predetermined threshold.

Figure 4. Different structures for estimating probability of two-

parameter pose.

The choice of the root parameter for the type-c structure

influences the overall performance, because the amount of

the image appearance variations caused by the two param-

eters is not the same. Usually, the parameter that causes

larger appearance variation should be the root node. This

enables learning p(β|I) easier and makes a better division

of the pose space.

How to choose these three types is determined by the

data properties. Our principle is that if the number of the

poses is small and the appearance variation can be suffi-

ciently captured by one classifier, we use the type-a struc-

ture. Otherwise, we choose the type-c structure.

4. Probabilistic boosting network (PBN)

In previous section, we discussed how to estimate the

pose parameter in the scanning window. We now present

the probabilistic boosting network (PBN) that integrates ev-

idence from pose estimator and binary detectors. PBN char-

acterizes three basic features.

1. It is probabilistic. PBN leverages the fundamental to-

tal probability law to compute the probability of being

object O. Assuming that the pose parameter β is dis-

cretized into {β1, β2, . . . , βJ},

p(O|I) =
J

∑

j=1

p(O|I, βj)p(βj |I), (8)

where p(O|I, βj) is the binary classifier specific to a

particular parameter βj . To compute (8) efficiently, we

ignore branches whose pose probability is smaller than

a pre-specified threshold p0.

p(O|I) ≈
∑

j: p(βj|I)≥p0

p(O|I, βj)p(βj |I). (9)

2. It uses boosting. As discussed in section 3, the prob-

ability p(βj |I) is implemented using the multiclass

LogintBoost algorithm [3]. The classifier p(O|I, βj)
is implemented using the cascade of boosted binary

classifiers [12], which is able to deal with numerous

negatives and eliminate them as early as possible dur-

ing testing. To implement the binary classifier in the

cascade, one can use AdaBoost [2], binary LogitBoost

[3], or other variants. Suppose that the cascade has Cj

stages, then p(O|I, βj) is computed as



p(O|I, βj) =

Cj
∏

c=1

pc(O|I, βj), (10)

where pc(O|I, βj) is the binary classifier for the cth

cascade. The complexity of the classifier pc(O|I, βj)
increases as the stage proceeds deeper (i.e., c becomes

larger). Without loss of generality, we assume that

C1 = C2 = ... = CJ = C. If say Cj < C, we

simply set pc(O|I, βj) = 1 for c > Cj .

3. It endows a network structure in implementation.

Since the total probability law turns into

p(O|I) =

J
∑

j=1

C
∏

c=1

pc(O|I, βj)p(βj |I), (11)

it is implemented as a tree-structured network shown in

Figure 2(b). Using this structure, the negatives will be

rejected quickly when they flow through the network

while the positives traverse through several branches.

By combining the evidence from these branches, we

are able to compute p(O|I) exactly using (11).

In [9], a learning procedure called probabilistic boost-

ing tree (PBT) is presented. Both PBN and PBT are able

to provide exact object detection probability, use boosting,

and have a tree structure, but they also differ a lot. In the

tree-structured PBN, each node corresponds to a specified

nuisance parameter, while in PBT there is no specific nui-

sance parameter. PBN also estimates the pose parameter

explicitly. Finally, PBN manifests an efficient graph struc-

ture as shown next, which is not available in PBT. In [1, 6],

Boosting is combined with (dynamic) Bayesian network

for parameter learning, structure selection, and audio-video

speaker detection.

4.1. Efficient graph structure

The tree-structured PBN is not yet optimal in terms of

computation because the overhead computation of the prob-

ability p(β|I) has to been done for all background win-

dows. These candidate windows are randomly sent to sev-

eral branches of cascades and rejected by these branches.

This creates a dilemma for the tree-structure: the purpose of

multiclass classifier is to select proper binary classifiers to

reject background; however, determining the pose of these

background patches wastes computation.

One way to solve this problem is to discard as much

background windows as possible via a focus-of-attention

mechanism. This can be achieved by pooling together

all data from different poses as positives to train a pose-

invariant classifier as a pre-filter. We tune the pose-invariant

detector to have a 100% detection rate by adjusting the

threshold. This detector cannot offer a precise detection,

but it is useful to reject a large percentage of the background

candidates.

To compute the probability p(O|I)

1. Let ej be the number of the binary classifiers already evalu-

ated in the jth branch. Start with ej = 0, response functions

Fj(x) = 0, and probabilities p(O|I, βj) = 1, j = 1, . . . , J .

2. Use the pose-invariant classifier to pre-filter. If I is back-

ground, set p(O|I) = 0 and exit.

3. Repeat for c = 1, 2, ..., C:

• Add nc weak learners to Fj(x) and update p(βj |I).

• For jth branch, j = 1, . . . , J , if p(βj |I) ≥ p0 and

p(O|I, βj) > 0:

– Compute the probabilities pk(O|I, βj),

k = ej + 1, . . . , c. If it is background, set

p(O|I, βj) = 0.

– Update

p(O|I, βj)← p(O|I, βj)
c

∏

k=ej+1

pk(O|I, βj).

– Update ej = c.

• If p(O|I, βj) = 0 for all branches, set p(O|I) = 0
and exit.

4. Compute p(O|I) based on the total probability law.

Figure 5. The PBN detection algorithm.

Even though the pre-filter classifier is used, there are still

quite some non-object windows passing the pre-filter and

causing overhead computation of p(β|I). Just as the cas-

cade structure for binary detector p(O|I, βj), which breaks

its computation into several stages with increasing com-

plexity, we also decompose the computation of p(β|I) into

several stages by taking the advantage of the additive model

arising from the LogitBoost algorithm. The response func-

tions at the cth stage is:

F c
j (x) = F c−1

j (x) +

cn
∑

i=1

fj,i(x), (12)

where cn is the number of weak learners at the cth stage.

For the type-b and type-c structures, the computation of the

probability p(β, γ|I) can also be decomposed by distribut-

ing the weak learners of the multiclass classifiers to several

stages.

We organize the whole detector as a graph-structured

network shown in Figure 2(c), which alternates the two

tasks of pose estimation and background rejection by hier-

archically distributing the overhead computation of p(β|I).
Figure 5 shows the detection algorithm of PBN with a single

pose parameter. PBN detection with multiple pose param-

eters can be implemented in a similar way. The network is

evaluated in a top-to-bottom fashion. At each new stage,

more weak learners are added to update p(β|I), which ap-

proximates the true posterior probability more accurately

due to its asymptotic property. Based on the newly esti-



mated p(β|I), the binary classifiers corresponding to large

p(β|I) at this stage are evaluated. If a new binary branch

never explored by early stages is selected, we trace back to

the beginning and re-evaluate the whole branch. If the can-

didate fails all selected binary classifiers, it is considered

as a background window and the computation stops; other-

wise, it proceeds to the next stage.

More accurate pose estimation helps to decide whether

the candidate window belongs to the foreground, while the

binary classifiers help to determine whether it is necessary

to continue evaluating p(β|I). This way, the positives are

evaluated at a minimum number of branches and the neg-

atives are quickly rejected by either the pre-filter or early

detector cascades.

5. Experimental results

We applied the PBN classifier in two experiments. In the

first experiment, we detected the LV in a 3D echo and es-

timated the LV orientation using the one-parameter estima-

tion. In the second experiment, we detected the left atrium

(LA) in a 2D echo and estimated two pose parameters.

5.1. Left ventricle detection in 3D echocardiogram

We used 50 3D echocardiographic volumes in training

and 22 volumes in testing. The LV configurations for all

72 volumes are annotated by an expert. As a preprocessing

step, we down-sampled every volume into a quarter size of

the original one, giving a volume size of 54 × 62 × 67.

We built a local coordinate system for each volume, with

its center at the LV center and its z-axis along the long axis

of the LV. Because the LV is roughly symmetric along its

long axis, we treated the variation caused by the rotation

along the z-axis as intra-class. We concentrated on detect-

ing object position (tx, ty, tz) and estimating two rotation

parameters (θx, θy).
We divided the rotation along the x-axis into three an-

gles {−20, 0, 20} and the rotation along the y-axis also into

three angles {−20, 0, 20}. Because the number of discrete

poses is small, we used one multiclass classifier to estimate

p(θx, θy|I) directly, which corresponds to the type-a struc-

ture discussed in Section 3.2. For each angle, we randomly

perturbed by a small amount (less than 3 voxels) around the

LV center to collect more positives. Also the images caused

by pure rotation along the z-axis are added as positive data

in order to increase the robustness of the LV detection.

We implemented the following seven approaches: 1) a

pose-invariant classifier. This is the same as using only the

pre-filter but without adjusting the threshold; 2) a parallel-

structured detector which makes decision based on the mag-

nitude of response functions trained independently; 3) a

tree-1 detector exploring only one branch which has the

largest pose probability; 4) a tree-structured PBN detector

exploring several most promising branches but without the

pre-filter; 5) a graph-structured PBN detector without the

pre-filter; 6) a tree-structured PBN detector with the pre-

filter; and 7) a graph-structured PBN detector with the pre-

filter. We constructed a common feature pool, based on the

3D local rectangle features [10], from which we selected via

boosting relevant features to form the multiclass and binary

classifiers. Because the ultrasound volume has a fan-like

support region, it is likely that the ground truth LV win-

dow contains voxels outside the fan. To deal with this,

we followed [4] to use the so-called mask volume which

indicates one if a voxel is inside the fan and zero other-

wise. To efficiently count the number of within-the-fan vox-

els in a specific window, we computed the integral volume

of the mask volume. We empirically found that using the

additional mask treatment introduces 30% extra computa-

tion when compared with [12]. Also, The area outside the

known fan is not scanned. To have fair comparisons, we

used the same discretization of the pose parameter for all

seven approaches.

The testing results are presented in Table 1. Denote the

estimated parameter by (t̂x, t̂y, t̂x, θ̂x, θ̂y) and the ground

truth by (tx, ty, tz, θx, θy), we calculated the error in trans-

lation as
√

∑

a=x,y,z(t̂a − ta)2 and the errors in rotation as

|θ̂x − θx| and |θ̂y − θy|. Reported in Table 1 are the median

values of the testing errors. The computational speed was

measured on a PC with a 2.4GHz CPU and 2GB memory.

From the results, we observe that the rotation-invariant

detector is the fastest one, but it lacks accuracy in detection

due to the appearance complexity introduced by all rota-

tions. Also, it does not estimate the orientation. The par-

allel and tree-1 structure are comparable in terms of speed

and translation, but the tree-1 structure has an edge over

the parallel one in terms of orientation accuracy. The rea-

son why the parallel structure that evaluates all branches is

slightly faster than the tree-1 structure that evaluates only

one branch is due to the overhead computation of pose es-

timation, the small number of branches, relative easiness to

reject the background patches. However, both their pose

estimation is rough due to inability to interpolate. The tree-

structured PBN gives better accuracy, benefiting from the

pose probability computation that enables proper branch se-

lection and the MMSE estimation of pose parameter, but it

is slower than the parallel and tree-1 structures due to the

above-mentioned reasons as well as more branches to be

evaluated. The graph-structured PBN achieves similar ac-

curacy to the tree-structured PBN but significantly improves

the speed as it distributes the overhead computation of pose

estimation hierarchically. The pose-invariant pre-filter is ef-

fective to reject the background candidates at early stages

with no sacrifice of the final estimation. When it is cou-

pled with the tree- and graph-structured PBNs, we achieved



Figure 6. 3D LV detection results obtained by the PBN classifier. The green box is the PBN estimation and the red box is the ground truth.

the real-time performance for 3D LV detection: processing

about 10 volumes per second. To the best of our knowledge,

this is the first algorithm that runs in real time to detect ob-

ject in a 3D volume and estimate its pose as well. Figure

6 shows several detection and pose estimation results ob-

tained by the PBN classifier.

time(ms) T(voxel) θx (degree) θy (degree)

pose inv. 83 3.593 n/a n/a

parallel 223 2.549 9.109 6.976

tree-1 [7] 251 2.828 6.683 5.746

tree 295 2.236 5.481 3.967

graph 170 2.314 5.592 4.40

tree+pre 142 2.236 5.481 3.967

graph+pre 102 2.314 5.592 4.408

Table 1. Parameter estimation results of 3D LV detection.

5.2. Left atrium detection in 2D echocardiogram

We used the 2D echo of apical two chamber view (A2C)

in the experiment. The A2C view captures only the LV and

LA. LA detection in 2D echo is more difficult than LV de-

tection [4] because the LA possesses more shape variations

and the LA, being in the far field of the ultrasound probe,

is more difficult to image. Refer to Figure 8 for some A2C

example images.

Our data set contains 371 2D echo images with expert

annotations of the LA, out of which 299 randomly selected

images are for training and the remaining 72 for testing.

In training, we followed the procedure of Procrustes shape

alignment. The rigid transformation between an original

contour x and the mean contour x0 is defined as:

x = SRAx0 + T, (13)

where S = diag[s, s] is a uniform scaling matrix, R is a

rotation matrix defined by rotation angle θ, A = diag[1, α]
defines the aspect ratio of the contour, T = [tx, ty]T is a

translation vector.

Among these five parameters (s, θ, α, tx, ty), we treated

the rotation θ and aspect ratio α as pose parameters. Based

on the prior range and the precision requirement, we di-

vided the rotation into seven angles {−30 + j ∗ 10; j =
0, 1, . . . , 6} and the aspect ratio into seven discrete value

{−.76,−.84,−.92, 1, 1.08, 1.16, 1.24}. Because it is dif-

ficult to fit 49 classes into the memory to learn p(θ, α|I)
with one multiclass classifier, we used the type-c structure

discussed in section 3.2. The root node computes p(θ|I) be-

cause the rotation causes more distinct variations. The train-

ing data are obtained by synthetically transforming aligned

data with different rotation and aspect ratio parameters.

Other three parameters are exhaustively searched. To-

tally 49 binary detector cascades are trained for all poses.

In order to allow objects with an in-between pose to pass

these detectors, we augmented the positive training data by

a small perturbation of the corresponding pose.

We first compared the performance of the type-b and

type-c structures for the two-parameter estimation. For

each testing data, we synthesized 49 examples with the dis-

cretized rotation and aspect ratio parameters. The proba-

bility p(θ, α|I) is computed for the type-b and type-c struc-

tures, respectively. The estimate of the rotation parameter

θ is the same for the two structures; the MAE is 3.4 de-

gree. We compared the error of the aspect ratio parameter

α, as shown in Figure 7: The overall MAE error is 0.057

for type-b and 0.050 for type-c, a 14% improvement over

the type-b. The reason is that the variation caused by the

rotation, which is quite large, confuses the aspect ratio clas-

sifier, making the independence assumption of the type-b

structure invalid.
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Figure 7. The MAE of the aspect ratio in the two-parameter set-

ting: (a) Type-b structure and (c) Type-c structure.

time(ms) T (pix) θ(degree) s α

exhaustive [4] 619.5 5.018 7.082 0.086 0.099

parallel 339.3 5.849 7.351 0.096 0.104

tree-1 145.2 7.925 7.225 0.158 0.147

tree 207.9 4.695 5.482 0.083 0.082

graph 141.3 4.695 5.482 0.083 0.082

tree + pre 104.4 5.027 5.767 0.083 0.083

graph + pre 76.1 5.027 5.767 0.083 0.083

Table 2. Parameter estimation results of 2D LA detection.

We then compared the detection and pose estimation re-

sults of seven approaches. Again, we used the mask im-

age treatment. We implemented the exhaustive scanning al-

gorithm in [4] for the LA2, which trains one detector but

rotates the image in testing, to take the place of the pose-

invariant detector that is unable to estimate the pose. All

2Only the LV is originally addressed in [4].



Figure 8. 2D LA detection results obtained by the PBN classifier. The green box is the PBN estimation and the red box is the ground truth.

other six methods are the same. The detection is on half-

sized images, which varies around the size 300 × 270. The

testing results are presented in Table 2. The error in transla-

tion is measured by the Euclidean distance. The errors for

other parameters are measured by the absolute value. Be-

cause there are a few outlier cases, the median error is re-

ported. In each testing image, we selected the scanning can-

didate with the largest overall detection probability as the

detection result and determined the pose using the MMSE

estimate from PBN.

From Table 2, we observe that the exhaustive approach

is slowest due to computation of integral images for all pos-

sible rotations and exhaustive search in the whole parameter

space. The parallel structure saves the time for extra com-

putation on integral images. However, comparing response

functions of independently trained classifiers is problematic

and hence the accuracy is worse than the exhaustive ap-

proach. Unlike the 3D LV detection, the tree-1 structure [7],

which evaluates only one branches even with the overhead

computation of pose estimation, is faster than the parallel

structure, which evaluates 49 binary detectors. But, it per-

forms worse than the parallel structure, which is consistent

to the observation made in [7]. The tree-structured PBN

is slower than the tree-1 structure, but it significantly im-

proves the accuracy: On the average, the error in translation

is reduced by 3.23 pixels (40.8% improvement), the error in

rotation by 1.743 degree (24.1% improvement), the error in

scale by 0.075 (47.5% improvement), and the error in aspect

ratio by 0.065 (44.2% improvement). The graph-structured

PBN not only matches the same performance improvements

induced by the tree-structured PBN over the tree-1 structure

but also matches the speed of the tree-1 structure. Using the

pose-invariant classifier as a pre-filter of PBN, which rejects

about 65% of the candidates, we effectively saved the com-

putation with a negligible performance degradation. The

most efficient graph-structured PBN coupled with the pre-

filter is able to process about 13 frames per second, more

than eight times faster than the exhaustive approach [4].

6. Conclusion

We have described a learning algorithm called proba-

bilistic boosting network (PBN) for joint fast object de-

tection and pose estimation. We have first depicted a

boosting-based multiclass procedure that estimates the pose

(one/multiple parameters) more accurately and then pre-

sented a graph-structured PBN for detecting objects. Cou-

pled with a pose-invariant pre-filter, the graph-structured

PBN becomes an effective tool that quickly rejects nega-

tives. Finally, we have implemented a real time algorithm

that detects objects from 3D volumes and 2D images.

References

[1] T. Choudhury, J. Rehg, V. Pavlovic, and A. Pentland. Boost-

ing and structure learning in dynamic bayesian networks for

audio-visual speaker detection. In Proc. ICPR, 2002.

[2] Y. Freund and R. Schapire. A decision-theoretic general-

ization of online leaning and an application to boosting. J.

Computer and System Sciences, 55(1):119–139, 1997.

[3] J. Friedman, T. Hastie, and R. Tibshirani. Additive logis-

tic regression: a statistical view of boosting. Ann. Statist.,

28:337–407, 2000.

[4] B. Georgescu, X. S. Zhou, D. Comaniciu, and A. Gupta.

Database-guided segmentation of anatomical structures with

complex appearance. In Proc. CVPR, 2005.

[5] C. Huang, H. Ai, Y. Li, and S. Lao. Vector boosting for

rotation invariant multi-view face detection. In Proc. ICCV,

2005.

[6] Y. Jing, V. Pavlovic, and J. Rehg. Efficient discrimina-

tive learning of bayesian network classifier via boosted aug-

mented naive bayes. In Proc. ICML, 2005.

[7] M. Jones and P. Viola. Fast multi-view face detection.

MERL-TR2003-96, July 2003.

[8] S. Li and Z. Zhang. FloatBoost learning and statistical face

detection. PAMI, 26:1112–1123, 2004.

[9] Z. Tu. Probabilistic boosting-tree: Learning discriminative

models for classification, recognition, and clustering. In

Proc. ICCV, 2005.

[10] Z. Tu, X. S. Zhou, A. Barbu, L. Bogoni, and D. Comaniciu.

Probabilistic 3d polyp detection in ct images: The role of

sample alignment. In Proc. CVPR, 2006.

[11] I. Ulusoy and C. M. Bishop. Comparison of generative and

discriminative techniques for object detection and classifica-

tion. In Proc. Sicily Workshop on Object Recognition, 2006.

[12] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In Proc. CVPR, 2001.

[13] B. Wu, H. AI, C. Huang, and S. Lao. Fast rotation invariant

multi-view face detection based on real adaboost. In Proc.

Auto. Face and Gesture Recognition, 2004.

[14] S. K. Zhou, J. H. Park, B. Georgescu, C. Simopoulos, J. Ot-

suki, and D. Comaniciu. Image-based multiclass boosting

and echocardiographic view classification. In Proc. CVPR,

2006.


